Roadmap for Persuasive Argumentation

Goals of persuasive argumentation:

1. Providing knowledge
2. Convincing
Goals of persuasive argumentation:

1) Providing knowledge
 - Argumentation structure
 - Causal relations

2) Convincing
 - Personal
 - Emotionally moving
Outline

1 Introduction

2 Persuasion

3 Causal Relations

4 Generation
Roadmap for Persuasive Argumentation

1. Persuasion
 1. What makes an argument more persuasive than a logical sequence of reasons?
 2. How are persuasive arguments structured?

2. Causal Relations

3. Generation
Roadmap for Persuasive Argumentation

1. Persuasion
2. Causal Relations
 1. How can we better represent and model causal relations?
 2. How can we model sequences of reasoning?
3. Generation
Roadmap for Persuasive Argumentation

1. Persuasion
2. Causal Relations
3. Generation
 1. How can we customize generation to emphasize persuasion?
 2. How can we generate goal-oriented and globally coherent arguments?
What makes an argument more persuasive than a logical sequence of reasons?

How are persuasive arguments structured?

Social Media

- Tan et al. (2016)
- Habernal and Gurevych (2016)
- Das et al. (2016)
- Rosenthal et al. (2017)
- Walker et al. (2012)

Persuasive Essays

- Peldszus and Stede (2015)
- Ghosh et al. (2016)
- Somasundaran et al. (2016)
- Forbes-Riley et al. (2016)
1. What makes an argument more persuasive than a logical sequence of reasons?

2. How are persuasive arguments structured?

Social Media

- Tan et al. (2016)
- Habernal and Gurevych (2016)
- Das et al. (2016)
- Rosenthal et al. (2017)
- Walker et al. (2012)

Persuasive Essays

- Peldszus and Stede (2015)
- Ghosh et al. (2016)
- Somasundaran et al. (2016)
- Forbes-Riley et al. (2016)
Tan et al. (2016)

Goal: Predict persuasion

Data: Change My View

Method: Logistic Regression

Features: Sentiment, Style, Interplay

- (+) Naturally labeled open-domain data
- Balanced prediction controlled for topic but (-) assumes persuasion

Winning Arguments: Interaction Dynamics and Persuasion Strategies in Good-faith Online Discussions
Tan et al. (2016)

Goal: Predict persuasion

Data: Change My View

Method: Logistic Regression

Features: Sentiment, Style, Interplay

- (+) Naturally labeled open-domain data
- Balanced prediction controlled for topic but (-) assumes persuasion

Winning Arguments: Interaction Dynamics and Persuasion Strategies in Good-faith Online Discussions
Persuasion → Social Media

Tan et al. (2016)

Goal: Personal persuasion
- (+) Naturally labeled open-domain data
- Balanced prediction controlled for topic but (-) assumes persuasion

Habernal and Gurevych (2016)

Goal: Ranking arguments
Data: CreateDebate and Procon
Method: SVM and LSTM
Features: Sentiment, Readability
- (+) Objective ranking for quality
- (-) May just reveal which arguments are bad

Which argument is more convincing? Analyzing and predicting convincingness of Web arguments using bidirectional LSTM
Persuasion → Social Media

Tan et al. (2016)

Goal: *Personal* persuasion

- (+) Naturally labeled open-domain data
- Balanced prediction controlled for topic but (-) assumes persuasion

Habernal and Gurevych (2016)

Goal: Ranking arguments

Data: CreateDebate and Procon

Method: SVM and LSTM

Features: Sentiment, Readability

- (+) Objective ranking for quality
- (-) May just reveal which arguments are bad

Which argument is more convincing? Analyzing and predicting convincingness of Web arguments using bidirectional LSTM
Tan et al. (2016)

Goal: *Personal* persuasion

Habernal and Gurevych (2016)

Goal: *Objectively* ranking arguments

Das et al., (2016)

Goal: Analyze intent in social networks
Data: Manually generated and Twitter
Method: Crowdsourcing and LDA

- (+/-) Measure persuasion by change in sentiment
- (-) Controlled, artificial experiments

Hyundai cars just suck.
Mine broke down right after their guarantee period.
Persuasion → Social Media → Influence

