
Implementation of Multi-rigid-body Dynamics within a Robotic
Grasping Simulator

Andrew T. Miller Henrik I. Christensen
Centre for Autonomous Systems

Royal Institute of Technology
Stockholm, Sweden

amiller, hic@nada.kth.se

Abstract

Robotic simulation systems allow researchers, engi-
neers, and students to test control algorithms in a safe en-
vironment, but until recently these systems only simulated
the dynamics of the mechanism itself and could not simu-
late (complex) contacts with other bodies in the environ-
ment. However, if the robot’s task involves grasping an
object, accurate simulation of contact and friction forces
is a necessity. Recently developed methods formulate the
constrains as a linear complementarity problem, allowing
a solution to be computed using proven algorithms, but
for anyone implementing such a system, several additional
considerations must be taken into account. In this paper
we present the implementation of the dynamics module of
our freely available grasping simulator and present an ex-
ample grasping task.

1 Introduction

As robotic simulation systems become more accurate at
modeling the real world, the number of possible applica-
tions for these systems increases. In commercial systems
simulation is typically a necessity to allow testing of differ-
ent operations before a product is actually manufactured or
a new production line is setup. Thus every robot manipu-
lator manufacturer provides a test suite with their robots.
One example of this the ABB Robot Studio in which basic
assembly, welding, etc. can be evaluated.

Simulation has also always been useful in teaching
robotics [3, 11, 10]. These packages allow students to write
programs to control a robot, that if faulty will not result in
costly damage to a real robot. For a robotics researcher
they provide a test bed for experimentation with different
control algorithms. In addition, for some tasks such as
learning, the number of iterations needed to implement a
control algorithm makes it impossible to perform the learn-

ing on-line, and the researcher is thus required to use sim-
ulation systems to run say 1000 or 1 million generations of
a system. However, many current systems only simulate
the dynamics of the robot and cannot simulate any interac-
tions with its environment. The key reason for this is the
difficulty of efficiently and accurately modeling frictional
contacts. Recent work, however, has opened the door for a
wider variety of more complex simulation systems.

One branch of robotics that can clearly benefit is grasp-
ing. At its core robotic grasping involves the forming
and breaking of contacts between the links of a robotic
hand and one or more objects in the environment. Like
other simulation systems, a grasping simulator allows a re-
searcher to evaluate different control algorithms, but it can
also serve as a planning environment for the larger grasp-
ing task, including reach planning, grasp selection, and ob-
ject acquisition. Working toward this goal, we have cre-
ated a system, known as “GraspIt!”1 [7], that can import
a wide variety of robot and object models, evaluate grasps
formed between a hand and an object, and allow a user to
visualize results of the analysis. Recently, we have imple-
mented a dynamics module that computes the motions of
a group of connected robot elements, such as an arm and a
hand, under the influence of controlled motor forces, joint
constraint forces, contact forces and external forces. This
allows a user to dynamically simulate an entire grasping
task.

The purpose of this paper is to describe our dynamic
simulation method, which is based on the theoretical work
of Anitescu and Potra [1]. The paper focuses in particu-
lar on the integration of the theoretical framework into an
operational system and the required adaptations to allow
operation in a real environment.

In section 2, we review the formulation of contacts and
joints as linear equality and inequality constraints. Next in

1This system will soon be available for download for a variety of plat-
forms from http://www.cs.columbia.edu/˜amiller/graspit.

1



section 3 we present an overview the simulator, so that we
can discuss our algorithm for advancing the simulation by
one time step in section 4. Section 5 discusses our current
methods of joint control and section 6 presents an exam-
ple grasping task. Lastly, section 7 presents our plans for
extending the system.

