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Abstract
As process, temperature and voltage variations become significant

in deep submicron design, timing closure becomes a criticalchallenge
in synchronous CAD flows. One attractive alternative is to use robust
asynchronous circuits which gracefully accommodate timing discrep-
ancies. However, there is currently little CAD support for such ro-
bust methodologies. In this paper, an algorithm for technology map-
ping of robust asynchronous threshold networks is presented. The pro-
posed algorithm is the first to systematically optimize for either delay
or area, without destroying the hazard-freedom propertiesof the initial
unoptimized circuits. The algorithm was implemented and experiments
were performed on a near-complete industrial DES circuit provided
by Theseus Logic, using a particular asynchronous threshold circuit
style called NCL (Null Convention Logic), which had been already op-
timized in an existing constrained asynchronous synthesisflow based
on synchronous CAD tools. Average delay improvements up to 26.7%
and area improvements up to 4.5% were obtained, when considering
the largest subcircuits (with over 400 inputs and outputs).When only
the single longest path delay of each subcircuit is considered, the al-
gorithm obtained worst-case delay improvements up to 26.4%. Though
the proposed method is applied in the NCL design flow, the contribution
is general enough to be used for other robust asynchronous threshold
circuit styles.

1 Introduction
As process, temperature and voltage variations become significant

in deep submicron design, timing closure becomes a criticalchallenge
in synchronous CAD flows [4]. One attractive alternative is to use ro-
bust asynchronous circuits which gracefully accommodate timing dis-
crepancies. Asynchronous design has been the focus of renewed inter-
est and research activity because of the potential benefits of low power
consumption, low electromagnetic interference, robustness to param-
eter variations, and modularity of designs [31]: as an example, it is
reported in [20] that an asynchronous re-design of MotorolaCPU08
requires 40% less power and genereates 10dB less peak EMI noise
than the synchronous version. However, there is currently little CAD
support for such robust methodologies. In either synchronous or asyn-
chronous synthesis flows, a technology mapping step is important since
it is typically the first step when optimization is performedwith realistic
cost parameters of the target technology.

In this work, a technology mapping algorithm is introduced for a
class of highly-robust asynchronous circuits, based on threshold gates
and dual-rail encoded data. The algorithm is the first to systemati-
cally optimize for either delay or area, without destroyingthe hazard-
freedom properties of the initial unoptimized circuits. The focus of
the method is on a particular style of asynchronous threshold networks,
called Null Convention Logic (NCL) [8, 18], which exhibits very low
power and robustness to delay variation, and which has been used for
a number of industrial designs by Theseus Logic. However, the contri-
bution is general enough to be applied to other classes of asynchronous
threshold circuit styles.

In particular, the original NCL unoptimized synthesis flow,in-
troduced by Theseus Logic, makes constrained use of existing syn-
chronous synthesis tools, to ensure a robust asynchronous circuit im-
plementation. Their mapping is highly conservative, sinceusing syn-
chronous tools may lead to undesirable behaviors, which arecarefully
avoided. A straightforward template-based method (see Section 2.3)
is used, where a (synchronous) Boolean netlist is first optimized, and
then macro-expanded into corresponding asynchronous cells (and the
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clock is replaced by handshaking protocols), with limited local opti-
mizations then applied to merge some cells. In contrast, ourproposed
technology mapping algorithm performs a systematic optimization of
the asynchronous netlist, with a global notion of optimality, while still
preserving the robustness of the asynchronous netlist.

The contributions of the paper are as follows. First, the proposed
technology mapping algorithm is the first systematic approach for asyn-
chronous threshold circuits that preserves the robustnessproperty of the
circuits. Unlike earlier asynchronous technology mappingalgorithms,
it can map across both datapath and control circuits, and canhandle
substantial implementations. Unlike typical synchronoustechnology
mapping algorithms, it maps a netlist of sequential gates with hystere-
sis, targeting either area or delay (using a sophisticated library charac-
terization). In addition, a simple finite basis is proposed for threshold
networks, which is new as far as the authors are aware of, withtwo
primitive functions; this basis is then extended to a more heterogeneous
basis to ensure robustness during mapping algorithm. Finally, some
theoretical results are provided on robust decomposition into subject
graphs and robust covering of these subject graphs.

Second, the proposed algorithm was implemented in a prototype
CAD tool and applied to an industrial DES circuit provided byThe-
seus Logic, which is near-complete except for the registration and ac-
knowledgment logic. Three of the five subcircuits were substantial,
with several hundred inputs and outputs, and over a thousandgates in
the original circuit implementation, and all were already pre-optimized
using some existing but limited safe cell-merger techniques. Using our
new technology mapping algorithm, average delay improvements up to
26.7% and area improvements up to 4.5% were obtained, when consid-
ering the largest subcircuits (with over 400 inputs and outputs). When
only the single longest path delay of each subcircuit is considered,
the algorithm obtained worst-case delay improvements up to26.4%.
Though the proposed method is applied in the NCL design flow in
this paper, the contribution is general enough to be adaptedto other
threshold-style asynchronous design flows.

Related Work. There have been ongoing research efforts in tech-
nology mapping of asynchronous control circuits since the early 1990’s.
For fundamental-mode control circuits, such as “burst-mode” circuits
including those synthesized by theMinimalist [9] or the3D [33] tools,
a first approach for hazard-free technology mapping was introduced by
Siegel et al. [25]. Kudva et al. [16] subsequently developeda hazard-
free method for implementing burst-mode circuits using customized
complex CMOS gates. Beerel et al. [2] presented technology mapping
algorithm which minimizes the average-case delay of burst-mode cir-
cuits, while James and Yun [12] extended this work to transistor-level
optimization for generalized C-element implementations.

