Machine Learning in Natural Language Processing

Lecture 26: COMS 4771 Machine Learning

Vinodkumar Prabhakaran

vinod@cs.columbia.edu

Outline

- Motivation
- NLP Research Areas using ML
 - NLP Applications
 - Fundamental NLP steps
- NLP at Columbia
- Relation Extraction
 - Supervised Relation Extraction
 - Distant Supervision
- Conclusion

Outline

Motivation

- NLP Research Areas using ML
 - NLP Applications
 - Fundamental NLP steps
- NLP at Columbia
- Relation Extraction
 - Supervised Relation Extraction
 - Distant Supervision
- Conclusion

Motivation: NLP in action

IBM Watson beating human champions in the Jeopardy! game

http://www.youtube.com/watch?v=BflW1hQ4RwE

What's the big deal?

A deeper understanding of the huge wealth of information out there in the web

- But this "information out there" is in the free form text.
- How did Watson understand it and reason based on that understanding?

More generally,

- Can machine learn to understand language?
- Can machines perform what humans can (and more) when dealing with language?

Why is it difficult?

- Language is inherently ambiguous
 - ambiguity in words:
 - "Mary deposited the money in the bank" vs.
 - "Mary sat by the river bank".
 - ambiguity in sentences
 - I saw the man on the hill with a telescope.

 Language also expresses opinions, emotions, desires and wishes in addition to facts.

Outline

Motivation

NLP Research Areas using ML

- NLP Applications

- Fundamental NLP steps
- NLP at Columbia
- Relation Extraction
 - Supervised Relation Extraction
 - Distant Supervision
- Conclusion

▶ Information Extraction

Extracting knowledge (facts, relations between entities, etc.) from unstructured text

- 2. Coreference resolution
- 3. Identify relations

Apple is headquartered in California. Tim Cook is its CEO.

Based_in(Apple, California); CEO_of(Tim Cook, Apple)

Vinodkumar Prabhakaran

Apple is headquartered in California. Tim Cook is its CEO.

Apple is headquartered in California. Tim Cook is its CEO. (Org.) (Loc.) (Per.)

Named Entity Tagging & Classifying

Based_in(Apple, California); CEO_of(Tim Cook, Apple)

Apple is headquartered in California. Tim Cook is its CEO.

Based_in(Apple, California); CEO_of(Tim Cook, Apple)

Vinodkumar Prabhakaran

Apple is headquartered in California. Tim Cook is its CEO.

Based_in(Apple, California); CEO_of(Tim Cook, Apple)

Vinodkumar Prabhakaran

- Information Extraction
- Machine Translation

Question Answering

Clinical Q&A

What medical conditions does the drug "acetaminophen" contraindicate with?

Information Extraction + Reasoning

- Information Extraction
- Machine Translation
- Question Answering

- Information Extraction
- Machine Translation
- Question Answering
- Sentiment Analysis

 Determine the attitude or sentiment of the speaker/writer about a subject/topic/product

- Information Extraction
- Machine Translation
- Question Answering
- Sentiment Analysis

Datasets

- Movie reviews (IMDB, ...)
- Product reviews (Amazon etc.)
- Twitter

ML Approaches

- SVM
- Naïve Bayes
- MaxEnt
- Unsupervised approaches

- Information Extraction
- Machine Translation
- Question Answering
- Sentiment Analysis
- Computational Socio-linguistics

- Information Extraction
- Machine Translation
- Question Answering
- Sentiment Analysis
- Computational Socio-linguistics

Datasets

- Enron email corpus
 - Around 500,000 messages between Enron employees
- Online discussion forums
- Twitter/Facebook
- Offline discussions such as presidential debates, supreme court hearings

ML Approaches

- Social Network Analysis
- SVM/SVR

Outline

Motivation

NLP Research Areas using ML

- NLP Applications
- Fundamental NLP steps
- NLP at Columbia
- Relation Extraction
 - Supervised Relation Extraction
 - Distant Supervision
- Conclusion

Parts-Of-Speech tagging:

Mary thinks Paris is beautiful.

Mary/NOUN thinks/VERB Paris/NOUN is/VERB beautiful/ADJ ./.