2 Dynamic Simulation

A collision between two objects takes place over a fi-
nite period of time and even in the case of rigid bodies,
it involves a complicated surface deformation before the
objects separate again. One of the most accurate ways of
modeling this interaction is with finite element methods
(FEMs), but these techniques are computationally chal-
lenging [5]. The most recent work either uses an impulse
based method or a linear constraints method. In the im-
pulse based approach [8, 9], a pair of instantaneous equal
and opposite impulses are applied to the two contacting
bodies which immediately changes their velocities and pre-
vents inter-penetration from occurring. These methods are
very good at modeling systems like a vibrating parts feeder
but have difficulty handling resting contacts. In the linear
constraints method [2, 12, 1], the contact forces are solved
for analytically. The non-penetration constraints and fric-
tional forces are expressed as inequalities that can be used
to formulate the problem as a linear complementarity prob-
lem (LCP). This type of problem can then be solved with
Lemke’s algorithm, which is a pivoting method similar to
the simplex algorithm for linear programming [4]. Be-
cause grasping often involves sustained contacts, the lat-
ter method is the most appropriate. We chose to use the
method described by Anitescu and Potra [1] because it ex-
plicitly includes joint constraints, but an actual implemen-
tation required several modifications.

We start by definingv(t) ∈ <6×n as the generalized
velocity vector of a system ofn rigid bodies at timet. The
Newtonian equations for such a system that includes mul-
tiple joined bodies and multiple unilateral contacts can be
written as follows:

M
dv

dt
= fj + fl + fn + ff + k, (1)

whereM is the positive definite, symmetric mass-inertia
matrix, and the right side of the equation is the sum of gen-
eralized forces acting on the bodies:fj is the vector of
joint constraint forces,fl is the vector of joint limit forces,
fn is the vector of contact normal forces,ff is the vector
of contact friction forces, andk is the vector of Coriolis,
centripetal, gravitational, and other external forces. If we
wish to find the velocity of the bodies at discrete instants

in time, we can use an Euler integration scheme:

M(vl+1 − vl) = h(f l
j + f l

l + f l
n + f l

f + kl), (2)

where the superscriptl denotes time step number andh is
the length of the time step. However, on the right side of
this equation, only the external forces are known, and we
must solve for the contact and joint forces in addition to the
new velocity. This is done by using several equality and
inequality constraints which are explained in the following
paragraphs.

2.1 Contact Constraints

To handle contacts, we examine a system of two bodies
with a single contact between them, and then later general-
ize to multiple contacts when we describe our algorithm in
section 4. We definecn as the magnitude of the contact nor-
mal impulse. This is simply the magnitude of the contact
force multiplied by the length of the time step, orh‖f l

n‖.
We then letncn be the12× 1 vector of two opposing gen-
eralized normal impulses exerted on the two bodies. Since
contacts can only apply compressive forces, we have the
constraintcn ≥ 0, and since the bodies cannot be allowed
to interpenetrate, we have the constraint that the relative
velocity of the bodies at the contact points must be greater
or equal to zero (nT vl+1 ≥ 0). These two constraints are
complementary sinceeither a force is being applied at a
contact and the relative velocity of the bodies at the con-
tact is 0,or the bodies are separating and no force can be
applied. This constraint can be written as a complementar-
ity condition in the following way:

nT vl+1 ≥ 0 compl. to cn ≥ 0. (3)

In addition to the contact normal force, there is also a
certain amount of friction acting at any contact. We as-
sume that the magnitude of the frictional force is bounded
by a convex limit surface that contains the origin, and this
limit surface is scaled by the size of the contact normal
force. If there is no relative motion at the contact, then
the frictional force must lie on or within the boundary of
the scaled limit surface, but if there is a relative velocity
between the two bodies at the contact, then the frictional
force must maximize power dissipation and therefore lie
on the boundary of the limit surface. In the simple case of
Coulomb friction, frictional forces are limited to lie within
a circle in the plane perpendicular to the contact normal.
The radius of this circle is equal to the coefficient of fric-
tion, µ, times the magnitude of the contact normal force.
This means that the total contact force must lie within a
cone, commonly known as a friction cone. To express this
constraint linearly, we approximate the cone with a convex

2



polyhedronF :

F =
{
ncn + Dβ | cn ≥ 0, β ≥ 0, eT β ≤ µcn

}
, (4)

wheree = [1, 1, . . . , 1]T ∈ <u with u being the number of
edges in the polyhedral approximation,β ∈ <u is a vec-
tor of weights, and the columns ofD are direction vectors
that positively span the space of possible generalized fric-
tion forces. We assume if a vectord is one of the columns
of D, then so is−d. Although we currently are only sim-
ulating friction in the tangent plane of the contact, with
this general friction formulation we can model anisotropic
Coulomb friction and torsional friction simply by modify-
ing the columns ofD.