For quasi delay-insensitive (QDI) control circuits [19], most of
the approaches focused on decomposing hazard-free complexgates
into networks of standard gates or custom gates like generalized C-
elements, while still preserving the QDI property. Beerel [1] introduced
decomposition and technology mapping into the standard-C architec-
ture, which was then extended by Siegel and De Micheli [24]. Burns
[3] presented general conditions and algorithms for robustdecomposi-
tion of sequential elements using arbitrary (including sequential) func-
tions but the algorithm had no notion of optimality. Cortadella et al.
[6, 5, 14] presented a substantial set of decomposition and technology
mapping techniques for speed-independent control circuits synthesized
using Petrify [6]. Recently, Ho et al. [11] introduced a technology
mapping algorithm for QDI circuits into LUT-based FPGAs.

There has been little previous research on technology mapping for
threshold networks [8, 18]. This problem is fundamentally different
from the mapping problems for burst-mode or speed-independent cir-
cuits, which have typically focused on individual (and usually small)



controllers: a threshold netlist typically consists of sequential threshold
gates with hysteresis, where datapath is encoded with delay-insensitive
codes, and both datapath and control are treated uniformly.In addi-
tion, the robustness property which must be preserved — ‘gate-orphan-
freedom’ — is different than the usual QDI property, since itonly re-
quires that, at fanout points, path delays are always largerthan wire de-
lays (see Section 2.4). Smith et al. [26] introduced varioustechniques
for optimizing asynchronous threshold circuits, which aremostly local
(peephole) optimization techniques.

Organization. The remainder of this paper is organized as follows.
Section 2 presents some background material and Section 3 presents
examples to give a motivation of the ideas used in the algorithm. Sec-
tion 4 provides theorems that are used in the algorithm. Our algorithm
is described in Section 5 and we present our experimental results in
Section 6. Finally, Section 7 presents conclusions and future work.

2 Background
2.1 Boolean logic network

LetB = {0, 1}. A Boolean functionf with n inputs andm outputs
is defined as a mappingf : B

n → B
m. A logic networkis a directed

acyclic graph,G = (V, E), with V partitioned into three subsets called
primary inputs, primary outputs, andinternal vertices. Such a network
is a common model used by logic synthesis and mapping algorithms.
A Boolean function is associated with each internal vertex in the logic
network, and there is a set of assignments of primary outputsto internal
vertices denoting which variables are directly observablefrom outside
of the network (see [7]).

2.2 Technology mapping
Technology mapping is the task of transforming an unbound (i.e.

technology-independent) logic network into a bound network, i.e. into
an interconnection of components that are instances of elements of a
given technology library. Traditional tree-based technology mapping
algorithms consists of three steps:decomposition, partitioning, and
covering[13, 7].

In the decomposition step, the given logic network is decomposed
into an equivalent network, where each node now correspondsto abase
function. Base functions are used to facilitate the matching and cover-
ing step and ensures that at least one legal cover can be found. The
original logic network given in Figure 1(a) is decomposed into a sub-
ject graph as given in Figure 1(b) using two-input NANDs and inverters
as base functions.

In partitioning, the decomposed logic network is partitioned into
subnetworks, calledsubject graphs. Each subject graph will be mapped
separately. Typically, multi-fanout points are used as partition bound-
aries [13, 7]. In the example of Figure 1, there are no fanout points
and the circuit in Figure 1(b) itself is considered to be a subject graph,
and the result will be a so-called “leaf-DAG”, which is almost a tree,
but where fanouts occur only at the primary inputs [7]. More advanced
approaches also allow systematic mapping across fanout points, using
DAG-based covering [17]. While partitioning is a heuristic, it is widely-
used in existing synchronous technology mapping algorithms, to help
reduce the complexity of the mapping problem. In this paper,parti-
tioning is performed at multi-fanout points, since DAG-based covering
may be unsafe when mapping NCL circuits (see Section 3).

(a) original network (b) subject graph (c) covering (d) mapped circuit

Figure 1. A technology mapping example
Finally, in the covering step, an optimal cover for each subject graph

is found by choosing a set of library cells preserving functional correct-
ness. The covering of a small region of the subject graph by a single
library cell is typically treated as a subroutine of the covering step, and
is called thematchstep. For an efficient implementation of the cover-
ing step, each library cell is typically decomposed into a set of pattern
graphs using the same base functions which were used in the decom-
position step for the subject graph. An optimal cover can be computed
by dynamic programming by traversing the subject graph in a bottom-
up fashion. In a single pass, the results of the mapped subject graph
already traversed are optimal, and these optimal partial results are di-
rectly used to compute the next optimal result in the traversal. At each

vertex of a subject graph, we match library cells whose pattern graphs
are functionally equivalent to the subtree locally rooted at the given
vertex, and pick the library cell which gives the minimum cost over all
possible matchings [7].

As an example, in Figure 1(c), the rightmost inverter of the subject
graph is matched by pattern graphs of three library cells: inverter, two-
input AND, and two-input NOR. Given that two-input NOR was chosen
to be the best match, the final mapped circuit is shown in Figure 1(d).

