IBM Watson Seminar

String Kernels and Cluster Kernels for Protein Classification

Christina Leslie
Department of Computer Science
Columbia University
Protein Sequence Classification

- Protein represented by sequence of amino acids, encoded by a gene
- Easy to sequence proteins, difficult to obtain structure
- Classification Problem: Learn how to classify protein sequence data into families and superfamilies defined by structure/function relationships

Sequence

VLSPADKTNKAAWGKVGAHAGEYGAEEALER
MFLSFPTTOKYFPHDLSHGSQVKGHGKKV
ADALTNAVAVDDMPNALSALSDLHAKLRLV
DPVFKLLSHCLVTLAAHLPATPAPVHAS
LDKFLASVSTVLTSKYR

3D Structure

Class
Globin family
Globin-like superfamily

Function
Oxygen transport
Remote homologs: sequences that belong to the same superfamily but not the same family – remote evolutionary relationship

Structure and function conserved, though sequence similarity can be low
Learning Problem

- Use *discriminative supervised learning* approach to classify protein sequences into structurally-related families, superfamilies.
- Labeled training data: proteins with *known structure*, positive (+) if example belongs to a family or superfamily, negative (-) otherwise.
- Focus on *remote homology detection*.

Approach: Support vector machines (SVMs) with new *string kernels* based on inexact string matching.
Beyond Classification: Protein Ranking

- **Ranking problem**: given query protein sequence, return ranked list of similar proteins from sequence database

- Limitations of classification framework
 - Small amount of labeled data (proteins with known structure), huge unlabeled databases
 - Missing classes: undiscovered structures

- Good local similarity scores, based on heuristic alignment: BLAST, PSI-BLAST

Approach: Use new *semi-supervised learning* methods – training on labeled and unlabeled data – to improve ranking performance
Outline

1. Protein classification: Mismatch kernel
 - SVMs and kernel methods
 - Inexact matching through mismatches
 - Efficient kernel computation, fast prediction

2. Experimental results on SCOP dataset

3. Other models for inexact matching
 - Kernels from gaps, substitutions, wildcards

4. Cluster kernels: Semi-supervised methods
 - Using unlabeled data to change the kernel
Support Vector Machine (SVM) Classifiers

- Training examples mapped to (usually high-dimensional) feature space by a feature map
 \[F(x) = (F_1(x), \ldots, F_N(x)) \]
- Learn linear classifier in feature space
 \[f(x) = \mathbf{w} \cdot \mathbf{x} + b \]
 by solving optimization problem: trade-off between maximizing geometric margin and minimizing margin violations
- Large margin gives good generalization performance, even in high dimensions
Kernels for Discrete Objects

- **Kernel trick**: To train an SVM, can use *kernel* rather than explicit feature map.
- Can define kernels for sequences, graphs, other *discrete* objects:
 \[
 \{ \text{sequences} \} \xrightarrow{F} \mathbb{R}^N
 \]
 For sequences \(x, y\), feature map \(F\), kernel value is inner product in feature space
 \[
 K(x, y) = \langle F(x), F(y) \rangle
 \]
- Original string kernels [Watkins, Haussler, later Lodhi *et al.*] require quadratic time in sequence length, \(O(|x| |y|)\), to compute each kernel value \(K(x, y)\).
String Kernels for Biosequences

- We’ll define new fast *string kernels* for biological sequence data
 - Biologically-inspired underlying feature map
 - Kernels scale linearly with sequence length, $O(c_K(|x| + |y|))$ to compute
 - Protein classification performance competitive with best available methods
 - Mismatches for *inexact sequence matching* (other models later)
Spectrum-based Feature Map

- Idea: feature map based on *spectrum* of a sequence
 - The k-spectrum of a sequence is the set of all k-length contiguous subsequences that it contains
 - Feature map is indexed by all possible k-length subsequences ("k-mers") from the alphabet of amino acids
 - Dimension of feature space = |S|^k (|S| = 20 for amino acids)
k-Spectrum Feature Map

