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Lecture 11: VC Dimension & SRM

e Structural Risk Minimization (SRM)



Formal Statement (finite case)

e With probability (1-eta), simultaneously for all functions in the set {k=1,...N}, the
inequality below holds true
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e Since it holds for all functions in the set, it holds in particular for the function that
minimizes ERM. In other words we get a bound on “the value of achieved risk (for the
rule selected by ERM)”

e The second bound (difference) follows easily from the first, we do not discuss it here
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Formal Statement (infinite case)

e With probability (1-eta), simultaneously for all functions in the set, the inequality
below holds true
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e Same two comments from the previous slide apply

e Note E [ is @ quantity expressed in terms of some capacity concept (not
necessarily entropy)



Recap

e We showed that capacity concepts completely define the quantitative theory
(bounds) as well

e However the bounds we obtained are |

e For a given set of functions, how do you compute entropy? (You can’t!)
e Moreover, bounds in terms of entropy are

* To evaluate entropy must plug in a specific pdf (it can be any pdf)

e This motivates a structure of capacity concepts.

e Goal: distribution-independent and constructive bounds



Structure of Capacity Concepts

e Number of clusters induced by the sample & function set:
NMzpe0z,) <2
(of the set of indicator functions on the given sample):
H’\(zl,...,zz) = lnN’\(zl,...,zf)
. (of the set of indicator functions on samples of size /):
HA(() = E[lnN’\(Zl,...,zg)] = flnN’\(Zl,...,zg)dF(Zl,...,Zg)
. (...):
H:mn(() = lnE[N’\(zl,...,zg)]
. (...):

G'(¢)=In|sup N’\(zl,...,zg)]




Structure of Capacity Concepts

e What'’s the point? Growth function is distribution independent and upper-bounds
entropy (due to Jensen’s inequality). Anywhere we have entropy, we can always
substitute growth and get a dist-ind bound!

HM{)<H,, (1)<G'(/)
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E[lnN’\(zl,...,zg)] < 1nE[N/\(z1,...,zf)] <In

sup N’\(zl,...,zg)]
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: assuming we have a convex function f, and a random variable X,

f(E[X])= EL£(X)]

e But logarithm is a concave function, hence the inequality is reversed when we
consider number of clusters (our random variable)



VC Dimension (idea)

e Growth function is distribution independent but is not constructive (hard to evaluate
for a given set of functions)

* Introduce a new capacity concept (function) which bounds the growth function but
is easier to evaluate

HA(E) <H (Z) < GA(K) < ](h,f)

ann

e “J” is some function of {coefficient, # examples}

e The coefficient h is called the Vapnik-Chervonenkis (VC) dimension of a set of
indicator functions

e [f the VC dimension for an admissible set of functions is finite, we know that ERM is
consistent on this set (for indicator loss functions)

e Actually, we can show necessity as well (not discussed, see Vapnik 4.9.3)
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Binomial Coefficient

* In order to bound the growth function, we need to bound the following sum of

binomial coefficients: __, [ m (M
E |, h=m easyzz C|=2"
i=0 l i=0 l
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* We also need the following identity: eXp=e = lim (1 + —

n —>00 n
e Derivation:
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(2) Binomial formula



Binomial Coefficient

1 n
* Given: E h O(njl), h=m exp=e=Ilim (1 + )
1= l n—>0 n

e Derivation:
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Growth Function ¢'()=nm

sup N’\(Zl,...,zg)]

Z] ,...,Zg

e The growth function for a set of indicator functions satisfies one of two conditions:
(a) GA(E) =/In2
(/1n2 if 0<h)

©) G(K)E}ln(y (g)) if 0> h
i=0 l

where h is the largest integer for which GA(h) =hln?2
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e Using the bound from the previous slide:
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Growth Function ¢()-n

sup NA(Zl,...,zg )}
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e The growth function for a set of indicator functions satisfies one of two conditions:
(@) G'()=/In2
(/1n2 if {<h
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(b) G'(f)=+

sh(1+lnfl) if {>h

where h is the largest integer for which GA(h) =hln?2



Growth Function Behavior

e The growth function is either linear or bounded by a logarithmic function with
coefficient h. It cannot be of any intermediate form!

