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We like KVM

• It’s Fast, Free, Open, and Simple!

• Integrates well with Linux

• Always maintained

• Supports x86, ia64, PowerPC, and s390
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ARM devices are everywhere
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Google Nexus One Specifications
Processor Qualcomm Snapdragon QSD8250

CPU Core Qualcomm Scorpion

Architecture ARM v7

Clock speed 1000 MHz

Technology 65 nm

Memory 512 MB

...and they are getting really powerful
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KVM relies on 
hardware support

• x86 and ia64 (Itanium)

• PowerPC, and s390
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Hardware Support  for 
Virtualization

• Guest kernel runs in user mode

• Sensitive instructions are instructions that depend 
on CPU mode

• Virtualizable if all sensitive instructions trap

• Trap-and-emulate

• Hardware virtualization features provide extra 
mode where all sensitive instructions trap
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Problem

• ARM is not virtualizable

• ARM has no hardware virtualization 
extensions
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31 Sensitive instructions
CPS LDRT STC RSBS

MRS STRBT ADCS RSCS

MSR STRT ADDS SBCS

RFE CDP ANDS SUBS

SRS LDC BICS

LDM (2) MCR EORS

LDM (3) MCRR MOVS

STM (2) MRC MVNS

LDRBT MRRC ORRS
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CPS LDRT STC RSBS
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and 25 of them are non-privileged
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Solution

• We use lightweight paravirtualization

• Retains simplicity of KVM architecture

• Minimally intrusive to KVM and the Kernel

• Uses on QEMU for device emulation
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• KVM

• CPU virtualization on ARM

• Memory virtualization on ARM

• World Switch details

• Implementation status
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KVM Architecture

Hardware

Linux KernelKVM

Processes

VM

Guest kernel

Q
EM

U
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KVM execution flow
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New KVM architecture

• Logical separation of architecture 
dependent and independent code

•kvm_arch_XXX

•kvm_XXX
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• KVM

• CPU virtualization on ARM

• Memory virtualization on ARM

• World Switch details

• Implementation status
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ARM virtualization

• ARM is not virtualizable - nor does it have 
hardware virtualization support

• Possible solutions:

• binary translation

• or paravirtualization
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Binary Translation

• Traditionally done out-of-place with a 
translation cache

• Difficult to make it fast

• Contradicts idea of KVM
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Paravirtualization

• Changes the guest kernel to replace code 
with sensitive instructions with hypercalls

• Guest kernel is modified by hand

• Hard to merge changes with upstream 
Kernel versions
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Original code:

mrs r2, cpsr  @ get current mode
tst r2, #3    @ not user?
bne not_angel

Lightweight-paravirtualization
(LPV)
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Original code:

swi 0x022000  @ get current mode
tst r2, #3    @ not user?
bne not_angel

Lightweight-paravirtualization
(LPV)
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Lightweight-paravirtualization
(LPV)

• Replace sensitive instructions with traps

• Traps encode original instruction and operands

• Emulate replaced instructions in KVM

• Script-based solution applicable to any vanilla 
kernel tree
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LPV encoding example
                  mrs r2, cpsr

                  swi 0x022000

Status register 
access function

  23          20 19               16 15 14         12                             0
 +--------------+-------------------+--+-------------+-----------------------------+
 |      0       |         Rd        | R|      2      |             OIF             |
 +--------------+-------------------+--+-------------+-----------------------------+

MRS encoding
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LPV implementation

• Uses regular expressions to search for 
sensitive assembly instructions

• ~150 lines (written in Python)

• Supports inline assembler, preprocessor 
macros and assembler files.

Friday, July 16, 2010



LPV requirements

• Assumes guest kernel does not make 
system calls to itself

• Module source code must also be handled

• GCC does not generate sensitive 
instructions from C-code
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LPV key points

• Encodes each sensitive instructions to a 
single trap

• As efficient as trap-and-emulate

• Fully automated

• Doesn’t affect kernel code size
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• KVM

• CPU virtualization on ARM

• Memory virtualization on ARM

• World Switch details

• Implementation status
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Virtual memory

0 4 GB

Devices
Physical

Addresses RAM

Kernel

4 GB0

User space application
Virtual

Addresses

MMU

Page Tables
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Shadow page tables

• Map

• Guest Virtual Addresses to

• Host Physical Addresses

• One per guest page table (process)

• Start out empty and add entries on page 
faults (on demand)
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Address translation

KVM process
Virtual Memory

Guest physical

Guest virtual

Host kernel Guest memory

Machine memory
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Address translation