A trivial mapping of a subject graph consists of the direct map-
ping of each of its vertices to library cells, where each single vertex is
matched separately to its corresponding cell.

In this paper, unless otherwise stated, we refer to tree-based tech-
nology mapping algorithms based structural matching by technology
mapping algorithms, following the basic flow presented in [13, 7].

2.3 NCL logic
NCL is a circuit implementation style for asynchronous threshold

networks [8, 18]. It is based on a delay-insensitive encoding of the dat-
apath, and assumes a two-phase discipline in which data communica-
tion alternates betweensetandresetphases. Data changes from spacer
(called NULL) to proper codeword (called DATA) in the set phase and
then back to NULL in the reset phase [21, 23].
3NCL circuits 3NCL is a three-valued logic with{0, 1, N}. This
representation allows a single bit of data to be captured with a single
symbolic variable or wire. Of the three values,0 and1 represent valid
DATA and N represents NULL. A 3NCL gate alternates between two
phases. Initially, the input wires and the output wire of a 3NCL gate
are initialized toN . When all the inputs have valid DATA value (0 or
1), the output finally changes monotonically to a correct DATAvalue.
For example , the output of a 3NCL OR gate changes to a DATA value
only afterall the inputs have changed to DATA value (0 or 1). This
property is called “input completeness”, because it guarantees the ro-
bust acknowledgment of the input data arrival. Next, in the reset phase,
the output maintains the DATA value until all the inputs are reset toN .
When all the inputs change toN , the output changes toN , completing
the robust reset phase.
2NCL circuits A 3NCL circuit built using 3NCL gates is theo-
retically delay-insensitive, but eventually this circuitshould be imple-
mented using binary-valued Boolean circuits. NCL logic implements a
single 3NCL gate using the DIMS-style dual-rail expansion [28], where
each single variable (or bit) is mapped to a dual-rail Boolean equivalent.
The resulting circuit is robust, as discussed later in this section.

Figure 2 shows an example of how a 3NCL gate is dual-rail ex-
panded into a network of 2NCL gates, which will be called adual-rail
block. In the example, a 3NCL two-input OR gate, with inputsa and
b, and one outputz, is transformed into a network with four inputs,
a0, a1, b0, b1, and two outputs,z0, z1. Here, the wiresa0, b0, z0 rep-
resent the 0-rails ofa, b, z and the wriesa1, b1, z1 represent the 1-rails
of a, b, z. Four 2NCL AND gates, which are C-elements, are used to
distinguish each of the four unique input combinations ofa andb, and
one or zero 2NCL OR gate is used for each of the output rails.

In the Figure, the thick lines indicate the signal transitions under the
input combinationa = 1, b = 1 in 3NCL logic and, correspondingly,
a0 = 0, a1 = 1, b0 = 0, b1 = 1 in 2NCL logic.

g0
a
b z

g1
a0
b0 z0

g2

g3

g4
a1
b1

g5 z1

(a) a 3NCL OR gate (b) 2NCL dual-rail expansion
Figure 2. 2NCL logic example

To transform 3NCL inverters into 2NCL logic, connecting input 1-
rail and output 0-rail and connecting input 0-rail and output 1-rail in
2NCL expansion achieves inversion. More details of NCL gates will
be discussed below. As a result, 2NCL circuits are inherently mono-
tonic and do not have any inversion, ensuring hazard-freedom in each
set phase. Similarly, and symmetrically, since C-elementsare used to
implement the 2NCL AND functions, the reset is also monotonic and
hazard-free.

To obtain a 2NCL circuit from a 3NCL circuit, each gate of the
3NCL circuit is visited in topological order in the circuit,from primary
inputs to primary outputs, and is in turn expanded to a corresponding
network of 2NCL gates.
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NCL threshold gates with hysteresis A 2NCL circuit is even-
tually mapped usingNCL threshold gates with hysteresis, which are
defined in the NCL technology library. An NCL threshold gate with
hysteresis [27] is a gate whose set function and reset function are not
combinational, but rather are sequential. Once the gate is set, the output
does not change until the reset condition occurs, and once itis reset, the
output does not change until the set condition occurs. More formally,
the set function of a NCL threshold gate withn inputs,x1, . . . , xn, im-
plements a threshold functionS and the reset function is alwaysR =
x1 + . . . + xn. A threshold functionS(x1, . . . , xn; w1, . . . , wn; T ) is
characterized by a weight vector~w = (w1, . . . , wn) and a threshold
valueT ∈ R, whereS(x1, . . . , xn; ~w; T ) = 1 iff

∑
1≤i≤n

wi ·xi ≥

T. In NCL threshold gates, threshold values and weight functions are
restricted to be positive integers. Positive integral threshold functions
are Boolean functions which are positive unate in all of its variables.
NCL threshold gates can be considered as a form of generalized C-
elements [3].

As an example, a two-input C-element, with inputsx1 andx2, has
a set functionS(x1, x2; 1, 1; 2), indicating that each input has weight
1, and the threshold is2. For this example, the reset function isR =
x1 + x2, indicating that both inputs must be reset before the outputcan
be reset. The current NCL library defines 25 different types of threshold
gates as well as a few unate (but non-threshold) gates, with up to four
gate inputs.