- Feature map for k-spectrum with no mismatches:
 For sequence \(x \), \(F_{(k)}(x) = (F_t(x))_{\{k\text{-mers} \}} \),
 where \(F_t(x) = \#\text{occurrences of} \ t \text{ in} \ x \)

\[
\begin{array}{ccccccccccc}
\text{AAA} & \text{AAC} & \ldots & \text{AKQ} & \ldots & \text{KQD} & \ldots & \text{YYY} \\
0 & 0 & \ldots & 1 & \ldots & 1 & \ldots & 2
\end{array}
\]

Inexact Matching through Mismatches

- For k-mer s, the \textit{mismatch neighborhood} $N_{(k,m)}(s)$ is the set of all k-mers t within m mismatches from s
- Size of mismatch neighborhood is $O(|\text{seq}|^{mk^m})$
(k,m)-Mismatch Feature Map

- Feature map for k-spectrum, allowing m mismatches:

 For a k-mer s, $F_{(k,m)}(s) = (F_t(s))_{\text{k-mers } t}$,

 where $F_t(s) = 1$ if t is in neighborhood $N_{(k,m)}(s)$,
 $F_t(s) = 0$ otherwise

- Extend additively to longer sequences x by summing over all k-mers s in x

Computing the (k,m)-Mismatch Kernel

- Use *mismatch tree* to organize lexical traversal of all instances of k-mers (with mismatches) in the training data
 - Each path down to a leaf corresponds to a coordinate in feature map
 - Kernel values for all training sequences updated at each leaf node
 - Depth-first traversal can be accomplished with recursive function
Computing the Kernel for Pair of Sequences

- Traversal of trie for $k=3$, $m=1$

x: EADLALGKA\textcolor{orange}{VF}

y: ADLALGADQVF\textcolor{orange}{NG}

Diagram:

- Label: A

- Edges:
 - $\text{EADLALGKA}\rightarrow\text{VF}$
 - $\text{ADLALGADQVF\rightarrowNG}$
Computing the Kernel for Pair of Sequences

- Traversal of trie for $k=3$, $m=1$

x: EADLALGKAVF

y: ADLALGADQVFNG
Computing the Kernel for Pair of Sequences

- Traversal of trie for $k=3$, $m=1$

x: EADLALGKAVF

y: ADLALGADQVFNG

Update kernel value for $K(x, y)$ by adding contribution for feature ADL

Scales linearly with length, $O(k^{m+1}|\square|^m(|x|+|y|))$
SVM Solution

- Linear classifier defined in feature space by
 \[f(x) = \mathbf{w} \cdot \mathbf{F}(x) + b \]
 where \(\text{sign}(f(x)) \) gives prediction

- SVM solution gives normal vector
 \[\mathbf{w} = \sum_{i} y_i \mathbf{F}(x_i) \]
 as a linear combination of support vectors, involving weights \(a_i \) and labels \(y_i \)
Fast prediction

- SVM training determines subset of training sequences corresponding to support vector sequences and their weights: \((x_i, \alpha_i)\)
- Linear decision rule in feature space:
 \[
 f(x) = \sum_i y_i \alpha_i F(x_i), \quad F(x) = \sum F(s) \text{ for k-mers s in } x
 \]
- \(F(x)\) is sum of feature vectors \(F(s)\) for k-mers \(s\) in \(x\)

- Precompute per k-mer scores for classifier
- Test sequences can be classified in linear time via lookup of k-mers
Outline

1. Protein classification: Mismatch kernel
 - SVMs and kernel methods
 - Inexact matching through mismatches
 - Efficient kernel computation, fast prediction

2. Experimental results on SCOP dataset

3. Other models for inexact matching
 - Kernels from gaps, substitutions, wildcards

4. Cluster kernels: Semi-supervised methods
 - Using unlabeled data to change the kernel
SCOP Experiments

- Tested with experiments on SCOP dataset from Jaakkola et al.
- Experiments designed to ask: Could the method discover a new family of a known superfamily?
SCOP Experiments

- 160 experiments for 33 target families from 16 superfamilies
- Compared results against
 - SVM-Fisher (HMM-based kernel)
 - SAM-T98 (profile HMM)
 - PSI-BLAST (heuristic alignment-based method)
- **ROC scores**: area under the graph of true positives as a function of false positives, scaled so that both axes vary between 0 and 1
Results Across All Target Families
Background on Fisher-SVM

