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Lecture 12: Large Margin & Optimal Hyperplane

e Support Vector Machines (Bishop 7.1, Burges Tutorial)



Constructive Bound

e With probability (1-eta), for the function that minimizes empirical risk, the inequality
below holds true

R(a,) < Remp(ag) + E(;)(H \/1 N 4Remp(a£))

E(/)
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Large Sample Size

e Suppose we have a ( (/h is large)
» The value of actual risk is determined by value of empirical risk
» The principle of ERM gives good results in practice

» Justification (we drop constants and show what the bound is proportional to):
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Large Sample Size

e Suppose we have a large sample size | (/h is large)
» The value of actual risk is determined by value of empirical risk
» The principle of ERM gives good results

» Justification (we drop constants and show what the bound is proportional to):

R(a,) <= {Remp (a,)+ \/5Remp(a5)}




Small Sample Size

e Suppose we have a ( f/h <20)
» Small empirical risk doesn’t guarantee small actual risk anymore
» Need to minimize bound over both terms simultaneously
» To do this, we make the VC dimension (capacity) a

e This observation motivates a new induction principle:

e What do we mean by a controlling variable?

e How do we justify this new induction principle?



SRM Principle (idea)

e Instead of minimizing empirical risk at any cost, search for the optimal relationship
between:

1. Amount of empirical data
2. Quality of approximation by the function chosen from a given set of functions
3. Value that characterizes the capacity of a set of functions

e Lets impose a on the set of loss functions

e We assume that any element S, of the structure S* has a finite VC dimension h,

e The sequence {h,} for elements {S,} of S* is non-decreasing (as k is increased)
S CS,C--CS C--
S =JS,. S, ={Lza):aEA,}
k
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SRM Principle (idea)

e For a given sample, the SRM principle chooses the element S, of the structure for
which the smallest bound on the risk (the smallest guaranteed risk) is achieved

e Within the element S,, we choose the function that minimizes empirical risk
e General model of capacity control

e We need to provide an (which satisfies conditions) and then
choose the function that yields the best guaranteed risk

e Support Vector Machine (SVM) does just that

§,CS,C--CS, C---
S =S, Si={Lza):a€A}
k
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SRM Principle (idea)

e How do we justify SRM?
e Result: SRM is always consistent and defines a bound on the rate of convergence

A

Bound on the risk

Empirical Risk

» h




Gap Tolerant Classifiers (definition)

e Recall: for N-D linear classifiers, h = N+1
e Not quite satisfactory in practice!
e What if | have lots of redundant features (dimensions)? h should be less than N+1

e But VC estimate does not distinguish between such cases and cases where features
are valuable!

e Solution: constrain linear classifiers to data inside a sphere

. : linear classifier whose activity is constrained to a sphere &
outside a margin

Only count errors
in shaded region
Elsewhere have

L(x,y)=0

M=margin
D D=diameter
d=dimensionality




Gap Tolerant Classifiers (idea)
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Large Margin

e We have observed that: as the margin grows relative to data sphere, we can shatter
fewer points

e |In other words, the larger the margin, the smaller the VC dimension

e The general relation between h & M is expressed as:

2
r

h < min Ivell N +1, ”=ml.aXHxiH

e Previously we just had h = N+1.
e Now we have a bound on h in terms of M and radius (r) of the data sphere

e This reflects a fairly typical case where the real data is bounded (if its not, then by
default h = N+1)

* Note: sometimes bound is expressed in terms of diameter (margin is taken to be the
width between the hyperplanes)

e General rule: maximizing margin reduces the VC dimension (inverse relation)



Relation to Perceptron

e Theorem: assuming conditions {1,2} below are satisfied, the sequence of weight
vectors determined by the online perceptron algorithm will converge to a solution

vector in finite number of steps

1. Assume all data lies inside a sphere of radiusr: ¥ = IIlaXHXl-
i

2. Assume that the data is linearly separable: . N
Viiy(w*) x)=zy>0

* The bound on the number of steps (k) is expressed in terms of the margin:
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Optimal Hyperplane (idea)

e Consider a linearly separable 2-class problem:

e Data set: {(xl,yl),. .,,(xg,yg)}, X, € ?ﬁn,yi - {—1,1}

e Decision boundary: .
e Symmetry: f(.x,W) =w x+b=0

w'x,+b>0: assignl

T
= y.(w x,+0)>0
w'x +b<0: assign-1 W % +0)

e There are many solutions (solution region). Perceptron chooses some solution vector
e Can we require that the hyperplane with maximum margin is selected?

e Can we guarantee it is unique? @ o

@) OO

O




Optimal Hyperplane (definition)

| o (T T
e Define two quantities: hl(W) = min (W xi), hz(w) = max (W xl.)
iy =1 iry;=-1

 Consider the unit vector w, which maximizes margin subject to constraints: H
max A(w) = h(w) = h,(w) O
! 2 H +O/ 6 °
st |w|=1, Yi:y,w'x, +b)>0 /A © '
ke /I/
* The vector w* and the constant b” determine the or the

" bt == (W) + hy(wH) 2

e Note: the optimal hyperplane is unique (not proved here)



Better Formulation

e Goal: find effective methods for constructing the optimal hyperplane

e Consider equivalent problem: instead of restricting the norm of the weight vector
(hyperplane), lets scale the value of f(x) for the closest points to the hyperplane

Vi:y(w'x +b)=1

e Now we are trying to minimize the norm subject to these constraints:

4

N |
min
w 9

st Yiiy.(w'x +b)=1 L

e Not hard to show: if we normalize the vector which minimizes the above we obtain
the unit vector solution w* on the previous slide

e Note: the distance to the origin is not just the value of b anymore (denoted g above)



Quadratic Program

e Recall geometry of linear surface: discriminant function f(x) is proportional to the
distance from x to H

f(x)  (wW'x+b) £0) |p

dist = = , dist2origin=q = =
/I [l vl
margin=A = f0) -] ! ., width =2A = 2
Il Il

e We have a quadratic program (QP), just plug into a solver (matlab: quadprog), done!