Even though 2NCL gates have a hysteresis property, in many cases,
it is often possible for optimization algorithms to only consider the set
functions explicitly, and reset functions will be correctly implemented
by default by the mapped gates. The reset functionality, or hysteresis
behavior, can be restored later since all the NCL gates have identical
reset function [18]. Therefore, this paper will mostly refer to 2NCL
gates based solely on their set functionality unless otherwise stated. For
example, a 2NCL “AND” gate will refer to an NCL sequential threshold
gate whose set function isS(x1, x2, 1, 1; 2) = x1 · x2 and whose reset
function isR = x1 + x2. Thus, 2NCL AND gates are essentially the
same as C-elements. Similarly, a 2NCL “OR” gate means an NCL
threshold gate whose set function isS(x1, x2, 1, 1; 1) = x1 + x2 and
whose reset function isR = x1 + x2.
NCL design flow The algorithm proposed in the paper is general
for asynchronous threshold circuits; however, they have been imple-
mented to fit into Theseus Logic’s existing NCL synthesis flow. Hence,
this subsection briefly reviews their current tool flow.

The NCL design flow starts by specifying the circuit in a 3NCL
logic style in a VHDL program. Effectively, the netlist appears simi-
lar to a standard unoptimized Boolean netlist (but with someextended
enumerated data types). By only considering the set functions of the
3NCL gates in the netlist, existing synchronous optimization tools can
be applied. In the current flow, Synopsys Design Compiler is used. The
result is an optimized netlist of 3NCL gates.

Next, the optimized 3NCL logic is conceptually transformedinto
2NCL logic style, where each 3NCL gate is expanded into a dual-rail
block. (In practice, this step is merged with the following step.)

After dual-rail expansion, the logic is mapped to a pre-defined li-
brary of NCL threshold gates. In practice, a single dual-rail block of
the 2NCL circuit is usually mapped in a direct, template-based manner
to two 2NCL threshold gates, one for each of the 0-rail and 1-rail logic,
but DIMS-style mappings are also possible.

Finally, a simple rule-based cell merger algorithm developed by
Theseus Logic is applied to the mapped circuit [10]. This algorithm is
based on a restricted set of safe cell merging rules and the cell merger
algorithm does not fully explore the design space. In this paper, a better
method to address the cell merger problem is proposed.

2.4 Orphans
A key challenge in designing and optimizing asynchronous thresh-

old circuits is to ensure robust implementations. Anorphancan arise,
when a signal transition on either a wire or a gate in the circuit is un-
observable, and may cause a circuit malfunction if the transition is too
slow [8, 15]. Before presenting some examples, a few definitions are
required.

Suppose an NCL circuit is in a reset state where all the wires have
0 values. Once all the input data arrives and all the circuit outputs are
computed, there must be at least one path from primary input to primary

output where all the signal transitions are0 → 1. The events on each
such path are said to form asignal transition sequence.

A signal transitions2 is said toacknowledgea signal transitions1

if s1 always precedess2 in any possible signal transition sequence in
a set phase of NCL circuit. A signal transition isunacknowledgedif it
is not acknowledged by any signal transition on a primary output. An
orphan is a signal transition sequence which is not acknowledged by
any primary output of the circuit.

Orphans are classified into two classes:wire orphansandgate or-
phans. A wire orphan is an unacknowledged signal transition sequence
of length 1 and a gate orphan is an unacknowledged signal transition
sequence with length> 1.
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(a) a wire orphan
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(b) computation interference
Figure 3. A wire orphan example [30]

As a wire orphan example, consider the circuit in Figure 3(a), which
is taken from Figure 2(b). Whena0 = 0, a1 = 1, b0 = 0, b1 = 1 in
a set phase, the gateg4 andg5 fires. The thick lines indicate the wires
where signal transition takes place. Of these, the dotted ones represent
wire orphans whose signals do not further propagate throughthe gates,
which are therefore unacknowledged.

Now, suppose that the lower wire orphan on the input wire ofg3 is
extremely slow, and the transition does not reach gateg3 by the time
the next set phase begins. Note that in the intervening resetphase both
output railsz0 andz1 will correctly settle to0s regardless of this wire
orphan.

In the second set phase, leta0 = 1, a1 = 0, b0 = 1, andb1 = 0
(Figure 3(b)). The thick solid lines indicate signal transitions in the
second set phase. Because of the wire orphan, now a spurious signal
transition may appear atg3 firing g5. Now, both output railsz0 andz1

fire, which obviously is illegal in delay-insensitive encoding.
Orphans can also span over gates, as illustrated in Figure 4.When

a0 = 1, a1 = 0, b0 = 0, b1 = 1, a gate orphan is observed to propagate
through gateg3 until reaching its dead end. For more examples on gate
orphans, refer to [8].
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b0
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g4
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g6 z1

g5 z0

Figure 4. A gate orphan example [30]
Note that, when converting an irredundant 3NCL circuit to 2NCL,

using DIMS-style, gate-orphan-freedom is guaranteed by construction.
As illustrated in Figure 2, a DIMS-style 2NCL network equivalent for
any 3NCL gate has the property that, during the set phase,exactly one
of the C-elements (i.e. left column of gates) will be activated for each
DATA input combination, which then feeds exactly one OR-gate, to
assert one of the two dual-rail outputs. The result is that only one gate
path will be activated, and no other gates will change value.A similar
property holds during the reset phase. Hence, the mapping from 3NCL
to 2NCL networks always preserves robustness, and therefore serves
as a useful starting point for the proposed optimizations. This property
also ensures that very few paths will be exercised during theset phase,
contributing to the power efficiency of NCL circuits.

