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Figure 1: Two examples of how the VisiFit system can improve a visual blend prototype in under 4 minutes. The left image
blends New York City and autumn. The right image blends navel orange and winter.

ABSTRACT
Visual blends are an advanced graphic design technique to seam-
lessly integrate two objects into one. Existing tools help novices cre-
ate prototypes of blends, but it is unclear how they would improve
them to be higher fidelity. To help novices, we aim to add structure
to the iterative improvement process.We introduce a method for im-
proving prototypes that uses secondary design dimensions to explore
a structured design space. This method is grounded in the cognitive
principles of human visual object recognition. We present VisiFit
– a computational design system that uses this method to enable
novice graphic designers to improve blends with computationally
generated options they can select, adjust, and chain together. Our
evaluation shows novices can substantially improve 76% of blends
in under 4 minutes. We discuss how the method can be generalized
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to other blending problems, and how computational tools can sup-
port novices by enabling them to explore a structured design space
quickly and efficiently.

CCS CONCEPTS
•Human-centered computing→ Interactive systems and tools.

KEYWORDS
Computational design, Design tools, Iterative design

ACM Reference Format:
Lydia B. Chilton, Ecenaz Jen Ozmen, Sam Ross, and Vivian Liu. 2021. VisiFit:
Structuring Iterative Improvement for Novice Designers. In CHI Conference
on Human Factors in Computing Systems (CHI ’21), May 8–13, 2021, Yokohama,
Japan. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3411764.
3445089

1 INTRODUCTION
Iterative improvement is the essence of the iterative design process.
No design is perfect at inception, thus iteration through prototypes
is necessary to improve it. If a prototype passes an evaluation, it
should become a new, higher fidelity prototype that can be tested
and potentially iterated upon again. In case studies of improved
software usability by the Nielsen Norman Group [40], median im-
provement per stage of iterationwas 38%, leading to overall usability
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improvements of 165%. Iteration is not just an aspect of usability
engineering, it is a fundamental part of the design process that
generalizes across many domains. In web design, designers start
with a wireframe prototype and move to a minimum viable prod-
uct. In mechanical design, designers improve upon initial proofs
of concept by iterating upon features and prototype reliability. In
graphic design, designers sketch prototypes and then move onto
higher-fidelity mockups. In each domain, iteration looks different,
but the objective is the same – to extend the prototype to move
closer to the goal. To help novice designers in a meaningful and
practical way, we need tools to support iteration.

Although there are many existing tools that support other phases
of the design process such as brainstorming, prototyping, evalua-
tion, and final design execution, there is a lack of tools focusing on
iteration [17]. Only 6% of 148 creativity support tools from 1999-
2018 focus on iteration. Iteration tools are similar to brainstorming
and prototyping tools in that they help people explore a design
space. However, they are more difficult to build because they have
more constraints. Unlike general prototyping tools, iterating on
prototypes must be constrained further to build on ideas that were
validated in the previous prototypes. Iteration still involves search-
ing the design space, but the tools that were previously used to
explore an expansive design space are not the right tools to explore
a more constrained one.

Like all prototyping tools, iteration tools must be domain-specific
so they can effectively operate on the materials of that domain. We
focus on the difficult design challenge of making visual blends [3].
Visual blends are an advanced graphic design technique used to
convey a message visually in journalism, advertising, and public
service announcements. They combine two visual symbols into
one object to convey a new meaning. For example, in Figure 1
the Guggenheim Museum is blended with an acorn to convey the
message “Visit New York City this autumn”. Visual blends are a
canonical example of a creative design challenge [25, 43] because
they are open-ended enough to encapsulate all aspects of the design
process, but well-defined enough to test in a short time frame.
Moreover, cognitive scientists consider blending to be an important
aspect of general creativity for its ability to “create newmeaning out
of old.” [15] Currently, tools already exist to help people brainstorm
and create initial prototypes [9] by finding the right images and
arrangements to use for the blend. However, visual blends generally
require an expert with Photoshop skills to execute the design and
it would be faster, easier, and more empowering for novices to
improve blends by themselves, without relying on an expert.

We perform several formative studies to learn how experts ap-
proach the iterative improvement of visual blends. From an analysis
of blends created by experts and a participatory design process with
graphic designers, we learned that blends do not simply blend the
surface-level style of two objects, they combine the secondary visual
dimensions of both objects such as silhouette, color and internal
details. Based on this observation, we present a method for structur-
ing the iterative improvement process of blends based on secondary
design dimensions. In this method, the improvement process is first
broken into stages that blend each of the dimensions separately.
Then the results of each stage are combined into a single blended
output.

We present VisiFit – a computational design tool that allows
novice graphic designers to improve a prototype of a visual blend. A
prior system called VisiBlends [9] helps novices create rough initial
prototypes of blends by overlaying two objects with the same shape.
VisiFit helps users refine those rough prototypes into seamless and
aesthetic blends. VisiFit structures the process of creating second
iterations by introducing a pipeline of computational tools that
allow users to quickly and easily edit secondary design dimensions.
Figure 1 shows two examples of the VisiBlends output and the
result of novices using VisiFit to improve them in under 4 minutes.
Our evaluation shows that novices can quickly and easily iterate
on prototypes to create seamless and aesthetic blends.

This paper makes the following contributions:

• Three preliminary investigations into the process of improv-
ing prototypes of visual blends: a demonstration of how
fully automatic systems fail, an analysis of patterns used by
professionals, and a co-design process with graphic artists.

• Three design principles for a computational approach to
improving visual blends.

• Amethod of using secondary design dimensions to structure
the improvement process. This method is grounded in the
neuroscience of human visual object recognition.

• VisiFit, a system that applies the method and design princi-
ples in a pipeline of computational tools.