- Previous solution [Jaakkola, Diekhans, Haussler]:
 - Use positive examples to train profile HMM, \((M_+, q_0)\)
 - For each training example \(x\), *Fisher score* is gradient of log-likelihood score for \(x\) given \(M_+\) (evaluated at \(q_0\))
 \[x \rightarrow q_0 \log P(x \mid M_+, q_0) \]
- Method relies on generative model
 - Requires large amount of data or sophisticated priors to train \(M_+\)
 - Expensive: dynamic programming (quadratic in sequence length) – for each sequence \(x\), forward-backward algorithm to compute features
Aside: Connection with Fisher Kernel

- Consider order k-1 Markov chain model for positive sequences, with parameters
 \[q_{t|s_1..s_{k-1}} = P(x_j = t \mid x_{j-k+1}..x_{j-1} = s_1..s_{k-1}) \]
- Corresponding Fisher coordinate for x is
 \[\frac{(#\text{occurrences of } s_1..s_{k-1}t \text{ in } x)}{q_{t|s_1..s_{k-1}}} - \frac{(#\text{occurrences of } s_1..s_{k-1} \text{ in } x)}{q_{t|s_1..s_{k-1}}} \]
- Fisher kernel for Markov chain model similar to k-spectrum kernel
Interpretation of Mismatch-SVM Classifier

- Rank features by $|w_i|$, associate to +/- class by sign(w_i)
- Top positively-weighted k-mer features learned by SVM map to conserved regions in the multiple alignment of positive training sequences
Interpretation of Mismatch-SVM Classifier

- Rank features by $|w_i|$, associate to +/- class by sign(w_i)
- Top positively-weighted k-mer features learned by SVM map to *conserved regions* in the *multiple alignment* of positive training sequences
Interpretation of Mismatch-SVM Classifier

- Rank features by $|w_i|$, associate to +/- class by sign
- Top positively-weighted k-mer features learned by SVM map to conserved regions in the multiple alignment of positive training sequences
Advantages of Mismatch-SVM

- Mismatch-SVM performs as well as SVM-Fisher but avoids computational expense, training difficulties of profile HMM

- Advantages of string kernel:
 - *Efficient computation*: scales linearly with sequence length
 - *Fast prediction*: classify test sequences in linear time
 - *Interpretation* of learned classifier
 - *General approach* for biosequence data, does not rely on alignment or generative model
Outline

1. Protein classification: Mismatch kernel
 - SVMs and kernel methods
 - Inexact matching through mismatches
 - Efficient kernel computation, fast prediction
2. Experimental results on SCOP dataset
3. Other models for inexact matching
 - Kernels from gaps, substitutions, wildcards
4. Cluster kernels: Semi-supervised methods
 - Using unlabeled data to change the kernel
Other Fast(er) Kernels for Inexact Matching

- Mismatch kernel is linear in sequence length, but constant $c_K = k^{m+1}|\square|^m$ depends on alphabet size
- Other models for inexact matching can achieve $O(c_K(|x| + |y|))$ with c_K independent of $|\square|
 - Restricted gaps
 - Probabilistic substitutions
 - Wildcards

Inexact Matching through Gaps

- For g-mer s, the *gapped match set* $G_{(g,k)}(s)$ consists of all k-mers t that occur in s with $(g - k)$ gaps.
- Size of gapped match set is $O(g^{g-k})$, independent of $|s|$.
(g,k)-Gappy Kernel

- Feature map:
 For a g-mer s, $F_{(g,k)}(s) = (F_t(s))_{\{k\text{-mers } t\}}$, where $F_t(s) = 1$ if t is in set $G_{(g,k)}(s)$, $F_t(s) = 0$ otherwise; extend additively by summing over g-mers s in x.