In NCL logic, wire orphans are not considered serious and canbe
engineered so they would not be a problem in real circuits. Effectively,
they occur at fanout points, where an unobservable wire fanout delay
(i.e. wire orphan) must always be faster than a significant observable
path delay. The NCL tool flow is aimed at eliminating problems due
to wire orphans at the physical design level by guaranteeingthat differ-
ences between the fork delays are smaller than the gate delays.

However, gate orphans are more serious since they involve series of
gates, and can more easily cause trouble with the circuit functioning.
Therefore, in this paper, the problem of ensuring freedom from gate
orphans is addressed. Note that, though orphans are discussed in the
context of set functions, it was shown that if an NCL circuit is free of
gate orphans in the set phase, then it is also free of gate orphans in the
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reset phase [15]. So, this paper will focus only on the set functions of
the cells when considering gate orphans.

Note that a circuit with wire orphans can be considered correct ac-
cording to the isochronic fork assumption [19], while a circuit with gate
orphans can be considered correct under the extended isochronic fork
assumption [32].

3 Motivational Example
In this section, several examples are presented to show key points of

the proposed algorithms. Examples show how gate orphans canbe in-
troduced by traditional technology mapping algorithms andan example
that illustrates how the proposed cell merger algorithm works.

Example 1: Arbitrary decomposition can be dangerous. In
the first example (Figure 5), suppose that the three-input AND gateg1

is given in a gate-orphan-free NCL circuit, whereg1 never fires unless
it is acknowledged by a primary output. Given that the two-input AND
function is a base function, a traditional technology mapping algorithm
may decompose a three-input AND gate into a network of two two-
input AND gates (e.g.g2 andg3 in Figure 5). After the covering step,
assume that these two-input AND functions are directly mapped to two-
input AND cells themselves.

g1
a
bc z

g2
a
b

g3c z

Figure 5. Example 1: Arbitrary decomposition [3]
Then, whena = 1, b = 1, c = 0 in a set phase of the circuit oper-

ation, whileg1 of the original circuit does not fire, but, in the mapped
circuit on the right,g2 fires even thoughg3 does not fire. In the mapped
circuit, a gate orphan propagates throughg2 since this signal transition
is never acknowledged by a primary output.

Example 2: DAG-based covering can be dangerous.DAG-
based technology mapping [17] which does not partition the unmapped
logic network into trees can be dangerous since it can introduce new
gate orphans. DAG-based algorithms are characterized by the fact that
a single vertex of a subject graph can be covered by more than one cell
in the mapped circuit.
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(a) subject graph (b) mapped circuit
Figure 6. Example 2: DAG-based covering

A subject graph is given In Figure 6(a). Suppose that the given sub-
ject graph is gate-orphan-free and the vertexg3 of the subject graph
is covered by the two cells,c3 andc4, during the covering step. Fig-
ure 6(b) shows the mapped circuit where the other verticesg1, g2 and
g5 are trivially mapped toc1, c2, andc5, respectively, Under the input
combinationa = b = c = d = e = 1, f = 0, while the subject graph
is free of gate orphans, the mapped circuit has a gate orphan which
propagates throughc4, which is drawn as dotted lines in Figure 6.

4 Theorems on Gate-Orphan-Freedom
In this section, a theorem and a corollary used in the technology

mapping algorithm are presented.

Theorem 1 Given a gate-orphan-free NCL circuitG, merging cells
into a single functionally equivalent cell does not introduce gate or-
phans.

From the above theorem, it can be also concluded that a sequence
of cell mergings does not introduce gate orphans.

The following corollary suggests how gate-orphan-freedomcan be
preserved in technology mapping. Agate-orphan-free decomposition
is defined as a decomposition of the original logic network into a gate-
orphan-free subject graph, where agate-orphan-free subject graph, in
turn, is defined to be a subject graph whose trivial mapping isfree of
gate orphans. Given that the trivial mapping of the subject graph ofG
is free of gate orphans, covering of the subject graph by library cells is
essentially the process of merging vertices of the subject graph.

Corollary 1 Given a gate-orphan-free NCL circuitG, tree-based tech-
nology mapping with gate-orphan-free decomposition does not intro-
duce new gate-orphans.

5 Technology Mapping for Asynchronous
Threshold Networks

In this section, a technology mapping algorithm for NCL circuits
which preserves gate-orphan-freedom is presented. A briefoverview
of the approach is presented, followed by details on each step.
5.1 Overview of the approach

The algorithm takes a mapped NCL circuit which consists of 2NCL
threshold cells, which can obtained either from dual-rail expansion
from a 3NCL circuit or after applying rule-based cell mergeralgorithm
to a dual-rail expanded 2NCL circuit. The algorithm looselyfollows
the framework of traditional tree-based technology mapping algorithms
with structural matching, but with some important modifications to en-
sure the robustness of the mapping.

The algorithm works in three steps. First, the given robust (i.e. gate-
orphan-free) 2NCL logic network is decomposed using a modified set
of base functions. A new finite basis is proposed for general threshold
networks, consisting of two primitive threshold cells. Thefunctionality
of any threshold logic network can be decomposed into a network con-
sisting only of these nodes. However, such an arbitrary decomposition
may introduce gate orphans. Hence, an extended basis is proposed, and
a more limited decomposition is proposed, which exploits the simple
finite basis wherever possible, but also includes some irreducible com-
plex nodes, thus forming a heterogeneous decomposed logic network.
The resulting network remains gate-orphan-free.

