Machine Learning

4771

Instructors:

Adrian Weller and Ilia Vovsha

Lecture 12: Large Margin & Optimal Hyperplane

- Structural Risk Minimization (SRM)
- Large Margin, Optimal Hyperplane (Burges Tutorial)
- Optimization
- Support Vector Machines (Bishop 7.1, Burges Tutorial)

Constructive Bound

• With probability (1-eta), for the function that minimizes empirical risk, the inequality below holds true

$$R(\alpha_{\ell}) < R_{emp}(\alpha_{\ell}) + \frac{E(\ell)}{2} \left(1 + \sqrt{1 + \frac{4R_{emp}(\alpha_{\ell})}{E(\ell)}} \right)$$

where

$$E(\ell) = 4 \frac{h(1 + \ln(2\ell/h)) - \ln(\eta/4)}{\ell}$$

Large Sample Size

- ullet Suppose we have a *large sample size* (ℓ/h is large)
 - > The value of actual risk is determined by value of empirical risk
 - > The principle of ERM gives good results in practice
- Justification (we drop constants and show what the bound is proportional to):

$$E(\ell) = 4 \frac{h(1 + \ln(2\ell/h)) - \ln(\eta/4)}{\ell} \approx \frac{h}{\ell} + \frac{\ln(2\ell/h)}{(\ell/h)} \approx \delta$$

$$R_{emp}(\alpha_{\ell}) + \frac{E(\ell)}{2} \left(1 + \sqrt{1 + \frac{4R_{emp}(\alpha_{\ell})}{E(\ell)}} \right) \approx R_{emp}(\alpha_{\ell}) + \delta \left(1 + \sqrt{1 + \frac{R_{emp}(\alpha_{\ell})}{\delta}} \right)$$

$$\approx R_{emp}(\alpha_{\ell}) + \delta \left(\sqrt{\frac{R_{emp}(\alpha_{\ell})}{\delta}} \right) \approx R_{emp}(\alpha_{\ell}) + \sqrt{\delta R_{emp}(\alpha_{\ell})}$$

Large Sample Size

- ullet Suppose we have a large sample size (ℓ/h is large)
 - > The value of actual risk is determined by value of empirical risk
 - > The principle of ERM gives good results
- Justification (we drop constants and show what the bound is proportional to):

$$R(\alpha_{\ell}) < \approx \left\{ R_{emp}(\alpha_{\ell}) + \sqrt{\delta R_{emp}(\alpha_{\ell})} \right\}$$

Small Sample Size

- Suppose we have a *small sample size* ($\ell/h < 20$)
 - > Small empirical risk doesn't guarantee small actual risk anymore
 - ➤ Need to minimize bound over both terms simultaneously
 - > To do this, we make the VC dimension (capacity) a controlling variable
- This observation motivates a new induction principle: Structural Risk Minimization
- What do we mean by a controlling variable?
- How do we justify this new induction principle?

SRM Principle (idea)

- Instead of minimizing empirical risk at any cost, search for the optimal relationship between:
 - Amount of empirical data
 - 2. Quality of approximation by the function chosen from a given set of functions
 - 3. Value that characterizes the capacity of a set of functions
- Lets impose a *structure* (S*) on the set of loss functions
- We assume that any element S_k of the structure S* has a finite VC dimension h_k
- The sequence $\{h_k\}$ for elements $\{S_k\}$ of S^* is non-decreasing (as k is increased)

$$S_{1} \subset S_{2} \subset \cdots \subset S_{n} \subset \cdots$$

$$S^{*} = \bigcup_{k} S_{k}, \quad S_{k} = \{L(z, \alpha) : \alpha \in \Lambda_{k}\}$$

$$h_{1} \leq h_{2} \leq \cdots \leq h_{n} \leq \cdots$$

SRM Principle (idea)

- For a given sample, the SRM principle chooses the element S_k of the structure for which the smallest bound on the risk (the smallest guaranteed risk) is achieved
- Within the element S_k , we choose the function that minimizes empirical risk
- General model of capacity control
- We need to provide an *admissible structure* (which satisfies conditions) and then choose the function that yields the best guaranteed risk
- Support Vector Machine (SVM) does just that

$$S_{1} \subset S_{2} \subset \cdots \subset S_{n} \subset \cdots$$

$$S^{*} = \bigcup_{k} S_{k}, \quad S_{k} = \{L(z,\alpha) : \alpha \in \Lambda_{k}\}$$

$$h_{1} \leq h_{2} \leq \cdots \leq h_{n} \leq \cdots$$

SRM Principle (idea)