• An evaluation of VisiFit showing that in under 4 minutes,
novices can substantially improve blends in 76% of cases and
create blends suitable to publish on social media in 70% of
cases.

We conclude with a discussion of how secondary design dimen-
sions can help structure iteration in other fields and how pipelines
of computational design tools can support the iterative design pro-
cess.

2 RELATEDWORK
2.1 Design Tools
Design tools and creativity support tools (CSTs) have a rich tradi-
tion of accelerating innovation and discovery [49] by supporting
the design process. A survey of 143 papers from 1999-2018 on cre-
ativity support tools (CSTs) found that there are papers supporting
all phases of the design process: ideation, exploration, prototyp-
ing, implementation, evaluation, and process/pipeline, and iteration.
[17]. Many of these tools support more than one phase of the design
process. However, not all phases of the design process are equally
represented in the literature. In fact, a majority of these tools fo-
cused on either very early or very late phases of the design process.
Of the systems in the survey, 45% support ideation [30, 50, 59],
41% support implementation, including high-fidelity tools [57] or
low-fidelity tools for prototyping or sketching [10, 21, 31, 32], and
18% supported evaluation through feedback [36, 63] or expert an-
notation [51]. However, only 6% of the systems surveyed supported
iteration, and only 4% supported the related task of design man-
agement or pipelines. More research is needed on how to support
iteration more effectively — that is, how to help designers improve
on an initial prototype to get closer to their final design goal. Our
work in this paper focuses on this problem.
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2.2 Iteration Support
Existing systems that explicitly aid iteration use a number of ap-
proaches. One class of iteration applications uses crowds to iterate
towards better solutions [33]. This can be by mixing features of
previous designs [66], responding to community feedback [27], hir-
ing experts [45], or identifying weak points and fixing them [28].
All of these use the strength of multiple people’s viewpoints to
iterate. However, crowds can introduce errors and may be difficult
to steer toward your particular vision. Therefore, it is often useful
to provide designers with single user tools for iteration.

Another class of iteration tools has the user produce a prototype,
and then computationally generate the rest of the design. If the
user is unhappy with the outcome, they can regenerate, alter their
input, or adjust parameters. Several applications apply this method
to generate multi-tracked music from a simple input melody. This
can be done using rules and constraints [14, 61] or implicit patterns
learned by deep learning [35]. Having the computer generate out-
comes is especially usable for novices; it allows them to recognize
good outcomes, even if they cannot produce them. This seems to
work well in music, which has many mathematical rules, but it is
unclear if it works as well in other domains.

A third way to support iteration is to provide rich undo history
to allow users control and freedomwhile exploring the design space.
This is often done in the drawing domain both for single users [39]
and for multiple users who want to draw collaboratively [67]. In
the creative design process, exploration is clearly important [8],
and supporting that is essential. In VisiFit, we use aspects of all
three of these approaches. We target key properties of the prototype
that need improving and focus iteration on these properties. We
provide computational tools to generate outcomes that novices
could not produce themselves. We allow users to explore design
alternatives and to adjust parameters so they can achieve results
they are satisfied with.

2.3 Computational Approaches to Design Tools
Computational tools have long been a promising approach to aid
design because they can search a design space and help meet a
constraint. The power of computational or computer-aided design
has been shown in many fields such as: education [34], medicine
[22], games [52], urban planning [5], and accessibility [18]. The
system designer must define the space and the search parameters,
as well as provide design patterns for solutions that can be adapted
to different inputs. [2, 64, 65]

Computational design tools have had particularly strong adop-
tion in graphic design problems like optimizing layout [7, 11, 41,
56], making icons [4, 6], and providing inspiration through mood
boards [29, 60] and relevant examples [12, 30]. This is also true in
the 3D domain, where computational tools can be used to search
a design space and create multiple mesh and texture variations of
objects (i.e. trees or airplanes) that can make computer generated
scenes more diverse [37, 54]. Deep learning has also been applied
to generate new designs that fit user specifications [38, 62]. In this
paper, we address a specific kind of graphic design problem of that
requires blending two objects into one in order to convey a new
meaning. To our knowledge, none of the existing computational
design tools have addressed this problem.

Although these tools can be fully automatic, some of the most
useful tools are interactive and allow users to explore and guide
the process. We take much inspiration from Side Views [55], an
application that allows users to preview the effect of various im-
age editing menu options, like those in Photoshop. By providing
previews, users are able to recognize rather than recall the right
tool to use. This also helps users adjust parameters of key proper-
ties and chain tools together to explore an even wider section of
the search space. In VisiFit, we also take the interactive approach
to computational design. Like Side Views, VisiFit allows users to
preview and adjust tools, as well as chain them together. However,
VisiFit is not just a tool for exploration - it is targeted at achieving a
specific goal; multiple tools are chained together in a pipeline that
explores each of the three key visual properties needed to complete
a blend. This allows the user to explore the design space and iterate
in a structured fashion towards their goal.

3 BACKGROUND: VISUAL BLENDS
Visual blends are an advanced graphic design technique where
two objects are blended into one to convey a message symbolically.
They represent a canonical and very challenging design problem
[3] because the two objects must be blended into one object, yet
still remain individually identifiable so the viewer can tell what
objects were blended. When asked to define design, Charles Eames
once said, “Design is a plan for arranging elements to accomplish a
particular purpose”. [42] In a visual blend, the objects to blend are
the elements, the way they overlap is their arrangement, and the
particular purpose is the seamless blend of the objects to convey
a message. Because they are a difficult design challenge, visual
blends are studied by several diverse fields. In cognitive science,
researchers study how creativity emerges from conceptual blending
[43]. In visual communication, researcher study how visual blends
convey meaning through through context and implicature rather
than through explicit language [15, 16, 44, 58]. Creativity and cog-
nition researchers study how computers might achieve creativity
by creating visual blends [26].

