
KVM/ARM

Linux Symposium 2010

Christoffer Dall and Jason Nieh
{cdall,nieh}@cs.columbia.edu

Slides: http://www.cs.columbia.edu/~cdall/ols2010-presentation.pdf

Friday, July 16, 2010

http://www.cs.columbia.edu/~cdall/ols-presentation.pdf
http://www.cs.columbia.edu/~cdall/ols-presentation.pdf

We like KVM

• It’s Fast, Free, Open, and Simple!

• Integrates well with Linux

• Always maintained

• Supports x86, ia64, PowerPC, and s390

Friday, July 16, 2010

ARM devices are everywhere

Friday, July 16, 2010

Google Nexus One Specifications
Processor Qualcomm Snapdragon QSD8250

CPU Core Qualcomm Scorpion

Architecture ARM v7

Clock speed 1000 MHz

Technology 65 nm

Memory 512 MB

...and they are getting really powerful

Friday, July 16, 2010

KVM relies on
hardware support

• x86 and ia64 (Itanium)

• PowerPC, and s390

Friday, July 16, 2010

KVM relies on
hardware support

• x86 and ia64 (Itanium)

• PowerPC, and s390

Virtualization
Extensions

Friday, July 16, 2010

KVM relies on
hardware support

• x86 and ia64 (Itanium)

• PowerPC, and s390

Virtualizable

Virtualization
Extensions

Friday, July 16, 2010

Hardware Support for
Virtualization

• Guest kernel runs in user mode

• Sensitive instructions are instructions that depend
on CPU mode

• Virtualizable if all sensitive instructions trap

• Trap-and-emulate

• Hardware virtualization features provide extra
mode where all sensitive instructions trap