A T
min = |w|
2

st Vi:y(w'x +b)=1

e We would solve the problem in , but can also solve it in dual space



QP Visualization

e Each data point adds a linear inequality to QP

e Each point cuts a half plane of allowable planes
and reduces green region

* The optimal hyperplane is the closest point to
the origin that is still in the green region

* The perceptron algorithm just puts us randomly
in the green region

w(2)

w(1)



COMS4771, Columbia University

Convexity
eConvex functions: (i +(1—t)y) < tf(z) + (1-t) £ (v)
f(:c) - exp(:c), f(Z)=2"b+ 12" Hz, f(a;') — 7
Have non-negative second derivatives (bowls)

te [0,1}

mzexp(x), i(J?)=I-I wzo
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eConcave functions: f(te+(1—t)y) > tf(z) +(1—t)f(y)

f(:z:) - log(a:), f(&:’) =2'b— 13" HE, f(2) =2
Have non-positive second derivatives (caves) /
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COMS4771, Columbia University

Duality

eEvery convex function f has a dual f*:
All tangent lines below it form an epigraph
The f* gives the intercept for each slope.
(e} max, o~ 1 ()
eEvery concave function f has a dual f*
All tangent lines above it form an epigraph
The f* gives the intercept for each slope.
f(o)= min, X~ )
eThis * is called the Legendre Transform or Fenchel Dual
eThe dual of the dual f** is f
Example: f(z)=1lc® — f(N)=1X
oWe can replace a minimization over x like this
min_ f(z)z min_max, ()\x —f (k))
...and can work with a maximization of its dual instead

12.20



Optimization: Inequality Constraints

e Problem: given a function of several variables, find its stationary point subject to one
inequality constraint

e Formally (general case): MmMax f(X)
X

s.L. g(x) =0

e Consider the geometry of the problem, there are now two solutions possible:
1. On the boundary (constraint is , (x) = 0)
2. Inside the region (constraint is , g(x) >0)

e For case 2, the constraint has no effect. Case 1 is analogous to equality constraint
discussed previously, but the sign of the multiplier is crucial (gradient should be

oriented away from the region g(x) > 0)



Optimization: Inequality Constraints

* For case 2 (region), the constraint has no effect.

» Case 1 (boundary) is analogous to equality constraint discussed previously, but the
sign of the multiplier is crucial (gradient should be oriented away from the region
defined by the constraint g(x) > 0)

1. Boundary: Vf(x) = —)LVg(x), A>0
2. Region: Vf(x) =(0) = VL(X,)L =()

* We can combine both cases into one: ),g(x) =()



KKT Conditions

. Define a function: L(X,A) = f(X) + Ag(X)

. Find the stationary point of L with respect to {x, A} and subject to:

g(x)20, A=0, Ag(x)=0

These are known as the (KKT) conditions

If we wish to minimize the function f(x) we need to define the Lagrangian as:

L(x,)L) = f(x)-Ag(x)



Multiple Constraints

e Problem: given a function of several variables, find its stationary point subject to one
or more equality and inequality constraints

e Formally (general case): max f(X)
X

9

s.t. gj(X) 0
0

L...,
h.(x)=0, 1

] J
k=1,....K

e Define the Lagrangian:

L(x{A} {u}) = }jxjg E (x),

s.t: Vk.MkZO, wh,(x)=0



Dual Form Derivation

e Recall optimal hyperplane problem in primal space:
. 2 . T
min—|w| st Vi:y,(w'x +b)=1
wo)
e This is a convex program, define the Lagrangian and find stationary point:

L(w,b,oc)=l Wl - g oly.(w'x +b)-1|, a =0
2 i=1 l l l l

e Minimize L over {w,b}, maximize over {alphas}:

ﬁL(WbOC e E Ly x =0 = we E ya,

Wba) E Q.y, = O:E .




Dual Form

This is a convex program, define the Lagrangian and find stationary point:

L(w,l9,05)=l W - E oly.w'x +b)-1|, a =0
2 1 l l l l

=
e Minimize L over {w,b}, maximize over {alphas}:
JdL(w,b,0) JdL(w.,b,0r) N
ow db

( (
= W= Ei=1yiaixi, Ei=1yiai =0, a,z0

e Plug back into the Lagrangian and get the dual form:

mng(a) = Eilai —%zijzlyiyjaiaj(xi - xj)



Why Solve in Dual Space?

® QP runs in cubic polynomial time (in terms of # of variables)

e QP in primal space has complexity O(d3), where d is the dimensionality of the input
vectors (weight vector)

e QP in dual space has complexity O(ell®), where ell is the number of examples

e More importantly: dual space yields “deeper results”

A T |
min [ maxDa)= Y =% yyae(x )

w

st Vizy(wx +b)z1