- How do we justify SRM?
- Result: SRM is always consistent and defines a bound on the rate of convergence

Gap Tolerant Classifiers (definition)

- Recall: for N-D linear classifiers, h = N+1
- Not quite satisfactory in practice!
- What if I have lots of redundant features (dimensions)? h should be less than N+1
- But VC estimate does not distinguish between such cases and cases where features are valuable!
- Solution: constrain linear classifiers to data inside a sphere
- Gap Tolerant Classifier: linear classifier whose activity is constrained to a sphere & outside a margin

Only count errors in shaded region Elsewhere have L(x,y)=0

M=margin
D=diameter
d=dimensionality

Gap Tolerant Classifiers (idea)

Only count errors in shaded region Elsewhere have L(x,y)=0

M=margin
D=diameter
d=dimensionality

• If M is small relative to D, can still shatter 3 points:

• But as M grows relative to D, can only shatter 2 points!

Can't shatter 3

Can shatter 2

Large Margin

- We have observed that: as the margin grows relative to data sphere, we can shatter fewer points
- In other words, the larger the margin, the smaller the VC dimension
- The general relation between h & M is expressed as:

$$h \le \min \left\{ \left\lceil \frac{r^2}{M^2} \right\rceil, N \right\} + 1, \quad r = \max_i ||x_i||$$

- Previously we just had h = N+1.
- Now we have a bound on h in terms of M and radius (r) of the data sphere
- This reflects a fairly typical case where the real data is bounded (if its not, then by default h = N+1)
- Note: sometimes bound is expressed in terms of diameter (margin is taken to be the width between the hyperplanes)
- General rule: maximizing margin reduces the VC dimension (inverse relation)

Relation to Perceptron

- **Theorem**: assuming conditions {1,2} below are satisfied, the sequence of weight vectors determined by the online perceptron algorithm will converge to a solution vector in finite number of steps
 - 1. Assume all data lies inside a sphere of radius r: $r = \max_{i} \|x_i\|$
 - 2. Assume that the data is linearly separable:

$$\forall i: y_i((w^*)^T x_i) \ge \gamma > 0$$

• The bound on the number of steps (k) is expressed in terms of the margin:

$$k \le \frac{r^2}{\gamma^2} \left\| \mathbf{w}^* \right\|^2$$

Optimal Hyperplane (idea)

• Consider a linearly separable 2-class problem:

• Data set:
$$\{(x_1, y_1), \dots, (x_\ell, y_\ell)\}, \quad x_i \in \Re^n, y_i \in \{-1, 1\}$$

- Decision boundary:
- Symmetry:

$$f(x;w) = w^T x + b = 0$$

$$\frac{w^T x_i + b > 0: \quad assign 1}{w^T x_i + b < 0: \quad assign -1} \Rightarrow y_i(w^T x_i + b) > 0$$

- There are many solutions (solution region). Perceptron chooses some solution vector
- Can we require that the hyperplane with maximum margin is selected?
- Can we guarantee it is unique?

Optimal Hyperplane (definition)

• Define two quantities:
$$h_1(w) = \min_{i: y_i = 1} (w^T x_i), h_2(w) = \max_{i: y_i = -1} (w^T x_i)$$

ullet Consider the unit vector ${f w_0}$ which maximizes margin subject to constraints:

$$\max_{w} \Delta(w) = \frac{h_1(w) - h_2(w)}{2}$$
s.t. $\|w\| - 1$ $\forall i : v (w^T v + b)$

$$||w|| = 1, \quad \forall i: y_i(w^T x_i + b) > 0$$

• The vector \mathbf{w}^* and the constant \mathbf{b}^* determine the *maximal margin hyperplane* or the *optimal hyperplane* H

$$b^* = -(h_1(w^*) + h_2(w^*))/2$$

• Note: the optimal hyperplane is unique (not proved here)

Better Formulation

- Goal: find effective methods for constructing the optimal hyperplane
- Consider equivalent problem: instead of restricting the norm of the weight vector (hyperplane), lets scale the value of f(x) for the closest points to the hyperplane

$$\forall i: y_i(w^T x_i + b) \ge 1$$

• Now we are trying to minimize the norm subject to these constraints:

$$\min_{w} \frac{1}{2} \|w\|^2$$

$$s.t \quad \forall i: y_i(w^Tx_i + b) \ge 1$$

- Not hard to show: if we normalize the vector which minimizes the above we obtain the unit vector solution w* on the previous slide
- Note: the distance to the origin is not just the value of b anymore (denoted q above)