An existing system called VisiBlends [9] helps novices with the
first step of the design process: creating a prototype. Figure 2 shows
an illustration of the VisiBlends workflow to create a visual blend
for the message “Visit New York this autumn”. The user must first
identify two abstract concepts to visually blend, for example, New
York City and autumn. Next, the users must brainstorm simple,
iconic objects associated with the concepts. From their list of asso-
ciated objects, they must find images of those objects that can serve
as symbols of the concept. For each image, users annotate the main
shape of the object (i.e. whether it is a sphere, cylinder, box, circle,
or rectangle) and whether the shape covers “all of the object” or
“part of the object”. With the images and annotations, VisiBlends
automatically searches over all pairs of objects to find two that have
the same basic shape, but for one object the shape covers only “part
of the object”. It then automatically synthesizes a prototype of the
blend by cropping, scaling, positioning and rotating the objects to
fit together. For example, in Figure 2 the acorn is a cylinder and
the “part of” the Guggenheim is also a cylinder. Thus, the acorn is
positioned onto the cylindrical part of the Guggenheim to produce
a blend prototype where both the acorn and the Guggenheim are
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Figure 2: An illustration of VisiBlends workflow that helps people create prototypes for a blend representing “Visit New York
this autumn.”. The VisiBlends prototypes convey the idea, but are often very rough. The goal of VisiFit is to improve these
initial prototypes into seamless and aesthetic blends.

visible. Lastly, the user selects the best prototype based on the shape
fit and the meaning implied by the blend. Once the user selects a
prototype, they must complete the finished design either on their
own or by hiring a graphic artist.

The reason VisiBlends matches objects on shape is based on the
neuroscience of human visual object recognition. The human visual
object recognition system is hierarchical in what features it uses to
recognize an object [53]. 3D shape is the primary feature used by the
brain to determine what an object is; after that, it uses secondary
features like color, distinct edges and surface information [46].
By combining two objects that have the same shape but different
secondary details, the objects will appear blended into one, yet still
individually identifiable – which is one of the major challenges of
creating a visual blend.

4 FORMATIVE STUDIES OF BLENDING
ITERATION

To explore approaches to iteration we conducted three preliminary
investigations that informed the three design principles we propose
for improving blends. We tie it all together into a general technique
for structuring the iterative improvement of blends.

4.1 Shortcomings of Deep Style Transfer
Advances in deep learning have shown impressive results in manip-
ulating images. An early and prominent result is deep style transfer
[19] which trains a model on a visual style, such as Van Gogh’s
Starry Night, and applies that style on any image to make it look
like Van Gogh painted it in the Starry Night style. This technique
has the potential to automatically improve prototypes of visual
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blends by training on the style of one object and applying it to
another.

Figure 3: Blends created by Fast Style Transfer (top) com-
pared to blends produced by an artist (bottom). The FST
blends fail because this problem cannot be solved with an
indiscriminate, global application of one object’s style onto
another. Experts take apart and blend objects in a more nu-
ancedway, preserving relevant characteristics of each object
to keep each one identifiable in the final blend.

To explore the potential of deep style transfer, we took four
blend prototypes from the VisiBlends test set, and applied deep
style transfer to them. For each pair of images in the blend, we
selected which object to learn the style of and which object to apply
the style to. We used an implementation of style transfer from the
popular Fast Style Transfer (FST) paper [19] which only requires
a single image to learn style from and has impressive results on
transferring artistic style. We tried multiple combinations of hyper-
parameters (epochs, batch size, and iterations) until we saw no
noticeable improvements in the results. We also tried input images
of the same object and different ways of cropping it, in case the
algorithm was sensitive to any particular image.

Although the algorithm was able to extract styles and apply
them, the results fell far short of the bar for creating convincing
blends. Figure 3 shows Deep Style Transfer results (top) and blends
made by artists we commissioned to produce high fidelity blends.
To blend orange and baseball, FST first learned the orange style.
However, when it applied that learned style to the baseball, while it
preserved the baseball’s characteristic red seams, it simply turned
its white texture into a blotchy orange color that is not reminiscent
of the fruit. In contrast, the artist who blended it used the texture
and stem of the orange, in addition to the red seams of the baseball.
This made both objects highly identifiable. The computer used
the overall look of the orange, but didn’t separately consider its
elements as it mixed and matched the parts.

Similarly, for the apple and burger blend, the burger style applied
to the apple just turned the apple brown, because the predominant
color of a burger is brown. We also explored what would happen if
we isolated part of the image by hand and applied the style only
within that area. To mimic the artist, we isolated the burger bun

and applied the apple style to it. The results are better, but still
disappointing. Although the burger has the color and texture of
an apple, it does not appear as blended as the artist’s version. The
artist chose to mix the apple color and the bun color to give a sense
of both objects in that element.

We conclude that these existing style transfer results do not
easily apply to visual blends. Blends are not just about applying
high-level “style”, they require designers to consider the individual
elements and how they might be fit together. If we trained a model
on thousands of visual blends, wemight be able to make progress on
this problem, but we would need to create those thousands of visual
blends, and even so, results would not be guaranteed. Instead we
want to explore semi-automatic approaches that augment people’s
ability to create blends.

Design Principle 1. To help users achieve better results
than fully automatic systems, structure the problem into
subtasks and provide interactive tools specific to each sub-
task. Fully automatic tools do not always achieve desired results
and give you little control in how to fix them.

4.2 Analysis of professional blends
To investigate potential structures for improving blends we ana-
lyzed how professional artists improved prototypes. We paid three
professional artists to make visual blends based on 13 prototypes
made by novices using VisiBlends. Of those 13 images, the artists
told us that two did not need editing because the output from Vis-
iBlends was a perfectly acceptable blend. However, the other 11
blends needed significant iteration.