Datasets

English Penn Treebank (WSJ) (7 million words POS tagged)

Approaches

- SVM, HMM, MEMM, Perceptron
- Maximum entropy cyclic dependency network (Stanford Tagger)
 - 97.32% accuracy on seen words; 90.79% on unseen words
 - http://aclweb.org/aclwiki/index.php?title=POS_Tagging_(State_of_the_art)

Parsing Context Free Grammar (CFG) S \rightarrow NP VP PU Phrase structure parse $NP \rightarrow JJ NN$ VP → VBD NP NΡ PU NP NP NP NN VÉD NN NNS Economic news had little effect on financial markets

Vinodkumar Prabhakaran

Parsing

- Phrase structure parse
- Dependency Parse

р

Vinodkumar Prabhakaran

Parsing ambiguity

Phrase Structure Parsing

Datasets

• English Penn Treebank (WSJ)

Approaches

- PCFG (Probabilistic CFG), Reranking
- Lexicalized PCFG + self training on 2 million raw sentences
 - 92% accuracy
 - http://aclweb.org/aclwiki/index.php?title=Parsing_(State_of_the_art)

Outline

Motivation

- NLP Research Areas using ML
 - NLP Applications
 - Fundamental NLP steps

NLP at Columbia

- Relation Extraction
 - Supervised Relation Extraction
 - Distant Supervision
- Conclusion

NLP at Columbia

Research labs

- NLP lab
- Speech Lab
- CCLS (Center for Computational Learning Systems)

Faculty

- Prof. Kathy McKeown, Prof. Julia Hirschberg, Prof. Michael Collins (CS Dept.)
- Dr. Owen Rambow, Dr. Nizar Habash, Dr. Becky Passonneau (CCLS)

<u>Courses</u>

- COMS 4705 Natural Language Processing (mostly in the Fall)
- COMS 6998 ML for NLP (mostly in Spring)
- COMS 6998 Machine Translation (mostly in Spring)

NLP at Columbia

Research areas

- ML methods for Parsing/Tagging etc.
- Semantics
- Machine Translation
- Arabic NLP
- Social/Interaction analysis (WISR)
- Speech analysis transcription, analysis
- Text summarization, generation

Outline

Motivation

- NLP Research Areas using ML
 - NLP Applications
 - Fundamental NLP steps
- NLP at Columbia
- Relation Extraction
 - Supervised Relation Extraction
 - Distant Supervision

Conclusion

Relation Extraction – the what?

Given a pair of entities *e1* and *e2* and a corpus C of documents/sentences, what is the relation between *e1* and *e2*?

Given a sentence s containing two entities e1 and e2, what relation between e1 and e2 is expressed in s?

"Apple is headquartered in California"

- based_in(Apple, California)

"IBM was incorporated in the State of New York on June 16, 1911, as the Computing-Tabulating-Recording Co. (C-T-R)..."

- founding_year(IBM, 1911)
- founding_location(IBM, New York)

Relation Extraction – the why?

- Converting the "huge wealth of information" out there in the web in unstructured form → structured data (building knowledge bases)
- Extending existing knowledge bases
 - Freebase
 - DBPedia
 - UMLS
- Aid question answering systems (Watson, Medical expert systems etc.)
 - The granddaughter of which actor starred in the movie "E.T."?
 - acted-in(?x,"E.T.") & is-a(?y, actor) & granddaughter-of(?x,?y)
 - x: Drew Barrymore; y: John Barrymore

What kind of relations?

ACE Annotations

- Captures relations between 5 types of entities --- Person,
 Organization, Geo Political Entity, Location, Facility.
- 24 different relations in 5 categories
- Around 100K-300K words per language (English/ Chinese/Arabic) in ACE2005

AT	NEAR	PART	ROLE	SOCIAL
Based-In	Relative-location	Part-of	Affi liate, Founder	Associate, Grandparent
Located		Subsidiary	Citizen-of, Management	Parent, Sibling
Residence		Other	Client, Member	Spouse, Other-professional
			Owner, Other, Staff	Other-relative, Other-personal

What kind of relations?

UMLS (Unified Medical Language System)

▶ 134 types of entities --- Drug, Disease, Treatment, Enzyme, etc.

▶ 54 different relations --- DIAGNOSES, TREATS, PREVENTS, etc.

What kind of relations?

Open domain relations

- DBPedia / Wikipedia Info boxes
 - over 1 billion relation instances
- Freebase relations
 - politics, biology, films, business
 - over 116 million instances, 7300 relations, 9 million entities

RE Approaches

Extracting patterns using lexical/ syntactic regular expressions Patterns capturing "is_a(X,Y)" relation

- Y such as X
- such Y as X
- X (and | or) other Y
- Y including X
- Y, especially X
- ...

Issues:

- High precision, but low recall
- Manual labor in collecting patterns

RE Approaches

Rule based Systems

Extracting patterns using lexical/ syntactic regular expressions

Supervised Learning

- 1. Feature based methods
- 2. Kernel based methods

Traditional supervised approaches

- Choose a set of types of entities and relations to capture. Choose appropriate dataset and label relations
- Convert each relation instance to an appropriate representation (e.g. feature vector)
- Apply an appropriate learning algorithm to build a classifier. E.g. MaxEnt, Naïve Bayes, SVM

Issues

- Expensive to label data
- Do not generalize well across genres

Feature based approaches

- ► F_{based_in}(T("Apple is headquartered in Cupertino", Apple, Cupertino)) = +1
- $F_{based_in}(T("Apple is based out of California", Apple, California)) = +1$
- ► F_{based_in}(T("Apple did not break California law ", Apple, California)) = -1

Kernel Functions

- Kernel function K(x,y) finds the similarity between x and y
- If x, y are represented as feature vectors Φ(x), Φ(y)
 - E.g., linear kernel $\rightarrow \Phi(x).\Phi(y)$

Typical features for Relation Extraction

Apple is headquartered in Cupertino.
(Org.) (Loc.)