Tan et al. (2016)

Goal: Personal persuasion

Habernal and Gurevych (2016)

Goal: Objectively ranking arguments

Das et al., (2016)

Goal: Analyze intent in social networks
Data: Manually generated and Twitter
Method: Crowdsourcing and LDA
 (+/-) Measure persuasion by change in sentiment
 (-) Controlled, artificial experiments

Hyundai cars just suck.
Mine broke down right after their guarantee period.
Das et al., (2016)

Goal: Analyze intent in social networks (*global influence*)

Rosenthal and McKeown (2017)

Goal: Predict *personal* influence

Data: LiveJournal, Wikipedia Talk, Twitter, CreateDebate

Method: Cascaded supervised system

Features: Persuasion, Argument, Sentiment, Dialog, Agreement

- (-) Evaluation assumes at least one influencer
- (+) Domain adaptation
Das et al., (2016)

Goal: Analyze intent in social networks (*global* influence)

Rosenthal and McKeown (2017)

Goal: Predict *personal* influence

Data: LiveJournal, Wikipedia Talk, Twitter, CreateDebate

Method: Cascaded supervised system

Features: Persuasion, Argument, Sentiment, Dialog, Agreement

- (-) Evaluation assumes at least one influencer
- (+) Domain adaptation
Das et al., (2016)

Goal: Analyze intent in social networks (*global* influence)

Rosenthal and McKeown (2017)

Goal: Predict *personal* influence

Walker et al. (2012)

Goal: Predict stance

Data: CreateDebate

Method: MaxCut, Logistic Regression

Features: Sentiment, Argumentation

- (+) Naturally-labeled data, (+) proxy for persuasion
- (+) Model social interaction, (-) limited set of topics
<table>
<thead>
<tr>
<th>Persuasion → Social Media → Stance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das et al., (2016)</td>
</tr>
<tr>
<td>Goal: Analyze intent in social networks (global influence)</td>
</tr>
<tr>
<td>Rosenthal and McKeown (2017)</td>
</tr>
<tr>
<td>Goal: Predict personal influence</td>
</tr>
<tr>
<td>Walker et al. (2012)</td>
</tr>
<tr>
<td>Goal: Predict stance</td>
</tr>
<tr>
<td>Data: CreateDebate</td>
</tr>
<tr>
<td>Method: MaxCut, Logistic Regression</td>
</tr>
<tr>
<td>Features: Sentiment, Argumentation</td>
</tr>
<tr>
<td>• (+) Naturally-labeled data, (+) proxy for persuasion</td>
</tr>
<tr>
<td>• (+) Model social interaction, (-) limited set of topics</td>
</tr>
</tbody>
</table>

Stance Classification using Dialogic Properties of Persuasion
What makes an argument more persuasive than a logical sequence of reasons?

- Social Interaction
 - Walker et al. (2012) - graph partitions
 - Das et al. (2016) - neighbor content similarity
 - Tan et al. (2016) - word overlap
 - Rosenthal and McKeown (2017) - dialog patterns

- Emotional Content

How are persuasive arguments structured?
1. What makes an argument more persuasive than a logical sequence of reasons?
 - Social Interaction
 - Emotional Content
 - Das et al. (2016) - emotion and logic depending on topic
 - Habernal and Gurevych (2016) - negative often less convincing
 - Tan et al. (2016) - presence of sentiment
 - Rosenthal and McKeown (2017) - sentiment for attempts to persuade
 - Walker et al. (2012) - sentiment for stance

2. How are persuasive arguments structured?
What makes an argument more persuasive than a logical sequence of reasons?

How are persuasive arguments structured?