In our analysis of professionally improved blends, we looked
for secondary visual dimensions experts used to improve visual
blends. As discussed in the Background section, VisiBlends creates
prototypes by matching two objects with the same basic shape.
This is because neuroscience has discovered that the human visual
object recognition system is hierarchical in what features it uses
to recognize an object: the primary feature it uses to recognize
and object is its basic 3D shape, and the secondary features it uses
to recognize an object are color, distinct edges, and surface infor-
mation. If prototypes of blends are made by blending the primary
feature used to recognize and object, then it is logical to improve
prototypes by blending the secondary features used to recognize
an object.

We performed this visual dimension-based analysis on the 11
improved blends and found that three visual properties were suf-
ficient to explain almost all of the improvements the artists made.
Figure 4 shows examples of these dimensions:

• Color: The first row shows the result of blending a red Lego
brick and a diamond ring. The initial blend has good shape
fit, but the artist improved the blend by adding the color of
the diamond back into the Lego. This creates the illusion of
diamond-like facets into the Lego.

• Silhouette: The second row shows the result of blending an
oblong Lego brick and a popsicle. The initial blend is decent,
but the artist improved it by applying the silhouette of the
popsicle back into the Lego. (Additionally, they blended the
color of the popsicle back into the Lego. This lends a textured,
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popsicle-like red color to the Lego, rather than a smooth
plastic-like red.)

• InternalDetails: The third row shows the result of blending
an orange with the head of a snowman. The initial blend is
clearly a low-fidelity prototype — the idea is clear, but the
details are unrefined. In addition to applying the color and
silhouette of the snowman head, they extracted the facial
details of the snowman head and placed them on the orange.

Throughout all the examples, we found that artists used one or
more of these three secondary visual dimensions to improve the
prototypes. Note that these dimensions are largely independent of
one another. Thus, we believe that the three visual dimensions can
be used together to guide the process of improving prototypes.

Design Principle 2. Identify secondary dimensions of the
design space to structure the iterationprocess. For visual blends,
the key secondary dimension are: color, silhouette and internal de-
tails. We refer to this method as using secondary design dimensions.

4.3 Co-Design with Graphic Artists
The three visual dimensions provide high-level structure for im-
proving blends, but we wanted to know if there were actionable
activities associated with this structure that are useful when im-
proving blends. To investigate this, we worked with two graphic
artists in multiple one-hour sessions over a period of three weeks
to observe and probe their process. Both designers worked in Pho-
toshop and had created numerous print ads although neither had
made visual blends before. The goal of these sessions was to in-
troduce them to the secondary visual dimensions and to see a) if
they found them useful to structure their process, b) what actions
they took to improve the blends based on these dimensions, and c)
whether novices would be able to replicate their success.

To familiarize the artists with the concept of visual blends, we
showed them examples of professionally made blends and asked
them to recreate two of them in Photoshop. They found the task
challenging, but through trial and error they were ultimately satis-
fied with their results. Next, we introduced them to the principles
of blending based on color, silhouette and details. We discussed
with them how we thought those principles could have been used
to create the blends. Then we gave the artists prototypes of blends
and asked them to improve them, referencing the visual dimensions
when applicable.

The concepts of color, silhouette, and internal details were in-
tuitive to the artists, and they readily used them to improve the
blends. Blending color was a familiar idea to them, and it was very
easy for them to do in Photoshop. An effective tool one artist used
for blending was the "Multiply" feature, which preserved both the
color and the texture of each object, as seen in the top row of Figure
4. Both artists were surprised at how effectively silhouettes could
be used in blends. They tried using the concept of silhouette blend-
ing in blends such as the middle row of Figure 4 and were pleased
with the results. The idea of extracting and reapplying details was
natural to them, as they had employed analogous features in Photo-
shop (i.e. magic wand) to manipulate details before. However, even
with industry tools, extraction was often tedious. In general, both
designers thought that if they worked on the basis of these visual
dimensions, they could recreate any visual blend.

The artists both note that there were additional techniques they
would use to produce and even higher fidelity blends. One artist
mentioned the addition or removal of shadows. The other men-
tioned making a background that would complement the blend.
However, when restricted to these three visual dimensions, they
could produce a second iteration with substantially reduced seams
and enhanced aesthetic quality. If they were producing a pixel-
perfect print ad, they would want to do a third iteration.

As we observed the artists using Photoshop to execute their
improvements, we noticed two parts of their process that novice
designers would struggle to replicate. First, almost all of the tools the
artists used in Photoshop are not available in the typical applications
novices use to quickly edit images. The simple filters, cropping,
and movement afforded by Instagram, presentation software, and
Mac Preview aren’t enough to improve blends. Even simple color
changing operations like "Multiply" are not available in most end-
user tools. This is probably because most end-user tools focus on
operations that can be applied to one image at a time. For blending,
operations have to apply to two objects. Second, these tools often
requiremultiple steps and tedious low-level manipulation. Applying
the silhouette from one object to another is a process with multiple
steps including positioning, object extraction, appropriate layer
composition, and edge cleanup. Extracting details like the snowman
face are tedious, even with the magic wand tool, which largely
operates based on pixel color similarity. Instead of making users
think in pixels, we want to provide higher-level abstractions, such
as the separation of foreground from background or the separation
of details from a base. To create operations that novices can use, we
need to provide tools at a higher-level of abstraction than pixels.

Design Principle 3. Provide novices with high-level tools
related to the secondary visual dimensions that can preview
results without requiring expert knowledge or tedious, low-
level manipulation. In VisiFit, these tools include (1) extracting
and applying silhouettes, (2) blending colors between two objects,
and (3) extracting and replacing internal details from one object to
another.

