
MACHINE LEARNING COMS 4771, HOMEWORK 4

Assigned March 14, 2013. Due April 4, 2013 before 1:00pm.

Here are the instructions for submitting your homework. Archive/package all of the files you are
submitting as a single tarball or zip archive: “UNI-HW4.tar.gz” or “UNI-HW4.zip”. For example,
a compressed tarball would be “ir2322-HW4.tar.gz”. Your homework should contain:

• a writeup (PDF, TXT, or PostScript)

• code (as Matlab M files, shorter code is generally better but include comments)

• any figures/pictures not included in the writeup (PDF or PostScript)

• if you have special instructions, include them as a plain text file called README.txt.

Submit your homework through CourseWorks by doing the following:

1 Log into https://courseworks.columbia.edu/

2 Click “Assignments” on the left side.

3 Choose the appropriate HW Folder to submit to.

4 Use the filename “yourUNI-HW4.tar.gz” or “yourUNI-HW4.zip”.

5 Make sure that the “title” is yourUNI-HW4 (example: zz9999-HW4).

6 Add any special instructions in both the description and the README.txt.

7 Click “Submit” at the bottom to upload your file.

8 If you submit multiple times, only the last submission prior to the deadline will count.

9 If something goes wrong, ask the TAs for help.

10 In a dire emergency, if nothing else works, send your homework to the TAs.

Handwritten writeups are not allowed without prior approval.

All your code should be written in Matlab (other languages may be used only with prior permission
from an instructor). Please submit all your souce files, each function in a separate file. Clearly
denote what each function does, its inputs and outputs, and to which problem it belongs. Do not
resubmit code or data provided to you. Do not submit code written by others. Identical submissions
will be detected and both parties will get zero credit. Sample code is available on the Tutorials web
page. Datasets are available from the Handouts web page. You may include figures directly in your
write-up, or separately and refer to them by filename.

Each homework counts equally towards your grade (other than your worst which will be dropped).
Points shown here for each problem indicate relative weights for this specific homework. As always,
up to 10% bonus points are available for exceptional, relevant work going beyond what is asked.

1 Problem 1 (30 points)

Kernels: Consider any Mercer kernel defined by k(x, x̃) = φ(x)⊤φ(x̃). We are given a sample
S = {x1, x2, ..., xn} of n inputs. We can form the Kernel (Gram) matrix K as an n × n matrix
of kernel evaluations between all pairs of examples i.e., Ki,j = k(xi, xj). Mercer’s Theorem
states that a symmetric function k(., .) is a kernel iff for any finite sample S the kernel matrix K is
positive semi-definite. Recall that a matrix K ∈ R

n×n is positive semi-definite iff c⊤Kc ≥ 0 for all
real-valued vectors c ∈ R

n.



• Prove Mercer’s theorem in one direction: for any Mercer kernel k(., .) and finite sample S,
the kernel matrix K is positive semi-definite.

• Given any two Mercer kernels k1(., .) and k2(., .), prove that the following are also Mercer
kernels:

1. k(x, x̃) = αk1(x, x̃) + βk2(x, x̃) for α, β ≥ 0

2. k(x, x̃) = k1(x, x̃) × k2(x, x̃)

3. k(x, x̃) = f(k1(x, x̃)) where f is any polynomial with positive coefficients

4. k(x, x̃) = exp(k1(x, x̃))

2 Problem 2 (20 points)

Kernelized Regression: We are given a training set {(x1, y1), (x2, y2), . . . , (xn, yn)} where xi ∈ R
d

is a d-dimensional real vector and yi ∈ R is a real value. Recall the linear regression: ŷ = w⊤x.
We will now consider nonlinear (kernel) regression ŷ = w⊤φ(x). Assume we will minimize the
regularized cost function:

L(w) =

n∑

i=1

(w⊤φ(xi) − yi)
2 + λw⊤w.

1. Solve for w and show that it lives in the span of feature maps: w =
∑n

i=1
αiφ(xi).