Social Media

Tan et al. (2016)
Habernal and Gurevych (2016)
Das et al. (2016)
Rosenthal et al. (2017)
Walker et al. (2012)

Persuasive Essays

Peldszus and Stede (2015)
Ghosh et al. (2016)
Somasundaran et al. (2016)
Forbes-Riley et al. (2016)
Peldszus and Stede (2015)

Goal: Argumentation parsing
Data: Manually generated German and (-) translated English essays
Method: Logistic regression, MST

- Claims/premises and support/attack relations
- (+) Joint prediction, (-) but components modeled individually
Persuasion → Essays

Pelczszus and Stede (2015)

Goal: Argumentation parsing
Data: Manually generated German and (-) translated English essays
Method: Logistic regression, MST

- Claims/premises and support/attack relations
- (+) Joint prediction, (-) but components modeled individually

Joint prediction in MST-style discourse parsing for argumentation mining
Ghosh et al. (2016)

<table>
<thead>
<tr>
<th>Goal: Persuasive essay scoring</th>
<th>Goal: Argumentation parsing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data: TOEFL essays</td>
<td>Data: Manually generated German and (-) translated English essays</td>
</tr>
<tr>
<td>Method: Linear regression</td>
<td>Method: Logistic regression, MST</td>
</tr>
<tr>
<td>Features: Argumentation</td>
<td></td>
</tr>
<tr>
<td>(+/-) Coarse-grained claims/premises and support/attack relations</td>
<td>Claims/premises and support/attack relations</td>
</tr>
<tr>
<td></td>
<td>(+) Joint prediction, (-) but components modeled individually</td>
</tr>
</tbody>
</table>
Somasundaran et al. (2016)

Goal: Automatic essay scoring

Data: GRE essays

Methods: Linear Regression

Features: PageRank and graph-based

- Model (+) *globally* as graphs with each word as a node
- (-) All nodes of the same word are collapsed
Somasundaran et al. (2016)

Goal: Automatic essay scoring

Data: GRE essays

Methods: Linear Regression

Features: PageRank and graph-based

- Model (+) *globally* as graphs with each word as a node
- (-) All nodes of the same word are collapsed

Evaluating Argumentative and Narrative Essays using Graphs
Somasundaran et al. (2016)

Goal: Automatic essay scoring

- Model (+) *globally* as graphs with each word as a node
- (-) All nodes of the same word are collapsed

Forbes-Riley et al. (2016)

Goal: Analyze and predict Penn Discourse Tree bank relations

Data: AP English essays

Methods: Crowdsourcing and pre-trained discourse parser

- Mostly sequential *local* relations
- More Contingency relations, (-) missing Justification and Claim

Extracting PDTB Discourse Relations from Student Essays
Somasundaran et al. (2016)

Goal: Automatic essay scoring
- Model (+) *globally* as graphs with each word as a node
- (-) All nodes of the same word are collapsed

Forbes-Riley et al. (2016)

Goal: Analyze and predict Penn Discourse Tree bank relations
Data: AP English essays
Methods: Crowdsourcing and pre-trained discourse parser
- Mostly sequential *local* relations
- More Contingency relations, (-) missing Justification and Claim

Extracting PDTB Discourse Relations from Student Essays

Christopher Hidey
Candidacy Exam
April 21, 2017
1. What makes an argument more persuasive than a logical sequence of reasons?

2. *How are persuasive arguments structured?*
 - Ghosh et al. (2016) and Peldszus and Stede (2015) use tree structures
 - Somasundaran et al. (2016) study graphs of word interactions
 - Forbes-Riley et al. (2016) analyze local discourse relations
Goals of persuasive argumentation:

1) Providing knowledge
 - Structure
 - Causality

2) Convincing
 - Personal
 - Emotional

Persuasion

Influence

Stance
Causal Relations

Causal relations for persuasive argumentation:

1. Mining factual causal relations
2. Modeling causal relations in persuasive argumentation

Goals:

1. How can we better represent and model causal relations?
2. How can we model sequences of reasoning?
Causal Relations

Causal relations for persuasive argumentation:

1. Mining factual causal relations
2. Modeling causal relations in persuasive argumentation

Goals:

1. How can we better represent and model causal relations?
2. How can we model sequences of reasoning?
1. How can we better represent and model causal relations?
2. How can we model sequences of reasoning?