5 VISIFIT SYSTEM
To help novices iteratively improve visual blends, we created a
system called VisiFit that leverages computational tools to help
users easily extract and combine visual properties of each image
into a blend. First the user improves the cropping of each image,
then improves the three secondary visual dimensions one at a
time. At each step, they are presented with blend options that are
automatically created by the system. However, they are free to
interactively edit them. VisiFit is implemented as a Flask-based web
application. It uses Numpy, OpenCV, and Tensorflow [1]. It builds
on the Fabric.js canvas element to implement interactive image
manipulation. Figure 5 shows the five steps of the interface in the
order that users see them.

Inputs. VisiFit takes in two inputs that are both outputs from
VisiBlends:

(1) An ordered pair of images that have a shape match. We refer
to them as Object A and Object B. In Object A, the shape
covers the entire object. In Object B, the shape covers only
the main body of the object, leaving out parts of the object
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Figure 4: Three visual blends improved by graphic designers. For each blend, the columns showwhat two objects were initially
blended, what the initial blend fromVisiBlends produced, what secondary dimension(s) the artists improved, and the resulting
improved blend.

outside the shape. When blending the images, Object A will
be mapped onto Object B.

(2) The positioning parameters to align Object A to the shape
in Object B: x-scale factor, y-scale factor, angle of rotation,
and center position. In the prototype of the blend, Object
A is cropped, scaled, and positioned to fit into the shape of
Object B.

Step 1. Extract main shapesWhen the page loads, the system
showsObject A and the results of automatic cropping. Object A is an
image of a single object that we want removed from its background.
This is a classic computer vision problem: segmenting the salient
object in an image. Deep learning approaches have been reported
to be a fast and accurate approach to automatic object extraction,
so we use the Tensorflow implementation of a pre-trained model
for deeply supervised salient object detection [24] and use the mask
it provides to crop the images.

The user sees the output for Object A and decides if it is accept-
able. If it is, they select it and move to the next step. If not, they
can decide to improve the object using Interactive Grabcut [47], a
traditional computer vision algorithm for foreground extraction.

For Object B, users must use Interactive Grabcut to extract the
main shape from the image. Our provided interface for Interactive
Grabcut has users first draw a rectangle that encloses the entire
object to extract. Then it produces a foreground extraction shown

to users, who can mark extraneous pieces for removal by drawing
on the image and running Grabcut again.

We used a classic interactive approach rather than a fully au-
tomatic approach because identifying parts or shapes within an
image is very difficult. Traditional automatic approaches like Hough
Transforms [13] do not work well on most images. Deep learning
approaches are fairly good at segmenting objects within images
[20] but are not yet capable enough at identifying the internal parts
of objects.

Step 2. Automatically align objects and adjust position.Af-
ter both objects have had their main shape cropped, the system
automatically produces a new prototype using simple affine trans-
formations that move, scale, position, and rotate the objects. Users
are free to adjust the alignment with direct manipulation on the
Fabric.js HTML5 canvas, just as they would in any image editing
application.

Step 3 Select a silhouette option.When blending two objects,
the blend can use the silhouette of either Object A or B, because
they are very close in shape and size. The system automatically
creates two versions of the blend - one with the silhouette of Object
A and one with the silhouette of Object B. The user must select
which silhouette looks better.

To create the two silhouetted prototypes, the system uses the
inverses of the cropped images from Step 1, layers one inverse on
top of the other original image, and positions them according to
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Figure 5: The five steps of the VisiFit pipeline for improving
blends. In steps 1 and 2, the user extracts the main shape
of both objects and adjusts their overlap. In steps 3-5, the
user blends the images. There are two options for selecting
a silhouette, five options for color blending (only four are
shown), and a tool to select and re-apply internal details.
Each step builds on the selected output from the previous
step (indicated by a blue border.) Once the user is happywith
the blend, they select it as the final output (indicated in a
green border.)

the coordinates in Step 2. This effectively creates a mask to produce
the silhouette of the object.

Step 4. Select and adjust color blending options. Color is
the next dimension to include in the blend. There are 5 options for

color blending. The user can keep the original colors, or use one of
four adjustable tools to blend on the colors of objects:

• Transparency. We layer Object A onto Object B with 50%
transparency to allow the colors of both objects to come
through, although somewhat weakly. The user can adjust
the transparency level with a slider.

• Color Blend. We use K-means clustering to determine the
most common color in the main shape of Object B. We then
do an additive color blend with the color of Object A. This
only works well when one object is very light - otherwise
the color turns very dark.

• Multiply colors. Multiplying two images is a way to combine
colors in a way that preserves characteristics from both.
Whereas transparency will always balance between the two,
multiplication blends both of the colors (and their shadings)
simultaneously. All three examples in Figure 4 use multiply
to blend colors. For example, in the Lego and ring example,
multiplying colors allowed the Lego to take on the red color
and keep the shading of both objects so that the facets of the
diamond and the bumps on the Lego can both be seen.

• Replace color. We use K-means clustering to determine the
most common colors in the main shapes of Object A and B.
We replace Object A’s most common color with Object B’s
most common color and provide users with an adjustable
threshold controlling the degree of color replacement. They
can also choose to blend the image with colors they select
from an eye dropper tool (not shown in Figure 5).

Step 5. Select and re-apply internal details to blend. The
last visual dimension to include is internal details - these are smaller
objects or salient features that help identify the object. In the snow-
man and orange blend, the snowman is not as iconic without his
facial details. Thus, we want to extract them from the original Ob-
ject B and place them back on Object A. Again, we use Interactive
Grabcut to allow the user to select and refine what details to extract.
While we could have used other tools such as context-aware select,
Grabcut worked well on our test set and was a method users had
already become familiar with in earlier stages of the pipeline.

