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Lecture 10: Statistical Learning Theory (Bounds)

e General model of learning & ERM (Vapnik 0.1-1.11)
e Consistency (Vapnik 3.1-3.2.1)

e Uniform Convergence (Vapnik 3.3, 3.4, 3.7)

e Entropy, Capacity (Vapnik 3.7, 3.10, 3.13)

e Structural Risk Minimization (SRM)



Recap

e We introduced a capacity concept for a set of indicator functions
» One-function case: just a particular case of LLN
» Finite case: just number of functions in the set
» General (infinite) case: entropy of functions on a sample

* Using this concept we obtained conditions for 2-sided U.C. However, we need
conditions for 1-sided U.C

* Obviously if 2-sided holds, we have 1-sided, but what about cases where only 1-sided
holds? Perhaps we can relax the conditions we obtained for 2-sided U.C ?

* Not a trivial problem!



Models of Reasoning

e Two models of reasoning: and
» Deductive: from general to particular (true consequences from true premises)
» Inductive: general judgments from particular assertions

e But general judgments from true particular assertions are not always true!

. (I.Kant): when is the inductive step justified? (What is the
difference between cases where it is and is not?)

e The problem can be discussed in the context of scientific theories: is there a way to
distinguish between scientific and non-scientific theories?



Non-Falsifiability

e |s there a formal way to distinguish between scientific and non-scientific theories?

e Necessary condition to justify a theory (K. Popper):

» Existence of particular assertions which fall into the theory’s domain but
cannot be explained by it

» If a theory can be falsified, it satisfies the conditions of a scientific theory

» If there is no example that can falsify the theory, it should be considered a non-
scientific theory



Mathematical Non-Falsifiability

e Suppose the following equality holds (for indicator functions):

HA(()

\ =In2 = NMz,.z,)=2"

e In other words, almost any sample (of arbitrary size) can be separated in all possible
ways by the set of functions of the machine

e Therefore the minimum of empirical risk is zero

e Thisis a , it can give a general explanation for almost
any data

e “Almost any data” since the entropy is defined in terms of the integral:

HA() = E[HMz,002,) | = [ HNZpseen2,)dF (215002,



From 2-sided to 1-sided (idea)

= Suppose we have a non-falsifiable machine “A” (2-sided U.C does NOT take place)
" |t is possible that the machine can generalize using ERM (one-sided U.C)

= |f we can find a second, falsifiable, machine “B” that is arbitrarily close to “A”, we can
deduce U.C(1) for “A”

Formally:
e Suppose we have a set of functions {L} for which 2-sided U.C does NOT take place

e Now introduce a new set of functions {L*} with the following property:

Ve, YL(z,0), EIL*(Z,(xk):
f(L(z,(x) - L*(z,(x")) dF (z) < ¢

o |f for the second set {L*}, U.C(2) is valid, then for the first set {L}, U.C(1) holds
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Recap

e We introduced a capacity concept (entropy) which completely defines the qualitative
behavior of the learning processes (we are specifically referring to ERM)

* Do capacity concepts completely define the quantitative theory (bounds) as well?
e Quantitative theory - Rate of Convergence - Bounds

e Note: there are some shortcomings to entropy, therefore we are motivated to
introduce a whole structure of concepts (which motivates VC dimension)

e What are the conditions for the existence of a fast asymptotic rate of U.C for a given
probability measure?

» Conditions for existence of two positive constants {b,c} such that for a
sufficiently large sample:

fL(z,a) dF(z) - %E;L(zi,a) > ¢+ < bexp{-ce’l}

P4 sup



Types of Bounds

e Bounds determine the generalization ability of the learning machine (utilizing ERM)
* We focus on indicator loss functions
e We would like to estimate two quantities:

» (1) The value of achieved risk (for the rule selected by ERM)

» (2) The difference between achieved and minimal risk for a given function set

Suppose: infR(a)@a,, infR, (a)@aq,

O R(a,)
(2) A(a£)=R(a£)—R(aO)

emp



Comments

e Estimating difference (2) is easy to do once the value (1) is estimated. Hence we
focus on the first quantity R(alpha_L}

e Recall that we already have some bounds (Chernoff bounds) on the probability of
two-sided convergence

» Therefore we would like to use these results (which we have for the maximum over
all alphas in the set) to derive a bound on a particular risk value (particular since it is
for the function that minimizes empirical risk)

e Our approach will once again be to start from the finite case and then derive the
infinite case using the obtained forms

P{ sup ‘R(a) - Remp(a)‘ > 8}

P{ max |p,., -V, |> e} < 2Nexp{—2ezf}

I<k<n



Recall: Chernoff Bounds

e Recall: we considered Chernoff bounds for U.C

P{ sup ‘R(a) - Remp(a)‘ > € }

= P: sup fL(z,a) dF(z)—%EilL(zi,a)

a
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_pl sup | P{L(z,a) >0} -v {L(z.a)> 0] ‘ > 8}
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SUP\PL>0-W ‘>8}