Contextual

- Ji et al. (2016)
- Prasad et al. (2010)
- Dunietz et al. (2017)
- Riaz and Girju (2014)

Distributional

- Biran and McKeown (2013)
- Braud and Denis (2016)
- Sharp et al. (2016)
- Rocktaschel et al. (2015)
- Das et al. (2017)
Causal Relations

1. How can we better represent and model causal relations?
2. How can we model sequences of reasoning?

Contextual

- Ji et al (2016)
- Prasad et al. (2010)
- Dunietz et al. (2017)
- Riaz and Girju (2014)

Distributional

- Biran and McKeown (2013)
- Braud and Denis (2016)
- Sharp et al. (2016)

Formal Logic

- Rocktaschel et al. (2015)
- Das et al. (2017)
Causal Relations

1. How can we better represent and model causal relations?
2. How can we model sequences of reasoning?

Contextual
- Ji et al. (2016)
- Prasad et al. (2010)
- Dunietz et al. (2017)
- Riaz and Girju (2014)

Distributional
- Biran and McKeown (2013)
- Braud and Denis (2016)
- Sharp et al. (2016)

Formal Logic
- Rocktaschel et al. (2015)
- Das et al. (2017)
Ji et al (2016)

Goal: Predict implicit discourse relations

John was tired. He left early.

Data: Wall Street Journal (PDTB)

Model: LSTM with discourse relation as latent variable

- (+) Discourse-aware language modeling
- (-) Implicit discourse relation detection still very difficult
- (-) No reporting of individual class performance
Ji et al (2016)

Goal: Predict implicit discourse relations

John was tired. He left early.

Data: Wall Street Journal (PDTB)

Model: LSTM with discourse relation as latent variable

- (+) Discourse-aware language modeling
- (-) Implicit discourse relation detection still very difficult
- (-) No reporting of individual class performance
Ji et al (2016)

Goal: Predict implicit discourse relations (still (-) very difficult)

John was tired. He left early.

Prasad et al. (2010)

Goal: Identify alternative discourse markers

GM appears to be stepping up the pace of its factory consolidation to get in shape for the 1990s. **One reason is** mounting competition.

Data: Wall Street Journal (PDTB)

Model: Paraphrases

- (+) Provides lexical signal, (+/-) open class of markers
- (-) Limited to intra-sentence relations
Causal Relations → Contextual Approaches

Ji et al (2016)

Goal: Predict implicit discourse relations (still (-) very difficult)
John was tired. He left early.

Prasad et al. (2010)

Goal: Identify alternative discourse markers
GM appears to be stepping up the pace of its factory consolidation to get in shape for the 1990s. One reason is mounting competition.
Data: Wall Street Journal (PDTB)
Model: Paraphrases
- (+) Provides lexical signal, (+/-) open class of markers
- (-) Limited to intra-sentence relations
Causal Relations → Contextual Approaches

Ji et al (2016)

Goal: Predict implicit discourse relations (still (-) very difficult)

Prasad et al. (2010)

Goal: Identify alternative discourse markers

Dunietz et al. (2017)

Goal: Predict causality and cause/effect spans

For market discipline to work, banks cannot expect to be bailed out.

Data: New York Times, Wall Street Journal, Dodd-Frank hearings

Model: Cascaded supervised system

Features: Lexical, Syntactic, Semantic

- (+) Contiguous and non-contiguous, but (-) no temporal
- (-) Closed class at prediction, (-) per-relation classifier

Automatically Tagging Constructions of Causation and Their Slot-Fillers
Causal Relations → Contextual Approaches

Ji et al. (2016)
Goal: Predict implicit discourse relations (still (-) very difficult)

Prasad et al. (2010)
Goal: Identify alternative discourse markers

Dunietz et al. (2017)
Goal: Predict causality and cause/effect spans

For market discipline to work, banks cannot expect to be bailed out.

Data: New York Times, Wall Street Journal, Dodd-Frank hearings

Model: Cascaded supervised system

Features: Lexical, Syntactic, Semantic

- (+) Contiguous and non-contiguous, but (-) no temporal
- (-) Closed class at prediction, (-) per-relation classifier
Dunietz et al. (2017)

For market discipline to work, banks cannot expect to be bailed out.

- Lexical grounding

Riaz and Girju (2014)

Goal: Predict causality
At least 1,833 people died in the hurricane.

Data: FrameNet, WordNet, and GigaWord

Model: Semi-supervised ILP

- (+) Non-contiguous, (+) open class
- (+/-) Requires real-world definition of causality
- (-) Missing other causal constructions

In-depth Exploitation of Noun and Verb Semantics to Identify Causation in Verb-Noun Pairs
Causal Relations → Contextual Approaches

Dunietz et al. (2017)

For market discipline to work, banks cannot expect to be bailed out.