This formulation of the friction constraint leads to two
complementarity conditions:

eλ + DT vl+1 ≥ 0 compl. to β ≥ 0, (5)

µcn − eT β ≥ 0 compl. to λ ≥ 0. (6)

If µcn − eT β > 0, meaning the friction force is strictly
interior to the friction cone, thenλ = 0 andDT vl+1 ≥
0. But for any columnd of D such thatdT vl+1 > 0
then there exists another column corresponding to−d and
−dT vl+1 < 0 thus contradicting the non-negativity of
DT vl+1. SoDT vl+1 = 0, which means there is no rela-
tive motion in the friction directions at the contact. On the
other hand, if there is relative motion at the contact then
λ > 0 andµcn − eT β = 0, meaning the contact force lies
on the boundary of the friction cone, and the direction of
the friction force will oppose the relative motion.

2.2 Joint Constraints

A joint constraint can be expressed as equality con-
straints on the relative velocities of the two connected bod-
ies as follows:

JT vl+1 = 0. (7)

A prismatic or a revolute joint will constrain 5 of the 6
relative velocities between the two connected bodies with
respect to the joint coordinate frame on each body. Each
joint thus adds 5 rows to the matrixJT . Passively cou-
pled joints add a 6th row that constrains the joint’s velocity
relative to the velocity of the joint it is coupled to. Fixed
joints, where one robot is attached to another, constrain all
relative velocities and add 6 rows. For each constraint we
have one unknown constraint force, but we denote it as an
impulse:

hf l
j = Jcj , (8)

wherecj is the vector of magnitudes of the joint constraint
impulses.

Figure 1: A robot or robotic platform can operate within a
user defined world. In this case it is the manipulation plat-
form and living room environment at the Center for Au-
tonomous Systems.

If any joint is at its minimum or maximum value, we
can formulate another inequality constraint similar to the
contact normal constraint in equation 3:

lT vl+1 ≥ 0 compl. to cl ≥ 0, (9)

wherelcl is the impulse necessary to prevent the joint from
going past its limit.

3 GraspIt! Overview

The framework described above was incorporated into
our grasping simulator, GraspIt!. The system consists of
several modules, including one to load and construct a va-
riety of object models and robot designs, a collision de-
tection and contact determination system, a grasp analysis
suite, visualization methods to see the results of the anal-
ysis, and the dynamics module. The focus of this paper is
on the dynamics system, but information about the other
components can be found in an another article [7]. Before
discussing our implementation of the dynamics, we first
describe our definitions of the various body types used in
the simulation and then give an overview of our collision
detection and contact determination scheme which is re-
sponsible for finding contacts between bodies during each
time step of the dynamics.

3



(a) (b) (c)

Figure 2: The collision detection and contact location pro-
cess: (a) The collision of a link of the Barrett hand with the
side of a cube is detected. (b) A search is conducted to find
the instant when the link is within 0.1mm of the surface.
(c) The geometry of the contact is determined and friction
cones are placed at the vertices bounding the contact region
(in this case a line).

3.1 Body Types

A basic body consists of a pointer to its geometry, a
material specification, a list of contacts, and a transform
that specifies the body’s pose relative to the world coor-
dinate system. The body geometry is defined in a scene
graph, similar to VRML 1.0. The material is one of a set
of predefined material types and is used when computing
the coefficient of friction between two contacting bodies.
A dynamic body inherits all of the properties of a body and
defines the mass of the body, the location of its center of
mass relative to the body frame, and its inertia tensor. It
also includes the body’s dynamic state parameters,q and
v, which specify the pose and velocity of a body frame lo-
cated at the center of mass relative to the world coordinate
system.

The reason for distinguishing between bodies and dy-
namic bodies is that some bodies are simply considered
obstacles, and while they are elements of the collision de-
tection system and can provide contacts on other bodies,
they are not part of the dynamics computations and remain
static. This makes it possible to create a complex world
full of obstacles without making the dynamics intractable
to compute (an example of such a world is shown in fig-
ure 1).