Quadratic Program

 Recall geometry of linear surface: discriminant function f(x) is proportional to the distance from x to H

$$dist = \frac{f(x)}{\|w\|} = \frac{(w^T x + b)}{\|w\|}, \quad dist2origin = q = \frac{f(0)}{\|w\|} = \frac{|b|}{\|w\|}$$

$$margin = \Delta = \frac{|f(x) = \pm 1|}{\|w\|} = \frac{1}{\|w\|}, \quad width = 2\Delta = \frac{2}{\|w\|}$$

• We have a quadratic program (QP), just plug into a solver (matlab: quadprog), done!

$$\min_{w} \frac{1}{2} \|w\|^2$$

$$s.t \quad \forall i: y_i(w^T x_i + b) \ge 1$$

• We would solve the problem in *primal space*, but can also solve it in dual space

QP Visualization

- Each data point adds a linear inequality to QP
- Each point cuts a half plane of allowable planes and reduces green region
- The optimal hyperplane is the closest point to the origin that is still in the green region
- The perceptron algorithm just puts us randomly in the green region

Convexity

•Convex functions: $f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$ $t \in [0,1]$

$$f(x) = \exp(x), \ f(\vec{x}) = \vec{x}^T b + \frac{1}{2} \vec{x}^T H \vec{x}, \ f(\vec{x}) = \vec{x}$$
 Have non-negative second derivatives (bowls)

$$rac{\partial^2 f\left(x
ight)}{\partial x^2} = \exp\!\left(x
ight), \; rac{\partial^2 f\left(ec{x}
ight)}{\partial ec{x}\partial ec{x}} = H, rac{\partial^2 f\left(ec{x}
ight)}{\partial ec{x}\partial ec{x}} = 0$$

$$f(x) = \log(x), \ f(\vec{x}) = \vec{x}^T b - \frac{1}{2} \vec{x}^T H \vec{x}, f(\vec{x}) = \vec{x}$$

Have non-positive second derivatives (caves)

$$rac{\partial^2 f(x)}{\partial x^2} = -rac{1}{x^2}, \; rac{\partial^2 f(ec{x})}{\partial ec{x} \partial ec{x}} = -H, \, rac{\partial^2 f(ec{x})}{\partial ec{x} \partial ec{x}} = 0$$

Duality

Every convex function f has a dual f*:
 All tangent lines below it form an epigraph
 The f* gives the intercept for each slope.

 $f(x) = \max_{\lambda} \left(x^T \dot{\lambda} - f^*(\lambda) \right)$

•Every concave function f has a dual f*
All tangent lines above it form an epigraph
The f* gives the intercept for each slope.

- This * is called the Legendre Transform or Fenchel Dual
- The dual of the dual f** is f
- •Example: $f(x) = \frac{1}{2}cx^2 \rightarrow f^*(\lambda) = \frac{1}{2c}\lambda^2$
- •We can replace a minimization over x like this $\min_{x} f(x) = \min_{x} \max_{\lambda} (\lambda x f^{*}(\lambda))$

...and can work with a maximization of its dual instead

Optimization: Inequality Constraints

- Problem: given a function of several variables, find its stationary point subject to one inequality constraint
- Formally (general case): $\max_{\mathbf{x}} f(\mathbf{x})$ $s.t. \quad g(\mathbf{x}) \ge 0$
- Consider the geometry of the problem, there are now two solutions possible:
 - 1. On the boundary (constraint is *active*, g(x) = 0)
 - 2. Inside the region (constraint is *inactive*, g(x) > 0)
- For case 2, the constraint has no effect. Case 1 is analogous to equality constraint discussed previously, but the sign of the multiplier is crucial (gradient should be oriented away from the region g(x) > 0)

Optimization: Inequality Constraints

- For case 2 (region), the constraint has no effect.
- Case 1 (boundary) is analogous to equality constraint discussed previously, but the sign of the multiplier is crucial (gradient should be oriented away from the region defined by the constraint g(x) > 0)