VisiFit encourages users to follow a linear workflow through
each of the tools. They can see effects previewed on their iteration
and choose whether or not to include them. But users are not
constrained to one path through the pipeline; they can take multiple
paths and add an unrestricted number of edits to the secondary
visual dimensions if they so choose. The linear workflow is the
default because it allows users to start on a simple path through
their structured iteration. At the end, the user selects the blend they
are most satisfied with and the system finishes by showing them
the initial blend and the improved blend side by side.

6 EVALUATION
To evaluate whether VisiFit helps novice designers substantially
improve prototypes of visual blends, we conducted a user study
where participants used VisiFit to improve 11 VisiBlends prototypes.
Two experts then rated those blends to judge whether they were
substantially improved over the initial prototype.

To choose the prototypes to improve, we first listed all the blends
mentioned in VisiBlends and found 15 candidates. Of these, 2 were
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already good blends and did not need improvement. Two others had
significant similarities to blends used in the analysis and formative
studies, having blended upon the same or similar objects. Hence,
they would not have been fair to use in the evaluation and were
thus excluded. This left an evaluation set of 11 diverse blends for
different objects.

We recruited 11 novice designers (7 female, average age = 21.5)
for a 1-hour long study who were paid $20 for their time. First,
they were introduced to the concept of visual blends and shown
examples of initial prototypes with their improved versions. Then,
they had two blends to practice using the tools on. During this prac-
tice session, the experimenter answered questions, demonstrated
features, and gave suggestions on how to use the tool.

In the next 44 minutes, participants used the segmentation tools
to extract the main objects from all 22 images (System Steps 1 and
2) and blend the pairs into 11 improved blends (System Steps 3, 4,
and 5). They had two minutes for Steps 1 and 2 and another two
minutes for Steps 3, 4 and 5, for a total of 4 minutes to create each
blend. All results were saved by the system.

After the data was collected, we paid two expert graphic design-
ers $60 per hour to look at every iterated blend and answer two
questions for each of them:

• Does the iterated blend present substantial improvement
over the prototype?

• Is the iterated blend of sufficient quality to post on social
media?

The most important question to answer was the first one: does
the tool help with substantial improvements? Small flaws in the
execution were allowed, but the objects had to be seamlessly and
aesthetically blended to count as an improvement. Our second
question was how often these iterated blends were good enough for
social media publication (i.e. a student club announcement post).
Publication would mean that both objects were clearly identifiable
and blended with no pronounced flaws.

Social media is much more forgiving than print publication. Print
publications must be pixel-perfect, well-lit, and high definition. To
meet this bar, a graphic designer should still use a professional tool
like Photoshop. However, on social media, the images are often
smaller, lower resolution, published more frequently, and for a
smaller audience (such as student clubs, classes or majors) - so
perfection is not as important. Additionally, the prevalence of low-
fidelity user-generated content like memes and self-shot videos
lowers the expectation of precision on social media, placing the
emphasis on the message.

6.1 Results
During the study, the 11 participants attempted to improve a total of
121 blends. Six data points were lost due to errors in the saving pro-
cess, leaving 115 blends as data points. The judges were introduced
to their task with examples of prototypes and their VisiFit-improved
counterparts, like the pairs seen in Figure 4 (which were done by the
authors with graphic design background). For calibration, judges
were shown blends of varying quality, to demonstrate what was
considered "substantial improvement" and what was considered
"suitable for publication on social media".

After studying the blends resulting from each participant, the
judges answered our two questions for all VisiFit-improved blends.
Both questions on "improvement" and "suitability for publication"
were highly subjective; however, the raters had “fair agreement” on
both questions. They agreed on “substantial improvement” 71.3% of
the time (𝜅 = .23) and agreed on “suitability for publication” 73.9%
of the time (𝜅 = .37). In particular, there was one blend which they
disagreed on every time. Both raters had well-reasoned answers
for their differences and rather than forcing them to agree or in-
troducing another rater, we split the difference and looked at the
overall average rates of "substantial improvement" and "suitability
for publication" to report the success of the tool.

Overall, people using the tool made substantial improvements
to the blend 76.1% of the time. Additionally, those blends were of
publishable quality 70.4% of the time. These metrics demonstrate
howVisiFit enables novices to quickly and easily complete a difficult
iteration task.

Judges reported that blends were substantially improved when
the parts of the objects looked correctly layered. This effect was
achieved in a number of ways through VisiFit: when the silhouette
tool was used to mask one object and produce clean borders, when
the internal detail extraction tool foregrounded important parts of
the bottom image, (i.e. the acorn hat detail in the Guggenheim-acorn
blend of Figure 1), or when the colors were blended compositely
(i.e. the corn and McDonald’s blend in Figure 6.)

For 10 of the 11 images, it was possible for at least one of the 11
participants to create an improved and publishable blend. There are
several possible reasons why there was variability in user perfor-
mance. One was subjectivity; some novice users were able to create
high quality blends but chose versions that the judges did not rate
as improvements. Judging one’s own work is hard, because creators
grow attached to their work and struggle to see it objectively.

A second and more important reason is the limitation of some
of the tools. Cropping entire objects, applying a silhouette, and all
four methods of blending colors worked as expected every time.
However, the Interactive Grabcut tools for extracting parts of ob-
jects was sometimes problematic, since some details were too small
to extract properly. While Grabcut is fast and easy, it does not
have pixel-level precision. It often helped to improve the blend,
but it sometimes weakened their suitability for publication. The
VisiFit-improved blend could still be used as a guide when creating
a pixel-perfect version in a professional image editing tool. For
example, for the blend of the orange slice and the barbeque grill
featured in Figure 1, the idea of the blend is clear and improved,
but the execution had enough flaws for it to be not suitable for
publication.