3.2 Collision Detection and Contact Determina-
tion

To prevent bodies from passing through each other dur-
ing the simulation or while they are being manipulated by
the user in a static setting, the system performs rapid col-
lision detection using the PQP system (Proximity Query
Package) [6]. When a body is loaded into the simulator, it
is faceted by the renderer, and its collection of triangles is

passed to PQP where they become the leaves of a hierar-
chical tree of bounding volumes. Fast recursive algorithms
can then determine if any of the triangles of one body in-
tersect any of the triangles of another body, or can provide
a minimum distance between the two bodies.

If a collision is detected (see figure 2(a)), the motion
of the bodies must be reversed back to the point when the
contact first occurs. To find this instant, GraspIt! begins by
moving the objects to their previous locations before the
collision and calls the PQP system to determine the mini-
mum distance between them. Since body transforms must
be represented with fixed precision floating point numbers,
it is impossible to find the instant of exact contact between
two bodies. Thus, we define a thin contact region around
the surface of each body, and if the distance between two
bodies is less than this threshold (currently set at 0.1mm)
then they are considered to be in contact. We use a binary
search technique to move two bodies to within this distance
after they have collided (see figure 2(b)).

After the bodies have been moved to within the contact
distance, the system must determine the regions of contact
between the two bodies. This is done using a modifica-
tion of the PQP distance query algorithm that computes
the overlap between all pairs of triangles that are within
the contact distance. It performs topological consistency
checks to ensure that the contacts are valid, and in the case
of a planar contact, it finds the planar convex hull of the
contact set and removes any interior contact points. These
interior contact points do not affect the mechanics of the
grasp, because for any contact with a distribution of forces
along a line or an area, the wrench applied at the contact
can be represented as a single resultant wrench. This can
then be specified as a convex sum of forces acting at points
on the boundary of the contact region. Once the final set
of contacts between the two bodies has been determined,
the system draws a red friction cone at each contact point,
which serves to visually mark the position of the contact
and its normal (see figure 2(c)).

4 One Time Step

After the robots and bodies have been loaded into the
world environment, the user can start and stop the dynamic
simulation at any time. To advance the simulation from
time stepl to time stepl + 1, the system performs the fol-
lowing steps:

1. Because the pose of each body is represented us-
ing Euler parameters to avoid the singularities present
in other representations, we must define a matrixG
that will relate the6× 1 velocity vector of each body
to the7 × 1 vector of the time derivatives of its pose.

4



So for each dynamic body, we start by building the
matrix B, which relates the angular velocity of body
i (expressed with respect to the body’s coordinate
frame) to the time derivatives its Euler parameters:

q̇rot = B bω
q̇4

q̇5

q̇6

q̇7

 =
1
2


−q5 −q6 −q7

q4 −q7 q6

q7 q4 −q5

−q6 q5 q4


 bωx

bωy
bωz

 ,

(10)

whereq4 . . . q7 are the values of the Euler parameters
of body i at time stepl. Using this conversion ma-
trix, we build a 7x6 matrix,G, that converts a body’s
velocity, expressed in world coordinates, to the time
derivative of its position:

q̇ = Gv

q̇ =
[

I3 0
0 BRT

]
v, (11)

whereR is the current orientation of the body ex-
pressed as a 3x3 rotation matrix. Combining theG
matrix for each body in block diagonal form, we cre-
ate the matrixG̃.

2. Move all bodies along their current trajectories us-
ing the time steph (our default value is 2.5 millisec-
onds) using the equation

ql+1 = ql + hG̃vl. (12)

3. Check for collisions and joint limits. If any bod-
ies have interpenetrated, perform a binary search on
the h value looking for the instant when the closest
two bodies are separated by a distance between 0 and
0.1mm. If any joint limits were exceeded, perform
the same search to find the instant when the joint is
within 0.1 degrees from its limit for revolute joints
and 0.1mm from its limit for prismatic joints. This
smallest value ofh from these two searches is used in
the last step.