Next, the decomposed network is partitioned into distinct subject
graphs, each of which will be mapped separately. A tree-based de-
composition is used, to ensure that no gate orphans may be introduced.
Pattern graphs are then generated for each cell in the given library, to
prepare for the mapping step. In addition to pattern graphs built out of
the simple base functions, some special graphs are added to ensure safe
mapping of irreducible nodes.

Finally, the subject graph is optimally covered by the pattern graphs
of library cells using a structural matching approach. Dynamic pro-
gramming is used, and both area and delay costs are targeted.The
result is an optimally-mapped, but still robust (i.e. gate-orphan-free)
logic network, whose functionality is equivalent to the original netlist.
5.2 Decomposition: Choice of base functions

A simple finite basis is now proposed for arbitrary threshold
logic networks using positive monotonic threshold gates with integer
weights. As an example, all the 2NCL cells implement positive inte-
gral threshold functions. The proposed basis consists of two threshold
cells: (i) a two-input threshold OR function and (ii) a two-input thresh-
old AND function. The former can be combined, using associative law,
to build up arbitrary 1-of-N threshold gates (i.e. OR-gates). The latter
can likewise be combined, using associative law, to build uparbitrary
N-of-N threshold gates (i.e. C-elements). These two functions indeed
form a finite basis for any positive integral threshold functions, which
follows from the fact that any Boolean function which is positive unate
in all its input variables have a monotonic cover.

While this simple basis can capture all such threshold functions, it
does not necessarily guarantee robust logic, i.e. gate-orphan-freedom.
Therefore, for the technology mapping algorithm (see below), the basis
will be augmented with limited complex nodes, as needed, to ensure a
safe decomposition.
5.3 Gate-orphan-free decomposition

Decomposition of a logic network into a gate-orphan-free subject
graph is crucial in ensuring technology mapping algorithm to preserve
gate-orphan-freedom. In the NCL design flow, there are two ways to
obtain gate-orphan-free subject graphs. First, right after expanding the
3NCL circuit into a DIMS-based dual-rail 2NCL circuit, the circuit is
free of gate orphans by construction. If this circuit is taken as the start-
ing point, traditional matching and covering algorithms can be used
without introducing any gate orphans by Corollary 1.

However, in practice, the fully-expanded 2NCL circuit may not be
available from the synthesis tool, and only robust post-optimized 2NCL
circuits may be available, such as those obtained after application of
the rule-based Theseus cell merger. For the latter case, an alternative
method is proposed for undoing the existing optimizations,and recov-
ering a more fully-expanded (i.e. pre-optimized) netlist,to allow for
full reign for the new optimal algorithm.
Theorem 2 In a gate-orphan-free logic networkG, an n-input OR
gate always can be decomposed into a tree of two-input OR gatewith-
out introducing gate orphans.
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Figure 7 shows an outline of the gate-orphan-free decomposition
algorithm. The algorithm takes a post-optimized 2NCL circuit and re-
turns a subject graph and a modified set of base functions.

There are two key techniques used to robustly decompose the orig-
inal netlist. First, existing cell merger optimizations (if any are used
by the tool flow) are undone, through a reverse lookup table, to expand
the netlist to an initial decomposed form. Since only safe mergers were
used by the tool, if they are correctly identified, the reverse-engineered
circuit remains robust. Only unambiguous (i.e. functional) reverse
mappings are used, to ensure that the optimizations are correctly re-
versed. Second, some of the remaining nodes (such as multi-input OR-
gates) can also be further decomposed into the proposed simple base
functions, using associative law, without introducing gate orphans. No
further decompositions are employed, to guarantee that theresulting
netlist remains robust. As an example,n-input AND cells (n > 2) are
note decomposed.

The algorithm traverses the circuit in the topological order from the
primary inputs to the primary outputs. In each step, both of the above
decomposition steps are performed concurrently. When the algorithm
visits a cell of the circuit, four cases can happen. First, when the cell is
either a two-input OR cell or a two-input AND cell, we do not decom-
pose the cell since the cell already implements a base function. Sec-
ond, if the cell is an OR gate with more than two inputs, the OR gate
is decompose into a tree of two-input OR cells. This decomposition is
always safe by Theorem 2.

GOFDecompose(G = (V, E))
1 for (eachv ∈ V )
2 do if (v is either two-input OR or two-input AND)
3 then do not decomposev
4 else if(v is an OR cell withn > 2 inputs)
5 then decomposev into a tree of2-input OR cells
6 else if(v is a result of cell merger)
7 then roll backv by reversing the merger rule
8 else do not decomposev and registerv as a new base function

Figure 7. Gate-orphan-free decomposition
When, the cell is resulting from the rule-based cell merger algo-

rithm, we roll back the cell into the original network of cells through
reverse engineering. There are 12 template-based cell merging rules
used in the Theseus cell merger algorithm, where each cell merging rule
consists of a a ‘pattern template’ and a cell. The Theseus cell merger al-
gorithm iteratively searches for a pattern and replaces thepattern with
the associated cell. The rules are mostly functional and inverse rules
can be defined. In the gate-orphan-free decomposition algorithm, in-
verse rules are applied when a cell can be guaranteed to be resulting
from a cell merger rule.

Finally, when it is impossible to decompose the cell with a guar-
antee of gate-orphan-freedom, the cell is not decomposed and the cell
function is registered as a new base function.