e This is crucial to prove sufficiency & necessity for the VC dimension capacity concept
(with respect to ERM consistency)
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General Idea: Subsets

e Can talk about subsets of a set instead of clusters (also known as Sauer’s Lemma).
Here we assume that Z is an (infinite) set of elements, and the sample is a particular

bset
PR (a) sup NS(zl,...,z€)=2€
2 if (<h)

(b) sup NS(ZI,...,ZE) = 4

2 seesly < 2k=0 k < ; # >

Y
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where h is the largest integer for which equality is valid.

Note: the above is not a precise argument, just an outline

Note: Sauer’s Lemma is just the growth function theorem (result) stated for the
general case of subsets of a set



VC Dimension (Definition)

e Definition: The coefficient h which characterizes the capacity of a set of functions
with logarithmic-bounded growth function is called the VC dimension (of a set of
indicator functions). When the growth function is linear, the VC dimension is defined

to be infinite.

e We can modify the definition to stress the constructive method of estimating the VC

dimension



VC-dim (Constructive Definition)

e Definition: The VC dimension of a set of indicator functions is equal to the largest
number (h) of vectors (xl,...,xg) that can be separated into two different classes in all
the 2" possible ways using this set of functions.

e The VC dimension is the maximum number of vectors that can be

e |f for any n, there exists a set of n vectors that can be shattered by the given set of
functions, then the VC dimension is equal to infinity



Shattering

e Shattering:
» We pick h points & place them at (xl,...,xh)

> They challenge us with every possible (2Min total) assignment (labeling)

(Yyss¥y) € (21,...,21)

» If our set of admissible functions (i.e. concept class, classifiers) can satisfy every
possible assignment (correctly classify for every labeling), then the VC dimension
is at least h

» Recall: growth function is “supremum over every set”. Therefore, it is enough
to demonstrate just one placement of points to show VC dim is at least h

» To show VC dim is less than h+1, we need to show that for every possible
placement of h+1 points (every set) there exists some labeling that can't be
achieved



Constructive Bound

e With probability (1-eta), for the function that minimizes empirical risk, the inequality
below holds true

R(a,) < Remp(ag) + E(;)(H \/1 N 4Remp(a£))

E(/)

where

h(1+1n(2¢/h)) - In(n/4)
/

E(l)=4



Example: 2D Linear Classifiers

e Linear classifiers = h =3
e Can’t ever shatter 4 points!
e Can’t shatter 3 points on a straight line (but that doesn’t matter)

e Note: # of parameters = VC dimension
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Example: N-D Linear Classifiers

e Consider a more general case: linear classifier in N dimensions
e A hyperplane in RN shatters any set of points
e Affine combination is a weighted average of the points (where sum of weights = 1)

e Can choose N+1 affinely independent points =» h = N+1

e Not quite satisfactory in practice!
e What if | have lots of redundant features (dimensions)? h should be less than N+1

e But VC estimate does not distinguish between such cases and cases where features
are valuable!

e Solution: gap tolerant classifiers, bound on VC dimension in terms of margin



Example: 1D Sinusoidal Classifiers

* Consider the set of functions f (x;0) = sign (sin (Hx))
e Number of parameters = 1, but h = infinity
e Can choose points wisely and shatter perfectly for every n

e Note: h not proportional to # of parameters
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choose : xi=10'i, i=1,....h
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But, as a side note, if | T
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Example: Nearest Neighbor Classifier

e K-Nearest Neighbor (K-NN) Algorithm: classify each data point by a majority vote of
its K neighbors

e K=1 =» classify by nearest neighbor (1-NN)
e 1-NN shatters any set of points = h = infinity
e Empirical risk is always zero, but classifier can still perform well in practice!

* Infinite capacity does not guarantee poor performance (Note, there is no
contradiction here: infinite VC implies that U.C doesn’t take place, and hence ERM is
not consistent, but that doesn’t mean that the algorithm doesn’t do well in a particular
situation)