1. Boundary:
$$\nabla f(x) = -\lambda \nabla g(x), \ \lambda > 0$$

2. Region:
$$\nabla f(x) = 0 = \nabla L(x, \lambda = 0)$$

• We can combine both cases into one: $\lambda g(x) = 0$

KKT Conditions

- A. Define a function: $L(x,\lambda) = f(x) + \lambda g(x)$
- B. Find the stationary point of \boldsymbol{L} with respect to $\{x, \lambda\}$ and subject to:

$$g(x) \ge 0$$
, $\lambda \ge 0$, $\lambda g(x) = 0$

- These are known as the Karush-Kuhn-Tucker (KKT) conditions
- If we wish to minimize the function f(x) we need to define the Lagrangian as:

$$L(x,\lambda) = f(x) - \lambda g(x)$$

Multiple Constraints

- Problem: given a function of several variables, find its stationary point subject to one or more equality and inequality constraints
- Formally (general case): $\max_{\mathbf{x}} \ f(\mathbf{x})$ $s.t. \ g_j(\mathbf{x}) = 0, \quad j = 1, \dots, J$ $h_k(\mathbf{x}) \geq 0, \quad k = 1, \dots, K$
- Define the Lagrangian:

$$L(\mathbf{x},\{\lambda\},\{\mu\}) = f(\mathbf{x}) + \sum_{j=1}^{J} \lambda_{j} g_{j}(\mathbf{x}) + \sum_{k=1}^{K} \mu_{k} h_{k}(\mathbf{x}),$$

$$s.t: \quad \forall k: \mu_{k} \geq 0, \ \mu_{k} h_{k}(\mathbf{x}) = 0$$

Dual Form Derivation

• Recall optimal hyperplane problem in primal space:

$$\min_{w} \frac{1}{2} ||w||^2 \quad s.t \quad \forall i: \ y_i(w^T x_i + b) \ge 1$$

• This is a convex program, define the Lagrangian and find stationary point:

$$L(w,b,\alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{\ell} \alpha_i [y_i(w^T x_i + b) - 1], \ \alpha_i \ge 0$$

• Minimize L over {w,b}, maximize over {alphas}:

$$\frac{\partial L(w,b,\alpha)}{\partial w} = w - \sum_{i=1}^{\ell} \alpha_i y_i x_i = 0 \implies w = \sum_{i=1}^{\ell} y_i \alpha_i x_i$$

$$\frac{\partial L(w,b,\alpha)}{\partial b} = -\sum_{i=1}^{\ell} \alpha_i y_i = 0 \implies \sum_{i=1}^{\ell} y_i \alpha_i = 0$$

Dual Form

This is a convex program, define the Lagrangian and find stationary point:

$$L(w,b,\alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^{\ell} \alpha_i [y_i(w^T x_i + b) - 1], \ \alpha_i \ge 0$$

• Minimize L over {w,b}, maximize over {alphas}:

$$\frac{\partial L(w,b,\alpha)}{\partial w} \Rightarrow w = \sum_{i=1}^{\ell} y_i \alpha_i x_i, \quad \frac{\partial L(w,b,\alpha)}{\partial b} \Rightarrow \sum_{i=1}^{\ell} y_i \alpha_i = 0, \quad \alpha_i \ge 0$$

Plug back into the Lagrangian and get the dual form:

$$\max_{\alpha} D(\alpha) = \sum_{i=1}^{\ell} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{\ell} y_i y_j \alpha_i \alpha_j (x_i \cdot x_j)$$

$$s.t: \sum_{i=1}^{\ell} y_i \alpha_i = 0, \ \alpha_i \ge 0$$

Why Solve in Dual Space?

- QP runs in cubic polynomial time (in terms of # of variables)
- QP in primal space has complexity O(d³), where d is the dimensionality of the input vectors (weight vector)
- QP in dual space has complexity O(ell³), where ell is the number of examples
- More importantly: dual space yields "deeper results"

$$\min_{w} \frac{1}{2} \|w\|^{2} \qquad \max_{\alpha} D(\alpha) = \sum_{i=1}^{\ell} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{\ell} y_{i} y_{j} \alpha_{i} \alpha_{j} (x_{i} \cdot x_{j})$$

$$s.t \quad \forall i : y_{i} (w^{T} x_{i} + b) \ge 1 \qquad s.t : \sum_{i=1}^{\ell} y_{i} \alpha_{i} = 0, \ \alpha_{i} \ge 0$$

$$\max_{\alpha} D(\alpha) \Rightarrow \alpha^{*} \Rightarrow w^{*} = \sum_{i=1}^{\ell} y_{i} \alpha_{i}^{*} x_{i}$$