T(s,e1,e2) =

is e1 before e2? type of e1? type of e2? # words in between? words between? words before? words after? 1 ORG LOC 3 {is, headquartered, in} {} {}

Kernel Functions

- Kernel function K(x,y) finds the similarity between x and y
- If x, y are represented as feature vectors Φ(x), Φ(y)
 - E.g., linear kernel $\rightarrow \Phi(x).\Phi(y)$
- A better way since the x and y have underlying structure tree, graph etc.?
 - Perform feature engineering to find best set of features $\Phi()$
 - "have_a_VERB_parent", "have_an_ADJ_child" etc.
 - Define new kernel functions to directly apply on x and y
 - Convolution kernels: string kernels, tree kernels etc.

Tree Kernels

- Kernel function K(Tx,Ty) can be designed to find similarities that is relevant to the task at hand.
 - E.g.: counting the common subtrees with a decay factor associated with the subtree size

Feature based approaches

- ► F_{based_in}(T("Apple is headquartered in Cupertino", Apple, Cupertino)) = +1
- $F_{based_in}(T("Apple is based out of California", Apple, California)) = +1$
- ► F_{based_in}(T("Apple did not break California law ", Apple, California)) = -1

Kernel based approaches

- ► F_{based_in}(T("Apple is headquartered in Cupertino", Apple, Cupertino)) = +1
- $F_{based_in}(T("Apple is based out of California", Apple, California)) = +1$
- ► F_{based_in}(T("Apple did not break California law ", Apple, California)) = -1

Tree Kernel based approaches

Tree Kernels in NLP

- Collins and Duffy 2002 (Parsing)
- Cumby and Roth 2003 (NER)
- Moschitti 2004 (Semantic Parsing)

Tree Kernels in Relation Extraction

- Parse (shallow) tree kernel (Zelenko et al. '03)
- Dependency tree kernel (Culotta and Sorenson, 2004)
- Shortest dependency path kernel (Bunescu & Mooney '05)

Culotta and Sorenson, 2004

K(Tx,Ty)

= 0, if root node's POS & TYPE & ARG does not match

= sim(r1, r2) + Kc(children(r1), children(r2))

Kc(children(r1), children(r2)) is found by summing over K(c1,c2) over all children recursively, with a decay factor

Issues with supervised approaches

- Expensive to label data with relations
- Difficult to extend to new relation types and domains

Other alternatives?

- Unsupervised approaches?
- Semi supervised approaches?
 - Distance supervision

Distance supervision

- For each relation r in R (e.g.: may_treat)
- ▶ For each entity pair (e1, e2) such that r(e1,e2) in D
 - (e.g. <hypertension, acebutolol>; <fever, acetaminophen>; ...)
- Extract the set of sentences containing both e1 and e2
 - Acebutolol in the treatment of patients with hypertension
 - After treatment with acetaminophen, fever subsided
 - Either acetaminophen or ibuprofen can be given to treat the fever
 - ...
- Use features from all sentences to build the training/test instance
- E.g.: **Mintz et al. 2009** (Freebase relations; about 100 relations)

Distance supervision - Issues

- What about negative examples?
 - All sentences with entity pairs that are not related by r?
 - All sentences with entity pairs that are not related at all?
 - Exponentially large negative examples; How to sample?
- What about the distant supervision base assumption?
 - "Tylenol **treats** acute pain" vs.
 - "Its a pain to get Tylenol"
- What about multiple relations?
 - "Barack Obama was born in the US" vs.
 - "Obama was reelected as US President in 2012" vs.
 - "Obama proposed a new US healthcare bill"

More recent approaches

Riedel et al 2010

- Multiple Instance Learning in Distant Supervision
 - If two entities participate in a relation, at least one sentence that mentions these two entities might express that relation.

Hoffmann et al. 2011, Surdeanu et al. 2012

- Modeling multiple instance multi label (overlapping) relations
 Wang et al 2011, EMNLP
 - Relation Extraction with Relation Topics

Outline

Motivation

- NLP Research Areas using ML
 - NLP Applications
 - Fundamental NLP steps
- NLP at Columbia
- Relation Extraction
 - Supervised Relation Extraction
 - Distant Supervision

Conclusion

Conclusion

- . . .

- NLP Applications
 - Information Extraction
 - Machine Translation
 - Question Answering
- Relation Extraction
 - Supervised Feature based methods
 - Supervised Kernel based methods
 - Semi supervised distant supervision

Thank You

Questions?