Machine Learning

4771

Instructors:

Adrian Weller and Ilia Vovsha

Lecture 11: VC Dimension & SRM

- Capacity (Vapnik 3.13)
- VC Dimension (Vapnik 4.9.1-4.9.2, 4.11)
- Structural Risk Minimization (SRM)

Formal Statement (finite case)

• With probability (1-eta), simultaneously for all functions in the set {k=1,...N}, the inequality below holds true

$$R(\alpha_k) < R_{emp}(\alpha_k) + \frac{\varepsilon^2}{2} \left(1 + \sqrt{1 + \frac{4R_{emp}(\alpha_k)}{\varepsilon^2}} \right), \ \varepsilon^2 = 2 \frac{\ln N - \ln \eta}{\ell}$$

$$R(\alpha_k) < R_{emp}(\alpha_k) + \frac{\ln N - \ln \eta}{\ell} \left(1 + \sqrt{1 + 2 \frac{R_{emp}(\alpha_k)\ell}{\ln N - \ln \eta}} \right)$$

- Since it holds for all functions in the set, it holds in particular for the function that minimizes ERM. In other words we get a bound on "the value of achieved risk (for the rule selected by ERM)"
- The second bound (difference) follows easily from the first, we do not discuss it here

(2)
$$\Delta(\alpha_{\ell}) = R(\alpha_{\ell}) - R(\alpha_{0})$$

Formal Statement (infinite case)

• With probability (1-eta), simultaneously for all functions in the set, the inequality below holds true

$$R(\alpha_k) < R_{emp}(\alpha_k) + \frac{E(\ell)}{2} \left(1 + \sqrt{1 + \frac{4R_{emp}(\alpha_k)}{E(\ell)}} \right)$$

- Same two comments from the previous slide apply
- Note $E(\ell)$ is a quantity expressed in terms of some capacity concept (not necessarily entropy)

Recap

- We showed that capacity concepts completely define the quantitative theory (bounds) as well
- However the bounds we obtained are *non-constructive*!
- For a given set of functions, how do you compute entropy? (You can't!)
- Moreover, bounds in terms of entropy are *distribution-dependent*
- To evaluate entropy must plug in a specific pdf (it can be any pdf)
- This motivates a structure of capacity concepts.
- Goal: distribution-independent and constructive bounds

Structure of Capacity Concepts

Number of clusters induced by the sample & function set:

$$N^{\wedge}(z_1,...,z_{\ell}) \leq 2^{\ell}$$

• Random Entropy (of the set of indicator functions on the given sample):

$$H^{\wedge}(z_1,...,z_{\ell}) = \ln N^{\wedge}(z_1,...,z_{\ell})$$

• *Entropy* (of the set of indicator functions on samples of size ℓ):

$$H^{\wedge}(\ell) = E\left[\ln N^{\wedge}(z_1,...,z_{\ell})\right] = \int \ln N^{\wedge}(z_1,...,z_{\ell})dF(z_1,...,z_{\ell})$$

• Annealed Entropy (...):

$$H_{ann}^{\wedge}(\ell) = \ln E [N^{\wedge}(z_1,...,z_{\ell})]$$

• Growth function (...):

$$G^{\wedge}(\ell) = \ln \left[\sup_{z_1, \dots, z_{\ell}} N^{\wedge}(z_1, \dots, z_{\ell}) \right]$$

Structure of Capacity Concepts

• What's the point? Growth function is distribution independent and upper-bounds entropy (due to Jensen's inequality). Anywhere we have entropy, we can always substitute growth and get a dist-ind bound!

$$H^{\wedge}(\ell) \leq H^{\wedge}_{ann}(\ell) \leq G^{\wedge}(\ell)$$

$$E\left[\ln N^{\wedge}(z_1,...,z_{\ell})\right] \leq \ln E\left[N^{\wedge}(z_1,...,z_{\ell})\right] \leq \ln \left[\sup_{z_1,...,z_{\ell}} N^{\wedge}(z_1,...,z_{\ell})\right]$$

• Jensen's inequality: assuming we have a convex function f, and a random variable X,

$$f(E[X]) \le E[f(X)]$$

• But logarithm is a concave function, hence the inequality is reversed when we consider number of clusters (our random variable)

VC Dimension (idea)

- Growth function is distribution independent but is not constructive (hard to evaluate for a given set of functions)
- Introduce a new capacity concept (function) which bounds the growth function but is easier to evaluate

$$H^{\hat{}}(\ell) \leq H^{\hat{}}_{ann}(\ell) \leq G^{\hat{}}(\ell) \leq J(h,\ell)$$