KVM process
Virtual Memory

Guest physical

Guest virtual

Host kernel Guest memory

Machine memory

Walk guest page tables 
in software:
gva_to_gfn(...);
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Address translation

KVM process
Virtual Memory

Guest physical

Guest virtual

Host kernel Guest memory

Machine memory

Kernel functionality:
page = virt_to_page(...);
pfn = page_to_pfn(page);

Built-in KVM 
functionality:
gfn_to_hva(...);

Walk guest page tables 
in software:
gva_to_gfn(...);
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Shadow page table 
consistency

• Caching shadow page tables is an 
optimization

• Keep cached page tables in sync by 
protecting guest page tables and tracking 
updates
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• Goal

• Protect host from guest

• Honor intended guest protection

• ARM provides flexible protection methods

• Access is specified per CPU privilege level

Memory Protection
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Access Protection Bits

AP Privileged User

00 None None

01 R/W None

10 R/W R/O

11 R/W R/W
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Access mapping 
example

• Guest page table specifies:

• Privileged: R/W

• User: No Access

• Shadow page table bits in guest user mode:

• User: No Access

• Shadow page table bits in guest priv. mode:

• User: R/W
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KVM
RUN

User space

Kernel

World 
switch

Native guest execution

Guest

Interrupt

World 
switch

Handle
exit

Handle I/O?

Emulation

World Switches
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World switch

• Disable interrupts

• Store host state

• Switch page tables

• Load guest state

• Enable interrupts

• Jump to guest code

• Store exit state

• Switch page tables

• Restore host state

• (Host kernel IRQ handler)

• Enable interrupts

• Return to ioctl call

To guest From guest
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Switch page tables

PC
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Shared Page

Machine memory

Guest Kernel

4 GB0

User space application
Guest Virtual

Addresses

Host Kernel

4 GB0

QEMU virtual memory
Host Virtual
Addresses

0xFFFF1000

0xFFFF1000
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Shared Page Internals

Temporary Data

Code

Temporary
Stack

0xffff 1000

0xffff 1fff
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• KVM

• CPU virtualization on ARM

• Memory virtualization on ARM

• World Switch details

• Implementation status
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Status

• Successfully boots Linux VMs

• Host built on Android Kernel 2.6.27

• Tested guest kernels from 2.6.17 to 2.6.33
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• Improve performance

• Cache shadow page tables

• Avoid unnecessary world-switches

• Binary patching

• Test device support

• Upstream!

Future work
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ARMv6

• Physically tagged caches

• TLB “Application Space Identifiers” (ASID’s)

• New instructions
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Related Work

• Commercial solutions:

• VMWare MVP, OK Labs, VirtualLogix, ...

• Open-source:

• QEMU

• XenARM
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Conclusions

• ARM virtualization is important

• With LPV we now have KVM/ARM

• LPV is simple, fully automated, and efficient

• Minimally intrusive

• It works!
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Tasks
• Caching of shadow page tables

• Moving things to shared page

• Coalesced MMIO

• GDB support

• Testing devices (on BeagleBoards, IGEPv2 
boards etc.)

• ...
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Want to contribute?

• Mailing list:
android-virt@lists.columbia.edu

• WIKI:
http://wiki.ncl.cs.columbia.edu

• Source code:
http://git.ncl.cs.columbia.edu/git
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Extra Material
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• Same as on x86:

• Test and Development

• OS freedom

• Multiple Personas

• Virtualization features

Use cases
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Exceptions

• Traps & Interrupts

• CPU changes mode and execution starts 
from “vectors” at either:

•       0x00000000 + offset

• or   0xFFFF0000 + offset
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Exceptions and KVM/ARM

• KVM/ARM uses custom handlers to handle 
exceptions while executing guest

• Exceptions are the only way to:
“exit from the guest”

• IRQ’s are forwarded to the host kernel 
handlers

• Traps are handled by KVM/ARM
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Guest Kernel

4 GB

User space application
Guest Virtual

Addresses

0xFFFF0000

Hardware exception
vector page

0x0

Guest exception
vector page

Guest exceptions

Guest uses “low” vectors
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What happens at a conflict?

• KVM/ARM’s vectors are mapped with no-
access for user mode code at 0xffff0000

• The guest tries to access 0xffff0000 page

• KVM/ARM handles the permission fault 
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Guest Kernel

4 GB

User space application
Guest Virtual

Addresses

0xFFFF0000

Hardware exception
vector page

Exception page conflict

Guest uses “high” vectors,
but needs access to page 0
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