- Lexical grounding

Riaz and Girju (2014)

Goal: Predict causality

At least 1,833 people **died** in the **hurricane**.

Data: FrameNet, WordNet, and GigaWord

Model: Semi-supervised ILP

- (+) Non-contiguous, (+) open class
- (+/-) Requires real-world definition of causality
- (-) Missing other causal constructions

In-depth Exploitation of Noun and Verb Semantics to Identify Causation in Verb-Noun Pairs
How can we better represent and model causal relations?

- Dunietz et al. (2017)- expand to constructions like “so ... that”
- Prasad et al. (2010)- alternative lexicalizations, “The reason is”
- Riaz and Girju (2014)- verb-noun pairs such as “died/hurricane”
- Ji et al. (2016)- implicit discourse relations as latent variables

How can we model sequences of reasoning?
Causal Relations

1. How can we better represent and model causal relations?
2. How can we model sequences of reasoning?

Contextual
- Ji et al. (2016)
- Prasad et al. (2010)
- Dunietz et al. (2017)
- Riaz and Girju (2014)

Distributional
- Biran and McKeown (2013)
- Braud and Denis (2016)
- Sharp et al. (2016)

Formal Logic
- Rocktaschel et al. (2015)
- Das et al. (2017)
Biran and McKeown (2013)

Goal: Distributed representations for implicit discourse

Method: Calculate weighted word-pairs for each explicit connective

- (-) Unable to score unseen word pairs
- (+/-) Simple pre-processing, (-) no evaluation
Biran and McKeown (2013)

Goal: Distributed representations for implicit discourse

Method: Calculate weighted word-pairs for each explicit connective

- (-) Unable to score unseen word pairs
- (+/-) Simple pre-processing, (-) no evaluation
Causal Relations → Distributional Approaches

Goal: Distributed representations for implicit discourse
TF-IDF and PMI-IDF, with IDF over connectives

<table>
<thead>
<tr>
<th>Biran and McKeown (2013)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-) Requires lots of training data, unable to score unseen word pair</td>
</tr>
<tr>
<td>(+/-) Simple pre-processing, (-) no evaluation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Braud and Denis (2016)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method: Each word is a weighted d-dimensional vector</td>
</tr>
<tr>
<td>(+) Evaluation of pre-processing</td>
</tr>
<tr>
<td>(-) Expanding to additional markers increases sparsity</td>
</tr>
</tbody>
</table>

Learning Connective-based Word Representations for Implicit Discourse Relation Identification
Goal: Distributed representations for implicit discourse
TF-IDF and PMI-IDF, with IDF over connectives

Biran and McKeown (2013)
- (-) Requires lots of training data, unable to score unseen word pair
- (+/-) Simple pre-processing, (-) no evaluation

Braud and Denis (2016)
Method: Each word is a weighted d-dimensional vector
- (+) Evaluation of pre-processing
- (-) Expanding to additional markers increases sparsity

Learning Connective-based Word Representations for Implicit Discourse Relation Identification
Biran and McKeown (2013), Braud and Denis (2016)

Goal: Distributed representations for implicit discourse

Sharp et al. (2016)

Goal: Distributed representations for causality

Method: skip-gram, word-context pairs are from causes and effects

- (-) Simple pre-processing, (+/-) some evaluation of span selection
- (+) Both intrinsic and extrinsic evaluation
Causal Relations

1. How can we better represent and model causal relations?
2. *How can we model sequences of reasoning?*

Contextual

- Ji et al. (2016)
- Prasad et al. (2010)
- Dunietz et al. (2017)
- Riaz and Girju (2014)

Distributional

- Biran and McKeown (2013)
- Braud and Denis (2016)
- Sharp et al. (2016)

Formal Logic

- Rocktaschel et al. (2015)
- Das et al. (2017)
Rocktaschel et al. (2015)

Goal: Perform inductive reasoning on a knowledge base

Data: New York Times (train) and Freebase (train/test)