- "J" is some function of {coefficient, # examples}
- The coefficient h is called the Vapnik-Chervonenkis (VC) dimension of a set of indicator functions
- If the VC dimension for an admissible set of functions is finite, we know that ERM is consistent on this set (for indicator loss functions)
- Actually, we can show necessity as well (not discussed, see Vapnik 4.9.3)

Road Map (Capacity)

Binomial Coefficient

• In order to bound the growth function, we need to bound the following sum of

binomial coefficients:
$$\sum_{i=0}^{h} \binom{m}{i}, \ h \le m \quad easy: \sum_{i=0}^{m} \binom{m}{i} = 2^{m}$$

- We also need the following identity: $\exp = e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$
- Derivation:

$$(1) \sum_{i=0}^{h} \binom{m}{i} \leq \sum_{i=0}^{h} \binom{m}{i} \cdot \left(\frac{h}{m}\right)^{i} \left(\frac{m}{h}\right)^{h} \leq \left(\frac{m}{h}\right)^{h} \sum_{i=0}^{m} \binom{m}{i} \cdot \left(\frac{h}{m}\right)^{i}$$

$$(2) \quad \left(\frac{m}{h}\right)^{h} \sum_{i=0}^{m} {m \choose i} \cdot \left(\frac{h}{m}\right)^{i} 1^{m-i} = \left(\frac{m}{h}\right)^{h} \left(1 + \frac{h}{m}\right)^{m} \qquad (1) \left(\frac{h}{m}\right) \le 1$$

(2) Binomial formula

Binomial Coefficient

• Given:
$$\sum_{i=0}^{h} {m \choose i}, h \le m \quad \exp \equiv e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$$

• Derivation:

$$(1) \quad \sum_{i=0}^{h} \binom{m}{i} \leq \sum_{i=0}^{h} \binom{m}{i} \cdot \left(\frac{h}{m}\right)^{i} \left(\frac{m}{h}\right)^{h} \leq \left(\frac{m}{h}\right)^{h} \sum_{i=0}^{m} \binom{m}{i} \cdot \left(\frac{h}{m}\right)^{i}$$

$$(2) \left(\frac{m}{h}\right)^h \sum_{i=0}^m {m \choose i} \cdot \left(\frac{h}{m}\right)^i 1^{m-i} = \left(\frac{m}{h}\right)^h \left(1 + \frac{h}{m}\right)^m$$

$$(3) \left(\frac{m}{h}\right)^h \left(1 + \frac{h}{m}\right)^m \le \left(\frac{m}{h}\right)^h e^h$$

$$\Rightarrow \sum_{i=0}^{h} \binom{m}{i} \leq \left(\frac{em}{h}\right)^{h}$$

$$(1)\left(\frac{h}{m}\right) \le 1$$

- (2) Binomial Formula
- (3) *Identity*

Growth Function $G^{\wedge}(\ell) = \ln \left[\sup_{z_1,...,z_{\ell}} N^{\wedge}(z_1,...,z_{\ell}) \right]$

• The growth function for a set of indicator functions satisfies one of two conditions:

(a)
$$G^{\prime}(\ell) = \ell \ln 2$$

$$(b) \quad G^{^{\wedge}}(\ell) = \begin{cases} \ell \ln 2 & \text{if } \ell \leq h \\ \leq \ln \left(\sum_{i=0}^{h} {\ell \choose i} \right) & \text{if } \ell > h \end{cases}$$

where h is the largest integer for which $G^{(h)} = h \ln 2$

• Using the bound from the previous slide:

$$\ln\left(\sum_{i=0}^{h} \binom{\ell}{i}\right) \le \ln\left(\frac{e\ell}{h}\right)^{h} = h\left(1 + \ln\frac{\ell}{h}\right)$$

Growth Function $G^{\wedge}(\ell) = \ln \left[\sup_{z_1,...,z_{\ell}} N^{\wedge}(z_1,...,z_{\ell}) \right]$

• The growth function for a set of indicator functions satisfies one of two conditions:

(a)
$$G^{\wedge}(\ell) = \ell \ln 2$$

$$(b) \quad G^{^{\wedge}}(\ell) = \begin{cases} \ell \ln 2 & \text{if } \ell \leq h \\ \leq h \left(1 + \ln \frac{\ell}{h} \right) & \text{if } \ell > h \end{cases}$$

where h is the largest integer for which $G^{(h)} = h \ln 2$

Growth Function Behavior

- The growth function is either linear or bounded by a logarithmic function with coefficient h. It cannot be of any intermediate form!
- This is crucial to prove sufficiency & necessity for the VC dimension capacity concept (with respect to ERM consistency)

General Idea: Subsets

• Can talk about subsets of a set instead of clusters (also known as Sauer's Lemma). Here we assume that Z is an (infinite) set of elements, and the sample is a particular subset

(a)
$$\sup_{z_1,...,z_{\ell}} N^{s}(z_1,...,z_{\ell}) = 2^{\ell}$$

$$(b) \sup_{z_1,\dots,z_\ell} N^S(z_1,\dots,z_\ell) = \begin{cases} 2^\ell & \text{if } \ell \le h \\ \le \left(\sum_{k=0}^h \binom{\ell}{k}\right) \le \left(\frac{e\ell}{h}\right)^h & \text{if } \ell > h \end{cases}$$

where h is the largest integer for which equality is valid.