4. Find all contacts given the current locations of the
bodies.

5. Determine the coefficient of friction,µ, for each
contact as follows:

µ =
{

µs, ‖∆vl
c‖ < st

µk, ‖∆vl
c‖ ≥ st

, (13)

whereµs andµk are the coefficients of static and ki-
netic friction for the pair of contacting materials,∆vl

c

is the relative velocity of the two contacting bodies at
the contact point, andst is a threshold speed.

6. Compute the external forces,k, acting on the bod-
ies of the island. This consists of gravitational and
inertial forces.

7. Apply joint control forces (described below).
These are accumulated on the bodies connected by
joints and added tok.

8. Apply joint friction forces. This is computed us-
ing the following equation:

τfriction = c sgn(θ̇) + vθ̇, (14)

where c represents constant Coulomb friction that
only depends on the sign of the joint velocity, andv
is the coefficient of viscous friction which scales with
the joint velocity. Like the control forces, these forces
are accumulated ink.

9. Divide the dynamic bodies into islands, where the
bodies of an individual island are connected by either
a joint or a contact.

10. For each island:

Compute the velocity of each body in the is-
land,vl+1, using the methods described below.

If the bodies of a given island have no joints and no
contacts, we can take a simple Euler step to find their next
velocities:

vl+1 = vl + hM−1k. (15)

If the bodies in an island have joints connecting them,
we build the the joint constraint matrix,̃JT , that is the
combined matrix of all of the joint constraints between the
bodies of the island as described in equation 7. However,
because we are solving for velocities and cannot constrain
the relative position of the bodies, the bodies will tend to
drift away from their joint connections over time due to
small errors in the system. To correct this, we change the
right hand side of equation 7 from 0 to a correction veloc-
ity, whose value is

ε̃j = −γ
∆p

h
, (16)

where∆p is a vector of positional errors for all of the con-
straints, andγ is an error correction parameter that has a
value between 0 and 1 and controls how fast the error is
corrected. A value of 1 will add a velocity large enough to
correct the error in the next time step but will cause over-
shoot in the next, so we currently use a value of 0.2.

If the bodies of a given island have only joint con-
straints, and have no contacts or joint limit constraints, we
can solve the following linear system:[

M −J̃

J̃T 0

] [
vl+1

c̃j

]
=

[
Mvl + hk

ε̃j

]
, (17)

5



to find the velocity of the bodies,vl+1, and the magnitude
of the joint constraint impulses̃cj .

If the bodies in an island have at least one contact or
one joint limit reached, we must formulate a mixed LCP
similar to the one described in [1]:

M −J̃ −l̃ −ñ −D̃ 0
J̃T 0 0 0 0 0
l̃T 0 0 0 0 0
ñT 0 0 0 0 0
D̃T 0 0 0 0 Ẽ

0 0 0 µ̃ −ẼT 0


 vl+1

c̃j
c̃l
c̃n
β̃

λ̃

 + b =

 0
0
ξ̃
ρ̃
σ̃

ζ̃


[

c̃l
c̃n
β̃

λ̃

]T [
ξ̃
ρ̃
σ̃

ζ̃

]
= 0,

[
c̃l
c̃n
β̃

λ̃

]
≥ 0,

[
ξ̃
ρ̃
σ̃

ζ̃

]
≥ 0.

(18)

In this equation, if we havem joints,p reached joint limits,
andq contacts in the island, the constraints and variables
are combined into the following matrices:

J̃ =
[
J (1), . . . ,J (m)

]
, l̃ =

[
l(1), . . . , l(p)

]
,

ñ =
[
n(1), . . . ,n(q)

]
, D̃ =

[
D(1), . . . ,D(q)

]
,

Ẽ = diag
(
e(1), . . . ,e(q)

)
, µ̃ = diag

(
µ(1), . . . , µ(q)

)
,

and vectors:

c̃j =
[
c
(1)
j , . . . , c

(m)
j

]T

, c̃l =
[
c
(1)
l , . . . , c

(p)
l

]T

,

c̃n =
[
c
(1)
n , . . . , c

(q)
n

]T

, β̃ =
[
β(1)T , . . . ,β(q)T

]T
,

λ̃ =
[
λ(1), . . . , λ(q)

]T
.