Methods: Matrix factorization and probabilistic logic rules

\[
 r_s(x, y) \implies r_t(x, y)
\]

\[
 [\mathcal{A} \implies \mathcal{B}] = [\mathcal{A}] ([\mathcal{B}] - 1) + 1
\]
Goal: Perform inductive reasoning on a knowledge base

Rocktaschel et al. (2015)

Methods: Matrix factorization and probabilistic logic rules

Das et al. (2017)

Data: Freebase

Methods: RNN over paths in a knowledge base

Chains of Reasoning over Entities, Relations, and Text using Recurrent Neural Networks
Goal: Perform inductive reasoning on a knowledge base

<table>
<thead>
<tr>
<th>Methods: Matrix factorization and probabilistic logic rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocktaschel et al. (2015)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Methods: RNN over paths in a knowledge base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Das et al. (2017)</td>
</tr>
</tbody>
</table>

- (+) Open set of relations
- (-) Difficult to model confounding variables and other complex interactions
How can we better represent and model causal relations?
- Biran and McKeown (2013) - word pairs for explicit connectives
- Braud and Denis (2016) - word co-occurrence vectors
- Sharp et al. (2016) - skip-gram for cause/effect word pairs

How can we model sequences of reasoning?
Causal Relations → Distributional Approaches

1. How can we better represent and model causal relations?

2. *How can we model sequences of reasoning?*
 - Rocktaspel et al. (2015) - matrix factorization with injected logic
 - Das et al. (2017) - RNNs over paths in knowledge graph
Causal Relations

Goals of persuasive argumentation:

1) Providing knowledge
 - Structure
 - Causal relations
 - Contextual
 - Ji
 - Prasad
 - Dunietz
 - Riaz
 - PDTB
 - Alt. lex.
 - construction
 - verb-noun
 - Distributional
 - Biran
 - Braud
 - Sharp
 - Rocktaschel
 - Das
 - causal
 - logic
 - Personal
 - Emotional

2) Convincing
Natural language generation for persuasive argumentation:

1. Content-framed
2. Context-driven
3. Goal-oriented
4. Globally coherent

1. How can we customize generation to emphasize persuasion?
2. How can we generate goal-oriented and globally coherent arguments?
Natural language generation for persuasive argumentation:

1. Content-framed
2. Context-driven
3. Goal-oriented
4. Globally coherent

1. How can we customize generation to emphasize persuasion?
2. How can we generate goal-oriented and globally coherent arguments?
1. How can we customize generation to emphasize persuasion?

2. How can we generate goal-oriented and globally coherent arguments?

Persuasion

- Ding and Pan (2016)
- Bilu and Slonim (2016)
- Li et al. (2016)
- Dodge et al. (2016)

Other

- Andreas and Klein (2016)
- Hu et al. (2017)
- Chen et al. (2009)
- Kiddon et al. (2016)
Generation

1. How can we customize generation to emphasize persuasion?
2. How can we generate goal-oriented and globally coherent arguments?

Framing
- Ding and Pan (2016)
- Bilu and Slonim (2016)

Goal-oriented
- Li et al. (2016)
- Dodge et al. (2016)

Context-driven
- Andreas and Klein (2016)
- Hu et al. (2017)

Coherent
- Chen et al. (2009)
- Kiddon et al. (2016)
Generation

1. How can we customize generation to emphasize persuasion?
2. How can we generate goal-oriented and globally coherent arguments?

Framing
- Ding and Pan (2016)
- Bilu and Slonim (2016)

Goal-oriented
- Li et al. (2016)
- Dodge et al. (2016)

Context-driven
- Andreas and Klein (2016)
- Hu et al. (2017)

Coherent
- Chen et al. (2009)
- Kiddon et al. (2016)
Bilu and Slonim (2016)

Goal: Generate valid claims (template-based)

Data: idebate

Banning violent video games is a violation of free speech
Censoring internet content is a violation of free speech

Method: Logistic regression

Features: similarity, relevance, fluency

- (+) Parameter sharing across topics
- (+/-) Text-to-text generation, (-) closed set
Bilu and Slonim (2016)

Goal: Generate valid claims (template-based)

Data: idebate

Banning violent video games is a violation of free speech
Censoring internet content is a violation of free speech

