Machine Learning
4771

Instructors:
Adrian Weller and llia Vovsha

COMS4771, Columbia University

Lecture 13: Support Vector Machines

e Dual Forms
e Non-Separable Data
e Support Vector Machines (Bishop 7.1, Burges Tutorial)

e Kernels

Dual Form Derivation

e Recall optimal hyperplane problem in primal space:
. 2 . T
min—|w| st Vi:y,(w'x +b)=1
wo)
e This is a convex program, define the Lagrangian and find stationary point:

L(w,b,oc)=l Wl - g oly.(w'x +b)-1|, a =0
2 i=1 l l l l

e Minimize L over {w,b}, maximize over {alphas}:

ﬁL(WbOC e E Ly x =0 = we E ya,

Wba) E Q.y, = O:E .

Dual Form

This is a convex program, define the Lagrangian and find stationary point:

L(w,l9,05)=l W - E oly.w'x +b)-1|, a =0
2 1 l l l l

=
e Minimize L over {w,b}, maximize over {alphas}:
JdL(w,b,0) JdL(w.,b,0r) N
ow db

((
= W= Ei=1yiaixi, Ei=1yiai =0, a,z0

e Plug back into the Lagrangian and get the dual form:

mng(a) = Eilai —%zijzlyiyjaiaj(xi - xj)

Why Solve in Dual Space?

® QP runs in cubic polynomial time (in terms of # of variables)

e QP in primal space has complexity O(d3), where d is the dimensionality of the input
vectors (weight vector)

e QP in dual space has complexity O(N3), where N is the number of examples

e More importantly: dual space yields “deeper results”

A T |
min [maxDa)= Y =% yyae(x)

w

st Vizy(wx +b)z1

Dual Form Properties

1. We obtain the solution vector w* from the alphas. The vector is a weighted sum of
the examples, if weight (apha) is zero, the example is not “relevant”

2. Both the hyperplane and the objective of the optimization problem do not explicitly
depend on the dimensionality of the vectors (only on the inner product)

3. The “contribution” from each class is equal (regardless of class size)

) w=Y yax,
(2a) f(x)=(w*) x+b*= E;yiaf(xi ‘X)+b*

(2b) maxD()—Ei a——z yyoca(x x)

0 30 = 3o~ 3o

Support Vectors

1. The value of b* is chosen to maximize the margin. The optimal values of {w*,b*}
must satisfy the KKT conditions

2. From (1), we can conclude that nonzero alphas correspond to vectors that satisfy
the equality constraint and hence are the closest to the optimal hyperplane. We
call them (SVs)

3. The optimal hyperplane is unique, but the expansion on the SVs is not

4. To compute the optimal value of b: consider b for each SV and average the values to
smooth out numerical errors

(1) Vi o]y, x,+5%-1]=0
2) @ >0 = y(wH x+b%=1
(4) Viia >0, (w'x,+b)=y,)

—];i =y, - wai = b= a"g{éi}

l

Sparse Solution

* If most alphas are zero, the solution is “

* Sparsity is useful for several reasons:

1. Examples with zero alphas are non-support vectors that can be ignored at test

time (computationally faster)
2. Only some of the data is “relevant” to the learning machine

Few SVs = easier problem = better generalization

4. Given large amounts of data, can do optimization more efficiently

% ! §
W™ = Ei=1yiaixi

v

f(x)=(w*)TX+b*=Eilyiaf(xi'xﬂb* /

Non-Separable Sets

e What happens if the data is (linearly) non-separable?

e There is no solution, since not all constraints can be resolved, the corresponding
alphas go to infinity

e |dea: instead of perfectly classifying each point, “relax” the problem by introducing
non-negative variables xi’s to allow mistakes (but minimize mistakes)

e Instead of hard margin, we get

e New set of constraints:

Vi:y(w'x +b)=1-E, & =20

v

A-Margin Separating Hyperplanes

e To construct the delta-margin separating hyperplane for linearly non-separable case
we consider the following problem:

, /
min F(§) = E,-fi
st Yi:y(w'x +b)z1-&, & 20
|

: <
ol <

e Why this particular form? Recall:

margin=A =

2
h < min{ [r—zl, N} +1, r= maXHxiH
A i

SOCP Primal Form (soft-margin)

e Note: we are doing SRM. Effectively we are constructing a structure (each element
includes all hyperplanes with margin of at least some value delta)

e We need to specify delta (or a range of deltas) and somehow pick the best one

e For each delta we would solve a (SOCP) since the
additional constraint on the norm of wis a

e |t might be simpler computationally to consider an equivalent QP (actually its not
clear if the SOCP is more “expensive”)

, /
min F(§) = Ei=1§i
st Yi:y(w'x, +b)21-E, &£ 20

1

: <
ol <

QP Primal Form (soft-margin)

e Another approach: modify the primal form for the linearly-separable case by adding

slack variables
R B {
min —HWH +CE E
7 i=17"

st Yiiyw'x +b)21-E, & =20

e The penalty parameter (C) penalizes each mistake and balances empirical error and
capacity ()

*\We need to specify C (or a range of Cs) and somehow pick the best one. For each C
we need to solve a QP

Soft-Margin Dual Form

e To obtain the dual from the primal, we follow the same derivation procedure we

used in the separable (hard-margin) case (define Lagrangian, find saddle point, plug
back in):

IB%n EHWH +CE, 1& maxD 2 a. ——2 Vi e (x X)

! yi(WT'xi'I-b)Zl_gi’ St E yo,=0, Osa,;<C
-1
£ =0

e The dual is almost identical to the one for the separable case, but now the alphas
cannot grow beyond the upper bound C