We have modified the constant vectorb from the one
originally presented to add error correction velocities as
follows:

b =
[
−Mvl − hk, −ε̃j , 0, −ε̃n, 0, 0

]T
,

where ε̃j is the error correction velocity for joint con-
straints already described, and̃εn is an error correction
velocity for contacts. Again, because we are constraining
contact velocities rather than positions, error can build up
and bodies can eventually interpenetrate. To prevent this
we add the correction as follows:

ε(j)
n =

{
γ ∆p

h , ∆p < 0
0, ∆p ≥ 0

, (19)

where∆p is the difference between the current separation
of two bodies at contactj and half the contact threshold
distance (0.05mm). If the bodies move closer together than
half the contact threshold distance, this velocity will push
them back apart.

Next we need to convert the mixed LCP into a pure LCP
by eliminating all of the equality constraints. To do this we

rewrite equation 18 as follows: M −J̃ −H

J̃T 0 0
HT 0 N

 vl+1

c̃j

z

 +

 −a
−ε̃j

b

 =

 0
0
w


z ≥ 0, w ≥ 0, zT w = 0.

(20)

Then we can eliminate the first two rows:

vl+1 = M−1(J̃ c̃j + Hz + a)

c̃j = −
(
J̃T M−1J̃

)−1

J̃T M−1(Hz + a) +(
J̃T M−1J̃

)−1

ε̃j ,

to arrive at the pure LCP:

(G + N)z + g = w (21)

z ≥ 0, w ≥ 0, zT w = 0,

where

G = HT M−1H −

HT M−1
(
J̃T M−1J̃

)−1

J̃T M−1H,

g = b + HT M−1a−

HT M−1
(
J̃T M−1J̃

)−1 (
J̃T M−1a− ε̃j

)
.

This LCP can be solved with Lemke’s algorithm to find the
value ofz, which can then be substituted back to find the
value ofc̃j and ultimatelyvl+1.

5 Joint Control

Without the application of external motor forces on the
links of a robot, they would fall limply under the influence
of gravity. So in every iteration of the dynamics, a control
routine is called for each robot. This routine can be writ-
ten by the user, but we have provided some default rou-
tines. If given a new desired position for the end-effector
of a robot, a trajectory generator creates a linear path in
Cartesian space that has a continuous velocity and acceler-
ation profile. The inverse kinematics of the robot are then
computed for each sample along this path, and the joint
trajectories are recorded. Or, if given a new set of joint
positions, the trajectory generator creates the smooth joint
trajectories individually.

We are currently using simple PD controllers to control
the motor forces of each joint. Given a joint position set
point from the trajectory, the controller for that joint deter-
mines the current error from that position and computes a

6



Figure 3: Top Left: Initial position of the Barrett hand and phone handset. Top Right: An auto-grasp of the static handset
does not result in a force-closure grasp. Middle and Bottom Rows: An auto-grasp of the handset with dynamics turned on
results in the handset being pulled into the hand, and the final grasp has force-closure. The computed contact forces are
shown as arrows within the contact friction cones. The snapshots were taken at 1.2, 1.9, 2.2, and 2.7 seconds of simulation
time.

7



joint force using gains defined within the robot configura-
tion file. Once a joint force is computed, it is applied to the
two connected bodies in opposite directions along or about
the joint axis.

6 Simulating Grasp Formation

With the dynamics in place, it is possible to study the
temporal formation of grasps. In this example, the Barrett
hand, held by the Puma arm, is positioned above a phone
handset which rests on the workbench. Leaving the object
in a static state, an auto-grasp is performed where the 3 fin-
gers are closed at the same speed until contact occurs. The
result is shown at the top of figure 3. This is not a force-
closure grasp because the fingers only contact the handset
on its bottom surface. However, by turning on the dynamic
simulation, and performing the auto-grasp again, the hand-
set is pulled up into the hand until it reaches a force-closure
state. For this test, the PD controllers of the 6 Puma joints
simply attempt to maintain their positions in order to keep
the wrist stable. The trajectory generator created trajecto-
ries for the three active finger joints that would completely
close the fingers, but along their path the fingers contact
and begin to lift the phone. The PD controllers of those
joints then must apply additional torque to maintain the fin-
ger trajectory. Eventually the handset is lifted into the hand
and the fingers can no longer move. In order to keep the
grasp stable, the maximum joint torques for the two finger
joints were each set to half the value of the thumb joint.