Method: Logistic regression

Features: similarity, relevance, fluency

- (+) Parameter sharing across topics
- (+/-) Text-to-text generation, (-) closed set
Bilu and Slonim (2016)

Goal: Generate valid claims

Ding and Pan (2016)

Goal: Determine effects of personality on persuasion
Data: Personality tests
Method: Metric Pairwise Constrained K-Means
Features: Big5, Schwartz

- (-) Domain-specific
- (-) No control for how personality affects generation decisions
Bilu and Slonim (2016)

Goal: Generate valid claims

Ding and Pan (2016)

Goal: Determine effects of personality on persuasion
Data: Personality tests
Method: Metric Pairwise Constrained K-Means
Features: Big5, Schwartz
- (-) Domain-specific
- (-) No control for how personality affects generation decisions
Generation

1. How can we customize generation to emphasize persuasion?
2. How can we generate goal-oriented and globally coherent arguments?

Framing
- Ding and Pan (2016)
- Bilu and Slonim (2016)

Goal-oriented
- Li et al. (2016)
- Dodge et al. (2016)

Context-driven
- Andreas and Klein (2016)
- Hu et al. (2017)

Coherent
- Chen et al. (2009)
- Kiddon et al. (2016)
Andreas and Klein (2016)

Goal: Generate reference text
Data: Abstract Scenes Dataset
Method: Referent ranker, text generator

- (+) Contextual, social interaction
- (+) Agnostic to input representation
- (-) Sampling instead of joint modeling

the owl is sitting in the tree
Considering Context

Andreas and Klein (2016)

Goal: Generate reference text
Data: Abstract Scenes Dataset
Method: Referent ranker, text generator
- (+) Contextual, social interaction
- (+) Agnostic to input representation
- (-) Sampling instead of joint modeling

the owl is sitting in the tree

Reasoning about Pragmatics with Neural Listeners and Speakers
Andreas and Klein (2016)

Goal: Generate reference text

Hu et al. (2017)

Goal: Generate controllable text

Data: IMDB, Stanford Sentiment Treebank-2, TimeBank

Method: Variational Auto-Encoder

the film is strictly routine!

the film is full of imagination.

- (+) Semi-supervised, requires little labeled data
- (-) Unclear how to extend to multi-dimensional attributes with complex interactions
Considering Context

Andreas and Klein (2016)

Goal: Generate reference text

Hu et al. (2017)

Goal: Generate controllable text

Data: IMDB, Stanford Sentiment Treebank-2, TimeBank

Method: Variational Auto-Encoder

- the film is strictly routine!
- the film is full of imagination.

(+): Semi-supervised, requires little labeled data

(-): Unclear how to extend to multi-dimensional attributes with complex interactions
Generation

1. How can we customize generation to emphasize persuasion?

2. How can we generate goal-oriented and globally coherent arguments?

Framing

- Ding and Pan (2016)
- Bilu and Slonim (2016)

Goal-oriented

- Li et al. (2016)
- Dodge et al. (2016)

Context-driven

- Andreas and Klein (2016)
- Hu et al. (2017)

Coherent

- Chen et al. (2009)
- Kiddon et al. (2016)
Li et al. (2016)

Goal: Generate dialog for maximizing the length of the conversation

Data: OpenSubtitles

Method: Deep reinforcement learning

<table>
<thead>
<tr>
<th>A: Where are you going?</th>
<th>B: I’m going to the restroom.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: See you later.</td>
<td>B: See you later.</td>
</tr>
<tr>
<td>A: See you later.</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

- (+) Models both agents in dialog simultaneously
- (-) Preventing loops may contrast with other goals
Li et al. (2016)

<table>
<thead>
<tr>
<th>Goal: Generate dialog for maximizing the length of the conversation</th>
<th>A: Where are you going?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data: OpenSubtitles</td>
<td>B: I’m going to the restroom.</td>
</tr>
<tr>
<td>Method: Deep reinforcement learning</td>
<td>A: See you later.</td>
</tr>
<tr>
<td></td>
<td>B: See you later.</td>
</tr>
<tr>
<td></td>
<td>A: See you later.</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

- (+) Models both agents in dialog simultaneously
- (-) Preventing loops may contrast with other goals
Accomplishing Goals

Li et al. (2016)

Goal: Generate dialog likely to result in continued dialog

Dodge et al. (2016)

Goal: Generate dialog for question answering

Data: Online Movie Database, Reddit movies sub-reddit

Method: Memory network

A: I liked Tombstone and The Net. I’m looking for a Fantasy film.
B: Jumanji
A: Who directed that?
B: Joe Johnston
A: I like Tim Burton movies more...