There was one prototype that no user was able to improve. The
burger and light bulb blend (Figure 6) left a seam between the burger
and the light bulb every time. This example points out a limitation
of VisiFit that we could fix this by implementing a fill tool to reduce
the appearance of seams.

Overall, given the speed of the tool, participants thought that
the results were well worth the effort they put into it [8]. During
the study, several participants mentioned that the tool was fast and
produced results they would not otherwise know how to achieve.
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Figure 6: Examples of initial and improved prototypes from the VisiFit user study. The first column shows three blends that
were deemed “improved and publishable”. The second column shows three blends that were deemed “improved but not pub-
lishable”. The third column shows two blends that were deemed “not improved and not publishable”.

7 DISCUSSION
The two main contributions of this paper are 1) the method of using
secondary design dimensions to structure the iterative improve-
ment process and 2) the VisiFit system that helps novices improve
blends with a pipeline of computational tools. In this discussion we
want to explore how the computational tools could generalize to the
needs of expert designers and how secondary design dimensions
can be applied to domains beyond visual blends. Additionally, we
discuss the intellectual and engineering challenges that come with
applying these ideas to new domains.

7.1 Professional designers’ impressions of
VisiFit

Although VisiFit is meant to help novices, we co-designed it with
2 graphic artists who were eager to use it as a rapid prototyping
tool despite their prior domain knowledge. Thus, we wanted to see
what impressions experts would have on the system and showed
the tool to two professional designers (D1 and D2). D1 is a media
communications director at a medium-sized organization with over
twenty years of experience. D2 is a freelance graphic designer with
over 10 years of experience. Both expressed a need to efficiently
create novel and eye-catching visuals for social media that are
beyond the quality produced by tools such as Canva. Both designers
had used visual blends in their professional work before, but did
not know the name for the concept and did not have a strategy for
producing them.

We presented them with the same blend examples from the user
study and asked them to perform the same task: use the tool to
iterate on the blend prototypes and create seamless and aesthetic
blends. Both were impressed by how quickly and easily the blend-
ing tools helped them explore the design space. All of the basic
operations were familiar to them from their experience with Photo-
shop, but they expressed surprise and relief to see results generated
so quickly. D2 said “Sometimes I spend hours pixel pushing just to
test an idea. I love being able to test an idea quickly.”. D1 likened
it to filter previews on Instagram which she loves to use to make
photos more interesting on social media. Even for professional de-
signers who are adept at using pixel-perfect tools, there is a need to
provide high-level tools that can preview results without low-level
manipulation (Design Principle 3).

When using VisiFit, both made blend improvements in a manner
different from novice designers. D1 especially liked to push the
boundaries, to try extracting and blending the less obvious options
within the secondary design dimensions. D1 almost always started
by looking at the inputs and formulating a plan. However, as D1
proceeded through the workflow, she found better and more sur-
prising ideas from the flare and focus nature of VisiFit. The system
helped D1 explore the design space while keeping multiple threads
open at a time. From this interaction, we believe that structuring
blend improvement around secondary dimensions has value even
for professional designers (Design Principle 2).
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D2 was impressed by the way the computational tools worked
and particularly so for object extraction. He found Interactive Grab-
cut impressive in how effective it was on shape extraction but
unimpressive in how unsuccessful it could be when selecting inter-
nal details. After multiple attempts with the tool, he noted that he
would have preferred either better precision during user interaction
or a better automatic approach. This raised an important limitation
- VisiFit only provided one tool to extract internal details. Having a
back-up tool (such as shaped-based cropping) could have relieved
user frustration. This reinforces Design Principle 1 - that automatic
tools don’t always achieve desired results - and stresses that the
system must provide multiple interactive tools specific for each
subtask so that users have control over the creative process.

Overall, we believe that computational design tools for structured
iteration can be as useful to professional designers as they are to
novices. Both groups need to explore design spaces quickly and
easily. Although experts have the ability to do this with existing
tools, a pipeline of computational design tools could make this more
efficient and attainable for designers of all experience levels.

7.2 Generalization to other blending problems
While the VisiFit system is tailored to the domain of visual blends,
we believe the method of editing secondary design dimensions
can be used to help novices structure the improvement process for
other blending domains. We discuss three domains that it could be
generalized to: animated visual blends, fashion design, and furniture
design.

7.2.1 Animated Visual Blends. One way to further enhance visual
blends is to add motion to them. Although it would be easy to add
arbitrary motion, it would be ideal if the motion complemented the
message. The top panel of Figure 7 shows a visual blend for condom
and action that implies the message “condoms are for action.” (The
clapperboard is a symbol of action.) This blend is already effective
at conveying the message, but to enhance it we could add motion
from the clapperboard onto the condom wrapper. We call this type
of motion graphic an animated blend.

We propose that animated blends can be created by using sec-
ondary dimensions of motion to iterate on static blends. To start, we
need a reference video that shows typical motionmade by one of the
objects in the blend. To structure the iteration, we can extract and
transfer dimensions of motion from this reference video. The impor-
tant secondary design dimensions of motion include: the pattern of
motion (circular motion, path segments, appearance/disappearance,
expansion/contraction, or gradient changes), the speed of motion,
acceleration, and timing of the motion. All or some of these dimen-
sions of motion can be applied to create a seamless and aesthetic
animated blend.

Figure 7 shows three animated blends. For each one, it shows
the static visual blend, the reference video of one or both objects
in motion, and how these secondary dimensions of motion can be
added to the visual blend. For the condom and action animation, the
pattern of motion of the clapperboard (up-and-down path segments)
can be added to the blend to reinforce the message of “action”. For
the astronaut and food animation, the speed and arc of motion that
the real astronaut travels with can be applied to the static egg-
astronaut blend. For the tea and sunrise animation, two reference

Figure 7: Three examples of visual blends that could be
turned into animated blends. Each row shows the original
visual blend on the left, the reference video in the middle,
and the animated blend on the right. Motion is annotated in
red.

videos can be applied to the blend. First, the pattern of motion of
the tea bag (up-and-down path segments) can be applied to the sun.
Second, the pattern of motion of the sunrise (gradient change) can
be applied to the sky. Although transferring one type of motion
would be sufficient, adding two types of motion further enhances
the visual appeal and meaning of the blend.