L. a

¢ For finite set of functions case:

P{ max |p, .-V, |> 3} < 2Nexp{—282€} = Zexp{(lan - 282)6}

I<ks<n



Relative Uniform Convergence

* Now we are interested in relative convergence:

-V
p Sup‘pbo / ‘>8 <9
@ \ pL>0
e Why?
e Suppose our set of functions (set of alphas) contains only “bad” functions that
provide probability of error close to %: then in this , the bounds (using
additive Chernoff inequalities) we can obtain on U.C are . In other words we can’t

improve the bound.

e But what if the set contains at least one good function which provides probability of
error equal (close) to zero: then in this , the bounds for U.C actually
“penalize” us for considering the entire set of functions equally.

e By considering convergence relative to the expectation we take all cases (including
intermediate between the above) into account (and hence we get better bounds).



Multiplicative Chernoff Bounds

*Notation: S=X+...+X , X,€{0,]}, O=<e=<l
v S
Pr[X,=1]=p, u=E[S]=pm, p =%

Pr{p - p> ej < exp{—ZsZm} Pr[p-p >¢]< exp{—2£2m}

2 2
Pr[pA—p>gp]sexp{—8§m} Pr[p—pA>gp]seXp{—€ 2m}

Prip’ - p>epl= \/7 >8\/7

£*=£\/;= Pr[p\]f >£*]sexp{—(€*) m}
p

2



Bounds: Finite Case

e Suppose our set contains N functions (where N is finite)

A

a € A,

A‘:N:>sla1psm§1X Pr[l?—l?

> £ <exp
Vp 2
e Using Multiplicative Chernoff bounds:

P+ max Proo = Vs > € <§P pL>0(k)_v€(k) > <N€Xp{—82€}
o \/E k=1 pL>0(k) 2

r _ \ 2
= P{ max Rloy) Koy () >ge<N exp{—w}
lsk=n R(Ofk) 2

e Why did we rewrite the quantity? We want to bound the value of achieved risk (for
the rule selected by ERM)



Bounds: Finite Case

e We want to bound R(alpha). It would be simpler to make a statement of the form:
with probability very close to 1, simultaneously for all functions in the set, the quantity
R(alpha) is bounded by something

Let 0<n<l, Nexp{—ng/z} =

2
=lnexp{ 25/2} hlﬁ :7€=—(lnn InN) :e—\/ZlnN(?hm
P{ max Rlo) = Ry () >gr<n = Vk:P; R(0) ~ R (%) <erzl-n
lsksn R(ak) R(O{k)

=

£

T
=




R(ay) =R, ()
R(e)

From <¢ to R(a)<" {Remp( a, ).}

C e x- C<eX = (X-C)P>=<eX

f

= X' -2CX - X+C*<0=>X"-(2C+&)X+C* =<0

2C+6 £2C+6) -4C> 20+ +V4C? +4Ce* + ' - 4C

= X < 5
2,62 14C
Eie\/ ,+1 2
= X=<C+ /8 —C+—1+1/1+£
2 2 €
InN -1nn

In our case: X =R(a,),C = Remp( € —JZ ;



Bound Form

e We want to bound R(alpha). It would be simpler to make a statement of the form:
with probability very close to 1, simultaneously for all functions in the set, the quantity
R(alpha) is bounded by something

2

InN -1nn

111/1+4—§
2 £

X<C+o In our case:X=R(ock),C=Remp(ak),£=\/2
2
= R(a,) <R, () + 82(1 + \/1 N 4Remp2(ak))

4

€

1+ \/l +2 Koy ()"
InN -Inn

InN -Inn

R(o ) <R, () +




Formal Statement (finite case)

e With probability (1-eta), simultaneously for all functions in the set {k=1,...N}, the
inequality below holds true

? 4R _
R(Otk)<Remp(ak)+% 1+\/ emp(ak) ’ 82 =21nN lnn

_ R
R(ak)<Remp(ak)+ thf Inn 1+\/1+21 emp(ak)g

e Since it holds for all functions in the set, it holds in particular for the function that
minimizes ERM. In other words we get a bound on “the value of achieved risk (for the
rule selected by ERM)”

e The second bound (difference) follows easily from the first, we do not discuss it here

2) Ala,)=R(a,)-R(a,)



Formal Statement (infinite case)

e With probability (1-eta), simultaneously for all functions in the set, the inequality
below holds true

4R, (%)
E(/)

R(o ) <R, (ct)+ ? 1+ Jl +

e Same two comments from the previous slide apply

e Note E [ is a quantity expressed in terms of some capacity concept (not quite
entropy)



Recap

e We showed that capacity concepts completely define the quantitative theory
(bounds) as well

e However the bounds we obtained are |

e For a given set of functions, how do you compute entropy? (You can’t!)
e Moreover, bounds in terms of entropy are

* To evaluate entropy must plug in a specific pdf (it can be any pdf)

e This motivates a structure of capacity concepts.

e Goal: distribution-independent and constructive bounds