After the gate-orphan-free decomposition, the resulting subject
graph consists of original base functions (two-input OR andtwo-input
AND) and new heterogeneous base functions added by the decomposi-
tion algorithm (line 8 in Figure 7).

5.4 Matching and covering
As a result of gate-orphan-free decomposition, there may exist more

than two base functions and base functions can have more thantwo
input variables. To handle this, matching and covering algorithms are
modified to deal with more general classes of subject graphs and pattern
graphs.

To generate pattern graphs for each cell in the library, the two orig-
inal base functions (two-input threshold OR and two-input threshold
AND) are used. In the first step, each threshold cell in the library is
decomposed into a set of pattern graphs, each with a distinctstructural
pattern, to prepare for structural matching. This approachis similar
to the traditional approach of [13, 7], however there are twokey differ-
ences: (a) the actual cells include sequential threshold gates, and (b) the
finite basis itself is different, involving two binary threshold cells (i.e.
threshold OR and threshold AND).

Note that pattern graphs of some cells are represented as leaf-DAGs.
For example, THAND cell of the NCL library implements a Boolean
functionf = ac+ ad+ bc which cannot be represented as a tree. Rep-
resentation of pattern graphs using leaf-DAGs is a partial solution to the
problem of capturing variable sharing; this is the same problem facing
synchronous technology mapping algorithms and a similar solution is
used [22, 7].

In the second step of pattern graph generation, special pattern graphs
are added, as needed, to facilitate the mapping of irreducible nodes in
the subject graph. As indicated above, these nodes correspond to com-
plex threshold gates which cannot be further decomposed safely, with-
out potentially introducing gate orphans. The currently implemented
approach is to simply map each of these irreducible nodes to the corre-
sponding library complex gate. To this end, for each such irreducible
node in the given subject graph, a single special complex pattern graph
is added for the corresponding library cell, which is a complex root
(i.e. complex base function) whose children are all variables. The sub-
sequent matching algorithm, below, will ensure that such irreducible
nodes will be mapped only to the equivalent complex library cell.

Note that the above approach to pattern generation, while fairly gen-
eral, still excludes some potential matches. For example, it disallows
the legal merger of a complex irreducible node with a simple base func-
tion. These cases are somewhat rare, given the fanin restrictions of NCL
library. However, this limitation can be overcome if pattern graphs for
each cell are generated starting with simple functions and complex irre-
ducible functions. All possible trees constructed from these base func-
tions can be enumerated and checked if the given tree implements the
same function as the cell function. The space of generated trees can be
bounded by the condition that a pattern tree must have exactly the same
number of leaves as the number of input variables of the cell function.
Leaf-DAGs for complex pattern graphs can also be generated.

Match(P, S)
1 // P is a pattern graph, S is a subject graph
2 if (P is a leaf)
3 then return true
4 else if(S is a leaf)
5 then return false
6 if (cell functions ofP andS are different)
7 then return false
8 else // let P1 . . . Pk be P’s fanins
9 // and S1 . . . Sk be S’s fanins

10 for (all permutationΠ = (σ1, . . . , σk) over[1, k])
11 do if (Match(Pσ1

, Sσ1
) · . . . · Match(Pσ

k
, Sσ

k
))

12 then return true
13 return false

Figure 8. Outline of matching algorithm
Figure 8 shows an outline of the matching algorithm used in the pro-

posed technology mapping algorithm. The matching algorithm works
similar to the traditional matching algorithm [7], when theroot of the
input subject graph is either two-input AND or two-input OR.When
the root of the input subject graph is a complex function which was not
decomposed (and added as a new base function) in the gate-orphan-free
decomposition step, then the only possible pattern that canmatch the
root ofS is the complex function itself which was added as a base func-
tion. Hence, the algorithm effectively follows the traditional flow for
matching algorithms.

For a delay model, the algorithm uses a nonlinear delay modelbased
on table-lookup (more detail on the used delay model will be discussed
in Section 6). The used delay model fits well with the dynamic pro-
gramming framework of technology mapping algorithms. But since the
delay of a cell partially depends on the output capacitance of the cell,
the load binning technique [22] is used to find a solution. Load bin-
ning is a technique that extends the covering algorithm of technology
mapping to solve simultaneously and optimally for multipleprospec-
tive fanout loads. During dynamic programming, as fanout loads are
resolved on mapped gates, the actual output loads are then used to se-
lect the optimal solution so far that sees this load. Hence, the final result
produces a single result for all the output loads in the circuit (and envi-
ronment). The output capacitance of the cell is determined as the sum
of the input capacitances of the input pins driven by this cell and the
proposed algorithm extracts 20 representative input capacitance values
from the library and uses these values for load binning. For primary
outputs, a default output load value is used. Note that, while using
load-dependent delay models results in sub-optimality dueto the gran-
ularity of load binning and the partitioning, accurate load-independent
delay models such as gain-based models [29] can be used to finddelay-
optimal mappings.