 $\{0, \ldots, 1, 1, \ldots, 1, \ldots, 0\}$

- Weighted version with gap penalty, $0 < \ell \leq 1$:
 $F_t(s) = (1/\ell^k)\sum_{\text{subseq}(s) = t}\ell^\text{length(subseq(s))}$,
 can be computed by dynamic programming.
 Gives truncated version of Lodhi et al. string kernel.
Gappy Kernel Computation

- Traverse instance g-mers in the data, greedily align to k-length paths (k-mer features)
- At leaf node, count instances for each input sequence (or perform restricted dynamic programming for weighted version)

$O(c_K(|x| + |y|))$ with $c_K = g^{g-k+1}$
Gappy Kernel SCOP Results
Inexact Matching through Probabilistic Substitutions

- Use *substitution matrices* to obtain $P(a|b)$, substitution probabilities for residues a, b

- The *mutation neighborhood* $M_{(k,\square)}(s)$ is the set of all k-mers t such that
 \[
 - \sum_{i=1}^{k} \log P(s_i|t_i) < \square
 \]

For a k-mer s, map $F_{(k, \square)}(s) = (F_t(s))_{\{k$-mers $t\}}$
where $F_t(s) = 1$ if t is in neighborhood $M_{(k,\square)}(s)$,
$F_t(s) = 0$ otherwise;
extend additively

\[
\square \ c_K = k \ N_{\square}, \text{ where } N_{\square} \text{ is max size of mutation neighborhood}
\]
Substitution Kernel SCOP Results
Inexact Matching through Wildcards

- Introduce wildcard character “[*]”, define feature space indexed by k-mers from ![Image of alphabet](image1.png), allowing up to m wildcards

For a k-mer s, \(F_{(k,m)}(s) = (F_t(s))_{\text{k-mers } t} \)

where \(F_t(s) = \# \text{wildcards in } t \), if \(t \) matches \(s \),
\(F_t(s) = 0 \) otherwise;

extend additively

\[
\begin{align*}
\text{AKQ} & \quad \rightarrow \quad (0, \ldots, 1, \ldots, [*], \ldots, [*], \ldots, [*], \ldots, 0) \\
\text{AKQ} & \quad \text{AK} & \quad \text{A} & \quad \text{Q} & \quad \text{KQ}
\end{align*}
\]

- Using pruned depth k trie over ![Image of alphabet](image2.png), \(c_K = k^{m+1} \)
Wildcard Kernel SCOP Results
Related Recent String Kernel Work

- For exact matching case, Vishwanathan and Smola compute *convex combinations* of kernels using suffix trees.
- Ben-Hur *et al.* define a motif kernel: features are known motifs, stored using trie.
- Li and Noble use feature vectors of pairwise alignment scores (Smith-Waterman, BLAST).
- Can describe all the kernels here using *transducer formalism* (finite state automata) of Cortes *et al.*
Outline

1. Protein classification: Mismatch kernel
 - SVMs and kernel methods
 - Inexact matching through mismatches
 - Efficient kernel computation, fast prediction

2. Experimental results on SCOP dataset

3. Other models for inexact matching
 - Kernels from gaps, substitutions, wildcards

 - Using unlabeled data to change the kernel
Use of Unlabeled Data

- About 30,000 proteins with known structure (labeled proteins), but about 1 million sequenced proteins
- BLAST, PSI-BLAST: widely-used heuristic alignment-based sequence similarity scores
 - Good *local similarity score*, less useful for more remote homology
 - BLAST/PSI-BLAST E-values give good measure of distance between sequences
- Can we use unlabeled data, combined with good local distance measure, for *semi-supervised* approach to protein classification?
Cluster Kernels

- Use unlabeled data to change the (string) kernel representation
- *Cluster assumption*: decision boundary should pass through low density region of input space; clusters in the data are likely to have consistent labels
 - Profile kernel
 - Bagged kernel

Profile Kernel

- Represent sequence x by the average sequences in its neighborhood $N(x)$:
 \[
 F_{\text{Profile}}(x) = \frac{1}{|N(x)|} \sum_{x' \in N(x)} F(x')
 \]

- Profile kernel:
 \[
 K_{\text{Profile}}(x,y) = \frac{1}{|N(x)||N(y)|} \sum_{x' \in N(x) \cap N(y)} K(x',y')
 \]

- Use PSI-BLAST distance and mismatch kernel as base kernel
Profile kernel addresses cluster assumption

Before neighborhood averaging

After neighborhood averaging
Bagged Kernel

- Use k-means clustering to cluster data (labeled + unlabeled), N bagged runs
- Using N runs, define
 \[p(x, y) = \frac{\# \text{ times } x, y \text{ are in same cluster}}{N} \]
- Bagged kernel:
 \[K^{\text{Bagged}}(x, y) = p(x, y) \ K(x, y) \]
- Use PSI-BLAST for clustering, mismatch kernel for underlying kernel
Experimental Set-up