- (+) Ability to store and query factual information
- (-) No shared representation between memory elements
Accomplishing Goals

Li et al. (2016)

Goal: Generate dialog likely to result in continued dialog

Dodge et al. (2016)

Goal: Generate dialog for question answering

Data: Online Movie Database, Reddit movies sub-reddit

Method: Memory network

A: I liked Tombstone and The Net. I’m looking for a Fantasy film.

B: Jumanji

A: Who directed that?

B: Joe Johnston

A: I like Tim Burton movies more...

- (+) Ability to store and query factual information
- (-) No shared representation between memory elements
Generation

1. How can we customize generation to emphasize persuasion?
2. *How can we generate goal-oriented and globally coherent arguments?*

Framing
- Ding and Pan (2016)
- Bilu and Slonim (2016)

Goal-oriented
- Li et al. (2016)
- Dodge et al. (2016)

Context-driven
- Andreas and Klein (2016)
- Hu et al. (2017)

Coherent
- Chen et al. (2009)
- Kiddon et al. (2016)
Chen et al. (2009)

Goal: Model topic transitions
Data: Wikipedia
Method: Generalized Mallows Model

- (+) Works well for domain-specific modeling
- (-) Bag-of-words generation
Modeling Coherence

Chen et al. (2009)

Goal: Model topic transitions

Data: Wikipedia

Method: Generalized Mallows Model

- (+) Works well for domain-specific modeling
- (-) Bag-of-words generation
Chen et al. (2009)

Goal: Improve topic transitions by global constraints on ordering

Kiddon et al. (2016)

Goal: Generate text from an agenda

Data: Recipes, Hotel dialogs

Method: Neural LM with soft checklist

- Sift *flour*, measure, and sift with *baking powder* and *salt*. Fold in stiffly beaten *egg whites*.

- Able to balance long-term goals with short-term word generation
1. **How can we customize generation to emphasize persuasion?**
 - **Framing**
 - Bilu and Slonim (2016) - template-based generation of claims
 - Ding and Pan (2016) - emphasis of attributes based on personality
 - **Context**

2. **How can we generate goal-oriented and globally coherent arguments?**
 - **Goals**
 - **Coherence**
1. *How can we customize generation to emphasize persuasion?*
 - Framing
 - *Context*
 - Andreas and Klein (2016) - pragmatic reasoning for descriptions
 - Hu et al. (2017) - text generation conditioned on attributes

2. *How can we generate goal-oriented and globally coherent arguments?*
 - Goals
 - Coherence
1 How can we customize generation to emphasize persuasion?
 • Framing
 • Context

2 How can we generate goal-oriented and globally coherent arguments?
 • Goals
 • Li et al. (2016) - maximizing conversation length for dialogue
 • Dodge et al. (2016) - question answering for dialogue
 • Coherence
Generation

1. **How can we customize generation to emphasize persuasion?**
 - Framing
 - Context

2. **How can we generate goal-oriented and globally coherent arguments?**
 - Goals
 - Coherence
 - Chen et al. (2009) - topic modeling and ordering
 - Kiddon et al. (2016) - agenda-driven generation
Goals of persuasive argumentation:

1) Providing knowledge
 - Structure
 - Causality
 - Personal
 - Emotional

2) Convincing
 - Coherence
 - Framing
 - Goals
 - Context
 - Chen Kiddon Bilu
 - Ding Li Dodge Andreas
 - Hu
Conclusion

Goals of persuasive argumentation:

1) Providing knowledge
 - Structure
 - Causality

2) Convincing
 - Personal
 - Emotional

Trees/Graphs
- Coherence
- Framing

Contextual
- Distributional
- Formal Logic

Social Interaction
- Framing
- Pragmatics

Sentiment
- Topic/Context