6 Experimental Results
The proposed technology mapping algorithm was implementedand

experiments were performed to evaluate its effectiveness.The devel-
oped program implements the described technology mapping algorithm
except that pattern graphs used in matching only consists ofsimple
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base functions (i.e. complex irreducible base functions are not used).
Programs were written in C++ and experiments were conductedon a
800Mhz Celeron machine with 256MB RAM running Redhat Linux
7.3. The developed programs take the logic network in the Berkeley
BLIF format and the technology library in the Synopsys Liberty for-
mat, and outputs the mapped circuit in the BLIF format.
Delay model The delay model used in the library file was a nonlin-
ear delay model with lookup-table.The NCL library characterizes each
cell in terms of three parameters: input capacitance, cell delay, and out-
put slew rate. The delay of an input-to-output path in a cell is specified
using a two-dimensional array indexed by total output capacitance and
input slew rate, where the output capacitance is determinedas a sum of
all input capacitances of the pins driven by the output and the input slew
rate is contributed by the fanin gate. The array has 49 entries: for 7 out-
put capacitances and 7 input slew rates. Additionally, eachinput pin of
the library cell has its own input capacitance and one two-dimensional
array is defined for each input-to-output path for computingthe slew
rate which will be used to determine input slew rates of the gates driven
by the output pin of the cell. The delay model was used both foropti-
mizing the circuits and for evaluating the circuits after optimization.
Experimental results Experimentation was conducted on a near-
complete DES circuit provided by Theseus Logic and the results were
compared with the original netlist which were pre-optimized using The-
seus cell merger. The DES circuit, which had been pre-optimized with
Theseus cell merger, consisted of five combinational cloudsof logic
wrapped with acknowledgment logic, registration, and a small amount
of additional logic. Five combinational clouds of logic were extracted
from the netlist and some of the combinational logic was quite sub-
stantial having up to 590 inputs, 306 outputs and 2196 internal gates.
All the generated circuits from the technology mapper programs were
verified for functional correctness against the original circuits using a
program based on a BDD package.

Table 1 shows experimental results for the technology mapping pro-
gram. In the table, the columns 2–4 show information on the origi-
nal netlists which were pre-optimized using Theseus cell merger. Two
runs of the algorithm were performed: The columns 5–7 show the re-
sults of area-optimized circuits and the columns 8–9 show the results of
delay-optimized circuits. The parenthesized numbers in columns 6 and
9 contain the area percentage with respect to the original netlist, and the
numbers in columns 7 and 10 are delay percentages averaged over all
primary outputs. The last row of the table contains the area improve-
ments averaged over all circuits and the delay improvementsaveraged
over all primary outputs (each average is weighted by the number of
primary outputs for the corresponding benchmarks).

For the delay-minimization run, two metrics were measured for each
benchmark:worst-case output delayandworst-case circuit delay. For
an individual benchmark circuit, the “worst-case output delay” is de-
fined for an individual primary output as the worst-case pathdelay for
this output, while the “worst-case circuit delay” is the worst-case path
delay for the entire (multi-output) circuit. In the last column of the
table, theaverage worst-case output delayfor each benchmark is re-
ported, i.e., the average, overall of the primary outputs of the circuit,
of the individual “worst-case output delays”.

The “average worst-case output delay” improvements, for the three
largest circuits, were 26.7% (des-r01), 20.3% (des-r04), and 20.0%
(des-r05). Better results were obtained for the very smalldes-r03and
des-r07circuits.

Next, considering the “worst-case circuit delay”, i.e. thesingle
longest path of each circuit, the improvements were higher:26.4%
(des-r01), 26.3% (des-r04), and 26.0% (des-r05). The longest path
delay is important in NCL circuits since acknowledgment signals are
generated only after a signal transition along the longest path has been
completed. Thus, this result gives a static worst-case bound on the
possible operating speed of the circuit. Note that, while the delay-
minimization run incurs area overhead, there exist application domains
where area is not a major concern. Furthermore, modifying the algo-
rithm run to combine area as a secondary cost metric is expected to
reduce this overhead.

Finally, for the area-minimization run, the area improvements for
the large circuits were 4.5% (des-r01), 2.2% (des-r04), and 2.2%
(des-r05). Better result was obtained for the very smalldes-r07cir-
cuit. Thus, the area-minimization run limited effectiveness in mini-
mizing area in post-optimized circuits and it is believed that area opti-

mization capabilities were somewhat shadowed by the effectiveness of
previously-applied Theseus optimizer. While local area reduction guar-
antees global area reduction, locally minimizing delay does not always
result in global reduction in delay: this is believed to account for the
effectiveness of Theseus optimizer in area optimization.

7 Conclusion
In this paper, an algorithm for technology mapping for asyn-

chronous threshold networks was presented. The proposed algorithm
is the first to systematically optimize for either delay or area without
introducing new gate orphans, which is crucial in preserving the robust-
ness of the circuit. The algorithm was implemented and experimented
on NCL circuits which had been already optimized using Theseus tools
and have shown further delay improvement of of 20.9% and areaim-
provement of 2.7%, on average. Though the proposed method isap-
plied in NCL design flow in this paper, contribution is general enough
to be used in many other contexts.
Future work There are several possible research directions. First,
usually DAG-based technology mapping algorithms provide more op-
portunity for optimizing circuits with respect to delay. Even if standard
DAG-based algorithms are dangerous as discussed already, acareful
extension of DAG covering can be devised to preserve gate-orphan-
freedom. Second, the problem of gate-orphan-free decomposition was
solved in the context of NCL design flow but a more generalizedgate-
orphan-free decomposition method can be devised for a widerapplica-
tion. Finally, a technology mapping algorithm that can target multiple
cost functions at the same time, e.g. area and delay, can be devised to
deal with the area overhead incurred when delay minimization is per-
formed in the technology mapping algorithm.
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