Note: the above is not a precise argument, just an outline

Note: Sauer's Lemma is just the growth function theorem (result) stated for the general case of subsets of a set

VC Dimension (Definition)

- **Definition:** The coefficient h which characterizes the capacity of a set of functions with logarithmic-bounded growth function is called the VC dimension (of a set of indicator functions). When the growth function is linear, the VC dimension is defined to be infinite.
- We can modify the definition to stress the constructive method of estimating the VC dimension

VC-dim (Constructive Definition)

- **Definition:** The VC dimension of a set of indicator functions is equal to the largest number (h) of vectors $(x_1,...,x_\ell)$ that can be separated into two different classes in all the 2^h possible ways using this set of functions.
- The VC dimension is the maximum number of vectors that can be *shattered by the* set of functions
- If for any n, there exists a set of n vectors that can be shattered by the given set of functions, then the VC dimension is equal to infinity

Shattering

- Shattering:
 - \succ We pick h points & place them at $(x_1,...,x_h)$
 - > They challenge us with every possible (2^h in total) assignment (labeling)

$$(y_1,...,y_h) \in (\pm 1,...,\pm 1)$$

- ➤ If our set of admissible functions (i.e. concept class, classifiers) can satisfy every possible assignment (correctly classify for every labeling), then the VC dimension is at least h
- ➤ Recall: growth function is "supremum over every set". Therefore, it is enough to demonstrate just *one* placement of points to show VC dim is at least h
- To show VC dim is less than h+1, we need to show that for *every* possible placement of h+1 points (every set) there exists some labeling that can't be achieved

Constructive Bound

• With probability (1-eta), for the function that minimizes empirical risk, the inequality below holds true

$$R(\alpha_{\ell}) < R_{emp}(\alpha_{\ell}) + \frac{E(\ell)}{2} \left(1 + \sqrt{1 + \frac{4R_{emp}(\alpha_{\ell})}{E(\ell)}} \right)$$

where

$$E(\ell) = 4 \frac{h(1 + \ln(2\ell/h)) - \ln(\eta/4)}{\ell}$$

Example: 2D Linear Classifiers

- Linear classifiers → h = 3
- Can't ever shatter 4 points!
- Can't shatter 3 points on a straight line (but that doesn't matter)
- Note: # of parameters = VC dimension

$$f(x; w) = w_0 + w_1 x_1 + w_2 x_2$$

Example: N-D Linear Classifiers

- Consider a more general case: linear classifier in N dimensions
- A hyperplane in R^N shatters any set of *affinely independent* points
- Affine combination is a weighted average of the points (where sum of weights = 1)
- Can choose N+1 affinely independent points → h = N+1
- Not quite satisfactory in practice!
- What if I have lots of redundant features (dimensions)? h should be less than N+1
- But VC estimate does not distinguish between such cases and cases where features are valuable!
- Solution: gap tolerant classifiers, bound on VC dimension in terms of margin

Example: 1D Sinusoidal Classifiers

- Consider the set of functions $f(x;\theta) = sign(\sin(\theta x))$
- Number of parameters = 1, but h = infinity
- Can choose points wisely and shatter perfectly for every n
- Note: h not proportional to # of parameters

choose:
$$x_i = 10^{-i}$$
, $i = 1,...,h$

given:
$$y_1, \dots, y_h$$

set:
$$\theta = \pi \left(1 + \sum_{i=1}^{h} \frac{1}{2} (1 - y_i) 10^{-i} \right)$$

But, as a side note, if I choose 4 equally spaced x's then cannot shatter

Example: Nearest Neighbor Classifier

- K-Nearest Neighbor (K-NN) Algorithm: classify each data point by a majority vote of its K neighbors
- K=1 → classify by nearest neighbor (1-NN)
- 1-NN shatters any set of points → h = infinity
- Empirical risk is always zero, but classifier can still perform well in practice!
- Infinite capacity does not guarantee poor performance (Note, there is no contradiction here: infinite VC implies that U.C doesn't take place, and hence ERM is not consistent, but that doesn't mean that the algorithm doesn't do well in a particular situation)