2. Express the cost L(w) as a function of α1, . . . , αn and find the values α1, . . . , αn for which
the cost is minimized.

3 Problem 3 (15 points)

PCA (Another Perspective): Given input vectors {x1, · · · , xT } where xi ∈ R
n, the goal of prin-

cipal components analysis (PCA) is to find a low-dimensional approximation of the data minimizing
the quadratic compression loss. More formally, we want to find an n-dimensional vector µ and a
rank k projection matrix P , where k ≤ n, such that the following loss function is minimized:

comp(P ) =
T∑

t=1

((xt − µ) − P (xt − µ))
⊤

((xt − µ) − P (xt − µ))

Differentiating and solving for µ gives: µ∗ = 1

T

∑T

t=1
xt which is the data mean. Show that substi-

tuting µ∗ to the expression for loss function yields:

comp(P ) = tr(C) − tr(PC)

where C is the covariance matrix and tr is the matrix trace defined as the sum of the diagonal
elements of the matrix.



4 Problem 4 (35 points)

K-Means Clustering:

Implement the k-means clustering algorithm.

You will use this code to investigate the stability properties of the k-means algorithm. You will
test your k-means code on synthetic data-sets that you generate. Each data-set is of the form
D = {x1, . . . ,xN} where the samples are drawn iid from some distribution p(x). You will generate
data from a distribution p(x) which is a mixture of Gaussians. You have control over this underlying
distribution and can choose the means, covariances and mixing proportions. As an example of how
to generate data from a single Gaussian, see the code on the Tutorials link called gendata.m. Modify
this code to generate data from a mixture of Gaussians. You will use this code to sample data from
mixtures of Gaussians that you design (different means, covariances and mixing weights).

Consider the following conjecture which we will assume is true (its proof is an open problem): if

the true underlying distribution has Ktrue well-separated clusters1, the k-means algorithm run with

K = Ktrue centers is stable.

We say that an algorithm is stable if, for different input data-sets D1,D2, . . . ,DT obtained from the
same distribution p(x), the resulting outputs the algorithm produces are similar. So, if k-means is
stable, the clusterings it outputs for D1, . . . ,DT should all group the points in a similar way. You
will explore the stability of k-means in the following three cases.

• Case K = Ktrue. Generate 5 different data-sets from your distribution p(x) with Ktrue = 4
mixture components. Initialize k-means with K = Ktrue components by placing center i in
the k-means algorithm inside the true cluster i in your mixture (for i = 1, . . . ,K). After
initializing, run the k-means code. Do this for your 5 data-sets and show that k-means
correctly preserves one center per cluster in the end (with high probability). Thus, the
clustering results are stable across these 5 runs. Show an example of one data set and one
clustering (since it is stable).

• Case K > Ktrue. Generate 5 different data-sets from your distribution p(x) with Ktrue = 4
mixture components. Try two different initialization schemes with k-means using K >

Ktrue = 4 and apply the algorithm to D1, . . . ,D5. Show that your algorithm obtains different
clusterings (instability) across these 10 runs. Show only two examples where you obtained
different clusterings to highlight the instability.

• Case K < Ktrue. Try two different initialization schemes with k-means with 1 < K <

Ktrue = 4 on 5 data-sets for one distribution p1(x) and on 5 data-sets from another dis-
tribution p2(x). Here, both p1(x) and p2(x) have the same number of components in the
mixture (both have Ktrue = 4). Explore different choices of p1(x) and p2(x) so that you
obtain stability with p1(x) across its 5 data-sets but you obtain instability with p2(x) across
its 5 data-sets. Show one dataset and one clustering with p1(x) to highlight stability and
show two datasets with different clusterings from p2(x) to highlight its instability.

In the last two cases (K > Ktrue and K < Ktrue), you have control over the initialization scheme
(you can start the algorithm’s initial centers anywhere you want).

1Well-separated clusters loosely means that the Gaussians in the mixture are not significantly overlapping.