- **Full dataset**: 7329 SCOP protein sequences
- **Experiments**:
 - 54 target families (remote homology detection)
 - Test + training approximately for each experiment <4000 sequences, other data treated as unlabeled
- **Evaluation**: How well do cluster kernel approaches compare to the standard approach, adding positive homologs to dataset?
Results for Cluster Kernels
Conclusions

- SVMs with *string kernels* – like mismatch kernels – that incorporate *inexact matching* are competitive with best-known methods for protein classification

- Efficient kernel computation: $O(c_K(|x| + |y|))$, linear-time prediction, feature extraction

- Gaps, substitutions, and wildcards give kernel constant c_K that is independent of alphabet size

- Semi-supervised *cluster kernels* – using unlabeled data to modify kernel representation – improve on original string kernel
Future Work

- Full *multiclass* protein classification problem
 - 1000s of classes of different sizes, hierarchical labels
 - Use of unlabeled data for improving kernel representation

- *Domain segmentation* problem: predict and classify domains of multidomain proteins

- Develop and implement *semi-supervised ranking* approaches, make available on web server

- *Local structure* prediction: predict local conformation state (backbone angles) for short peptide segments, step towards structure prediction
Protein Ranking

- *Pairwise sequence comparison:* most fundamental bioinformatics application
- BLAST, PSI-BLAST: widely-used heuristic alignment-based sequence similarity scores
 - Given query sequence, search unlabeled database and return ranked list of similar sequences
 - Query sequence does not have to belong to known family or superfamily
 - Good local similarity score, less useful for more remote homology
- Can we use *semi-supervised machine learning* to improve on PSI-BLAST?

 Joint work with J. Weston, A. Elisseeff, and W. S. Noble
Ranking Induced by Clustering

- **Idea:** Map out protein sequence space by performing constrained clustering, using label constraints.

- Output ranking: rank by cluster, nearest cluster first.

- Use dissimilarity measure derived from PSI-BLAST.

- Best to use constrained clustering for model selection (number of clusters) based on labeled data, then use regular efficient clustering algorithms:
 - Generalized (“kernel”) k-means
 - Hierarchical clustering (average linkage)
Experimental Set-up for Ranking

- **Training set:** 4246 SCOP protein sequences (from 554 superfamilies) – known classes
- **Test set:**
 - 3083 SCOP protein sequences (from 516 different superfamilies) – hidden classes
 - 101,403 unlabeled sequences from SWISSPROT
- **Task:** How well can we retrieve database sequences (from train + test sets) in same superfamily as query? Evaluate with ROC-50 scores
- For initial experiments, SWISSPROT sequences only used for PSI-BLAST scores, not for clustering
Ranking Results for Clustering
Label Propagation

- Zhu and Ghahramani: Propagate labels through dense regions of example space

- \(Y \) is \(m \times 2 \) matrix of label probabilities, where \(m \) is number of examples

- Clamp known labels:
 - (1,0) for class 1, (0,1) for class 2

- \(K \) is matrix of transition probabilities
 - (sparse, derived from PSI-BLAST)

Iterate until convergence to fixed point:
- Propagate: \(Y \leftarrow K Y \)
- Row normalize \(Y \)
- Clamp known labels
Online Semi-Supervised Approach

- **Idea**: PSI-BLAST returns good high-confidence prediction scores, can rule out extremely low-confidence scores
 - Given query, assign *positive pseudo-label* to sequences with good (small) E-values
 - Assign *negative pseudo-label* to sequences with poor (large) E-values
- Small number of (pseudo-)labeled examples, rest of database considered unlabeled: apply semi-supervised technique
- Known class information not used, but can use for model selection
Ranking Results for Label-Prop
Ranking Results: Comparison with Structure-Structure Scores
(5,1)-Mismatch vs Fisher Using ROC Scores
(5,1)-Mismatch vs Fisher Using ROC-50 Scores
(5,1)-Mismatch vs. 3-Spectrum Using ROC Scores
(5,1)-Mismatch vs. 3-Spectrum Using ROC-50 Scores