7 Future Directions

In this paper we have shown a method of simulating
the dynamics of robotic manipulators that can handle rigid
body contacts with friction. It is based on the time-stepping
method presented by Anitescu and Potra, but the imple-
mentation required several modifications to allow for joint
limits and error correction, as well as systems to control
the joint motor forces and to perform collision detection
and contact determination for complex polyhedral bodies.
We have also demonstrated our simulator with a realistic
grasp formation example that relies heavily on the accurate
computation of contact forces. While we feel the system is
quite useful for others in its current state, there are a few
pieces we would like to improve.

The numerical integration scheme is currently only first
order. After further optimization of the matrix computa-
tions, we plan to implement a higher order Runge-Kutta
scheme which will give us additional accuracy and de-
crease the size of the error correction forces.

The current trajectory generator is quite simplistic and
does not avoid singularities or joint force limits. We would
like to implement a more sophisticated trajectory genera-
tion scheme as well as a path planner that could plan an
approach that avoids obstacles given a desired grasp and a
starting point.

One problem with using only PD control is that the ac-
tual position of a joint never matches the desired position
exactly, so in the future we plan to add a feed-forward
component that would compute the inverse dynamics of
the system using the recursive Newton-Euler formulation.
This should allow more accurate control.

References

[1] M. Anitescu and F. A. Potra. Formulating dynamic multi-rigid-body
contact problems with friction as solvable linear complementarity
problems.Nonlinear Dynamics, 14:231–247, 1997.

[2] D. Baraff. Issues in computing contact forces for non-penetrating
rigid bodies.Algorithmica, pages 292–352, October 1993.

[3] P. Corke. A robotics toolbox for MATLAB. IEEE Robotics and
Automation Magazine, 3(1):24–32, Mar. 1996.

[4] R. W. Cottle, J. S. Pang, and R. E. Stone.The Linear Complemen-
tarity Problem. Academic Press, 1992.

[5] H. M. Hilber, T. J. R. Hughes, and R. L. Taylor. Improved numeri-
cal dissipation for time integration algorithms in structural dynam-
ics. Earthquake Engineering and Structural Dynamics, 6:283–292,
1977.

[6] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast proximity
queries with swept sphere volumes. Technical Report TR99-018,
Dept. of Computer Science, University of North Carolina, Chapel
Hill, 1999.

[7] A. T. Miller and P. K. Allen. Graspit!: A versatile simulator for
grasping analysis. InProc. of the ASME Dynamic Systems and Con-
trol Division, volume 2, pages 1251–1258, Orlando, FL, 2000.

[8] B. Mirtich. Impulse-based Dynamic Simulation of Rigid Body Sys-
tems. PhD thesis, Dept. of Computer Science, University of Cali-
fornia at Berkeley, 1996.

[9] D. C. Ruspini and O. Khatib. Collision/contact models for the dy-
nanmic simulation and haptic interaction. InProc. of the Ninth In-
ternational Symposium of Robotics Research, ISRR’99, pages 185–
194, Snowbird, UT, 1999.

[10] A. Speck and H. Klaeren. RoboSiM: Java 3D robot visualization.
In IECON ’99 Proceedings, pages 821–826, 1999.

[11] M. R. Stein and S. Falchetti. A new graphics simulator for RCCL
and its use in undergraduate robotics instruction. InProceeding 8th
Intl. Conf. on Advanced Robotics, ICAR ’97, pages 825–830, 1997.

[12] D. Stewart and J. Trinkle. An implicit time-stepping scheme for
rigid body dynamics with coulomb friction. InProc. of the 2000
IEEE Intl. Conf. on Robotics and Automation, pages 162–169, 2000.

8