Computational tools would be needed to extract and reapply
the aforementioned dimensions of motion. Parameters for each
dimension would become points of interactions for users. These
tools could then be chained together into a pipeline similar to VisiFit
to structure the iterative improvement of animated blends.

7.2.2 Fashion and Furniture Design. In furniture and fashion de-
sign, one type of problem is to combine different styles to achieve
a new purpose. One way to do this is arguably a type of blending -
to borrow from the functional and stylistic elements of both styles
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to create a new hybrid style. Two examples of hybrid styles include
athleisure clothing and “updated classics” in furniture design.

• Athleisure is a clothing style that takes the fabrics and styles
of athletic clothing and adapts them to non-athletic environ-
ments such as work, school, or other social environments
[23, 48].

• Updated classics is a style of furniture design that takes the
rich feel of classic furniture and adapts it to modern and
utility-driven needs of the 21st century.

We propose that creating items within these hybrid styles could
be structured using secondary design dimensions. Once the user
identified which two objects to blend, a tool would help users
determine what secondary dimensions to extract and apply from
each object. For example, a fashion designer could operate on the
dimensions of material, silhouette (neckline, hemline, leg width,
etc.), color/pattern, fabrication (seam placement, grain direction,
etc.), and details (closures, stitching, etc.) When combining these
dimensions to create a hybrid style such as athleisure, designers
often use the stretchy material of athletic clothing, the details and
colors of street clothing, and a mix of silhouettes found in the gym,
street, or workplace. This combination of traits helps designers
achieve both comfort and socially appropriate styles. A similar set
of dimensions could be used for furniture design to achieve a blend
of classic sophistication with modern convenience. For example,
an updated classic chair could use the classic shape of a Louis XIV
chair, but fabricate it out of plastic (as is common in modern chairs)
to make it easier to move and clean. It could also reduce some of
the ornamentation on the silhouette to take on aspects of a minimal
modern look.

We believe this blending process can also be structured by chain-
ing together computational tools for each of the secondary design
dimensions. This process should be interactive, using human judg-
ment not only to guide the search, but also to constantly consider
aspects outside the dimensions such as the social acceptability of
the design, the appeal to the target market, and whether its con-
struction is feasible within desired price points.

7.3 Limitations
Themajor intellectual challenge of applying these techniques to any
new domain is discovering what its secondary design dimensions
are. For VisiFit, we were able to observe the dimensions from ex-
amples and from co-design sessions. Additionally, we were guided
by what is known about the neuroscience of human visual object
recognition. If one or more of those approaches is not available in a
new domain, significant trial and error may be required to identify
those dimensions. An exciting challenge would be to use computa-
tional tools to automatically (or semi-automatically) discover the
secondary design dimensions of a new domain.

The major engineering challenge of applying these design prin-
ciples to a new domain is to build computational tools that can help
explore each dimension with high-level tools rather than low-level
manipulation. Deep learning has provided new hope for such tools,
but there are still limitations to what deep learning systems can do,
especially with limited data. This is an open challenge: to quickly
create new computational tools for the dimensions of new domains.

For any new blending domain, there is also the possibility that
some blends are too complex to be structured around secondary
dimensions due to complex interactions between dimensions. For
example, when the DNA of two parents are combined to make a
offspring, the offspring certainly has a blend of the parents features,
but there are so many features that the combinations become too
complex to choose from. There may be too many dependencies
between dimensions that make designing at a high level impossible.
When considering the dimensions of a new domain, one should
look out for such dependencies.

8 CONCLUSION
Iterative improvement is the essence of the iterative design process.
Although there are many existing tools that support other phases
of the design process (brainstorming, prototyping, evaluation, and
final design execution) there are a lack of tools focusing on iteration
[17]. We present a tool that helps novices iteratively improve on
prototypes of visual blends. Visual blends are an advanced graphic
design technique to combine two visual symbols into one object to
convey a message symbolically. Tools already exist to help novices
create initial prototypes of visual blends. However, novices do not
have tools or strategies to support them through the next iteration
that would take the blend from lower to higher fidelity.

We conducted three preliminary investigations on how to it-
eratively improve visual blends. This included an exploration of
automatic tools, analysis of expert examples, and a co-design pro-
cess with graphic designers. From these studies we derived three
design principles that can be employed in the creation of iteration
tools. Additionally, we introduce a method of using secondary design
dimension to structure the iterative improvement process. Based
on this method, we can create computational tools to help users
explore the design space during iteration. For visual blends, the sec-
ondary design dimensions are color, silhouette, and internal details.
The computational tools we implemented to explore each of these
dimensions used a combination of deep learning, computer vision
techniques, and parametric control for fine-tuning. The principles
are demonstrated in our system VisiFit – a pipeline of computa-
tional design tools to iterate on prototypes of visual blends. Our
evaluation shows that when using VisiFit, novices substantially
improve blends 76% of the time. Their blends were of sufficient
quality for publication on social media 70% of the time.

Although creating visual blends is a domain-specific problem, it
is emblematic of many design challenges which involve the blend-
ing or remixing of existing things to produce novel meaning or
purpose. We discuss how these principles could be reapplied in
three other blending domains: animated blends, hybrid fashion
design, and hybrid furniture design. These domains have their own
secondary dimensions which can be used to structure the iterative
improvement process.
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