Soft-Margin Properties

e As we try to enforce a classification for a data point its Lagrange multiplier alpha
keeps growing.

e Clamping alpha to stop growing at C makes the machine “give up” on those non-
separable points (mistakes)

e Mechanical analogy: support vector forces & torques
e The optimal values of {w*,b*} must satisfy the KKT conditions.

e To compute the optimal value of b: consider b for each SV whose alpha value < C
() and average the values to smooth out numerical errors

O<a, <C = E=0
= (W) x, +b*) =1

A

=b =y -wx= b= avg{l;i}

l

QP vs. SOCP

e Why is the QP form (primal & dual) solved by default in practice?
e Obvious answer: computational reasons (but also a great example of herd mentality)
e From optimization perspective: QPs are easier (faster) to solve than SOCPs

e However this is not necessarily the case if we use (break the
problems into parts, take many small steps instead of few large ones)

e Optimal solutions sets coincide (for each delta can find a C which yields the same H)

e Observe that delta is directly related to the VC dimension. That is (potentially) delta
is @ more intuitive parameter to set

. ! o !
min F(Zj) = Ei=1§i min 5HWH2 + CEH&
sty (w'x+b)z1-8,8520 y.(w'x, +b)21-E, £ 20
1

: <
ol <

Support Vector Machines (idea)

e What happens if the problem is nonlinear? ®
©F o
e \We can only use linear decision rules (problem setting) ® o © °
e But using them in input space would give poor performance! < "Cj OO o—
@)

e |dea:

1. Map input vectors {x} into some high-dimensional feature space (Z) through
some nonlinear mapping (¢) chosen a priori

2. Inthe feature space, construct an optimal (linear) hyperplane

— L

Support Vector Machines

* Note: we have seen this idea before when we discussed regression
e The nonlinear mapping is akin to using basis functions

e Vectors in feature space are called

x; = P(x,), (xi°xj)%((l)(xi)-(l)(xj))
» To generalize the original problem, we replace all input vectors with feature vectors

e We obtain a nonlinear classifier in original space

-3 013 o))

w* = Eilyiajq)(xi)

()= ya(@(x) ®x)+ b

Kernels (idea)

e So far we assumed that the nonlinear mapping is explicit i.e. we had to specify how
each element of the feature vector is obtained from the input vector

e Example: quadratic polynomial) 9
(I)(x)=[x1, \Exlxz, xz]

. : what if our feature space has dimensionality of one billion?

e Example: polynomials d+ p _1
» Consider d-dimensional data and p-order polynomials dlm(H) =
» Explicit mapping yields a huge feature space p
» Example: images of size 16x16 with p=4 have dim(H)=183million

e Observe that the algorithm depends on data only

e We can define a which considers the feature space

Kernels

e The concept of kernel functions is old (1950’s), powerful & general

e For any algorithm that depends on data only through dot (inner) products, we can
replace each inner product with a general kernel function

e The kernel function defines a according to which we compare
each pair of examples

e An arbitrary function can be used as a kernel if it satisfies

D(O‘) = Eilai _%Ef,j=1y"yfaiafK(x"’xj)
w* = Eilyiajq)(xi)

f(x) = E;yiafl{(xi,x) +bh*

Mercer’s Condition

e Theorem (Mercer): A continuous symmetric function K(u,v) has an expansion of the
form (1) below, if and only if, condition (2) is valid. We say that K(u,v) describes an
inner product in some feature space

0

(1) K(u,v)=z a(k)z,(k)z, (k), Yk a(k) >0

k=1

(2) ffK uv g(V)dudv 20, Vg

e We assume that g is a “reasonable” (finite norm) function defined on the same
domain as K

Example: Quadratic Polynomial

* To solve the optimization problem we need to evaluate the kernel for each pair of
examples in the data set...recall objective contains a sum over all {i,j}

e Mercer’s condition requires that the (matrix of all pairs) is
(PSD) - i
K(xl,xl) K(xl,xz) K(xl,x3)
K= K(x2,x1) K(xz,x2) K(xz,x3)

e Concrete example:

<I>(x)=[x12, \Exlxz, xf] _K(XB’XI) K(xy,x,) K(x3,x3)_
e300 9 ol s

2~7
+2xxxx + XX
1""1 2 277
) Vst
f. 0 1

= (xlx1 + X xz)

Typical Kernels
Polynomial: K (xl.,x j) = (xl.Tx 4+ 1)p

RBF: K(x.x,)= exp(—%‘zuxi - xsz)

Polynomial RBF

COMS4771, Columbia University

SVMs as Neural Nets

e Two-layer feed-forward neural network:
» First layer selects the “basis” (similarity measure w.r.t to each SV)
» Second layer constructs a linear function in the space selected by the first layer

()= yaK(x.x)+b*

Y= sign(2+b)

Ysy%ysy

13.23

SVMs In Practice

e Most real-world problems are non-trivial (non-separable): we must use a soft-margin
formulation

e Most real-world problems are nonlinear (at least globally): we need to use kernels
(radial basis function is the most popular choice)

¢ Soft-margin form with kernels 2 two parameters to tune (C & kernel parameter)

e Parameter search problem: we must specify a grid of parameters, solve a QP for each
and select the best pair. We often use cross-validation for this purpose

e Note: leave-one-out CV is very efficient if we have few support vectors!
e Large scale data requires special treatment (can’t store the kernel matrix in memory)
* Free software implementing decomposition methods: LIBSVM, SVM-Light

e Feature selection is not obvious when using kernels (hyperplane defined implicitly):

w* = zilyiajq)(xi)