Friday, July 16, 2010

Problem

• ARM is not virtualizable

• ARM has no hardware virtualization
extensions

Friday, July 16, 2010

31 Sensitive instructions
CPS LDRT STC RSBS

MRS STRBT ADCS RSCS

MSR STRT ADDS SBCS

RFE CDP ANDS SUBS

SRS LDC BICS

LDM (2) MCR EORS

LDM (3) MCRR MOVS

STM (2) MRC MVNS

LDRBT MRRC ORRS

Friday, July 16, 2010

31 Sensitive instructions
CPS LDRT STC RSBS

MRS STRBT ADCS RSCS

MSR STRT ADDS SBCS

RFE CDP ANDS SUBS

SRS LDC BICS

LDM (2) MCR EORS

LDM (3) MCRR MOVS

STM (2) MRC MVNS

LDRBT MRRC ORRS

and 25 of them are non-privileged

Friday, July 16, 2010

Solution

• We use lightweight paravirtualization

• Retains simplicity of KVM architecture

• Minimally intrusive to KVM and the Kernel

• Uses on QEMU for device emulation

Friday, July 16, 2010

• KVM

• CPU virtualization on ARM

• Memory virtualization on ARM

• World Switch details

• Implementation status

Friday, July 16, 2010

KVM Architecture

Hardware

Linux KernelKVM

Processes

VM

Guest kernel

Q
EM

U

Friday, July 16, 2010

KVM execution flow

Friday, July 16, 2010

Start
QEMU

Friday, July 16, 2010

Start
QEMU

Alloc
memory

Friday, July 16, 2010

Start
QEMU

Alloc
memory

Friday, July 16, 2010

Start
QEMU

Alloc
memory

Create
VM

Friday, July 16, 2010

Start
QEMU

Alloc
memory

Create
VM

Friday, July 16, 2010

Start
QEMU

Alloc
memory

Create
VM

Register
memory

Friday, July 16, 2010

Start
QEMU

Alloc
memory

Create
VM

Register
memory

Friday, July 16, 2010

Start
QEMU

Alloc
memory

Create
VM

Register
memory

Create
VCPU

Friday, July 16, 2010

Start
QEMU

Alloc
memory

Create
VM

Register
memory

Create
VCPU

Friday, July 16, 2010

Start
QEMU

Alloc
memory

Create
VM

Register
memory

Create
VCPU

KVM
RUN

Friday, July 16, 2010

Start
QEMU

Alloc
memory

Create
VM

Register
memory

Create
VCPU

KVM
RUN

Friday, July 16, 2010

Start
QEMU

Alloc
memory

Create
VM

Register
memory

Create
VCPU

KVM
RUN

User space

World
switch

Kernel

Guest

Friday, July 16, 2010

Start
QEMU

Alloc
memory

Create
VM

Register
memory

Create
VCPU

KVM
RUN

User space

Kernel

World
switch

Native guest execution

Guest

Friday, July 16, 2010

Start
QEMU

Alloc
memory

Create
VM

Register
memory

Create
VCPU

KVM
RUN

User space

Kernel

World
switch

Native guest execution

Guest

Interrupt

Friday, July 16, 2010

Start
QEMU

Alloc
memory

Create
VM

Register
memory

Create
VCPU

KVM
RUN

User space

Kernel

World
switch

Native guest execution

Guest

Interrupt

World
switch

Friday, July 16, 2010

Start
QEMU

Alloc
memory

Create
VM

Register
memory

Create
VCPU

KVM
RUN

User space

Kernel

World
switch

Native guest execution

Guest

Interrupt

World
switch

Handle
exit

Friday, July 16, 2010

Start
QEMU

Alloc
memory

Create
VM

Register
memory

Create
VCPU

KVM
RUN

User space

Kernel

World
switch

Native guest execution

Guest

Interrupt

World
switch

Handle
exit

Handle I/O?

Friday, July 16, 2010

Start
QEMU

Alloc
memory

Create
VM

Register
memory

Create
VCPU

KVM
RUN

User space

Kernel

World
switch

Native guest execution

Guest

Interrupt

World
switch

Handle
exit

Handle I/O?

Emulation

Friday, July 16, 2010

Start
QEMU

Alloc
memory

Create
VM

Register
memory

Create
VCPU

KVM
RUN

User space

Kernel

World
switch

Native guest execution

Guest

Interrupt

World
switch

Handle
exit

Handle I/O?

Emulation

Friday, July 16, 2010

New KVM architecture

• Logical separation of architecture
dependent and independent code

•kvm_arch_XXX

•kvm_XXX

Friday, July 16, 2010

• KVM

• CPU virtualization on ARM

• Memory virtualization on ARM

• World Switch details

• Implementation status

Friday, July 16, 2010

ARM virtualization

• ARM is not virtualizable - nor does it have
hardware virtualization support

• Possible solutions:

• binary translation

• or paravirtualization

Friday, July 16, 2010

Binary Translation

• Traditionally done out-of-place with a
translation cache

• Difficult to make it fast

• Contradicts idea of KVM

Friday, July 16, 2010

Paravirtualization

• Changes the guest kernel to replace code
with sensitive instructions with hypercalls

• Guest kernel is modified by hand

• Hard to merge changes with upstream
Kernel versions

Friday, July 16, 2010

Original code:

mrs r2, cpsr @ get current mode
tst r2, #3 @ not user?
bne not_angel

Lightweight-paravirtualization
(LPV)

Friday, July 16, 2010

Original code:

mrs r2, cpsr @ get current mode
tst r2, #3 @ not user?
bne not_angel

Lightweight-paravirtualization
(LPV)

Friday, July 16, 2010

Original code:

swi 0x022000 @ get current mode
tst r2, #3 @ not user?
bne not_angel

Lightweight-paravirtualization
(LPV)

Friday, July 16, 2010

Lightweight-paravirtualization
(LPV)

• Replace sensitive instructions with traps

• Traps encode original instruction and operands

• Emulate replaced instructions in KVM

• Script-based solution applicable to any vanilla
kernel tree

Friday, July 16, 2010

LPV encoding example
 mrs r2, cpsr

 swi 0x022000

Status register
access function

 23 20 19 16 15 14 12 0
 +--------------+-------------------+--+-------------+-----------------------------+
 | 0 | Rd | R| 2 | OIF |
 +--------------+-------------------+--+-------------+-----------------------------+

MRS encoding

Friday, July 16, 2010

LPV implementation

• Uses regular expressions to search for
sensitive assembly instructions

• ~150 lines (written in Python)

• Supports inline assembler, preprocessor
macros and assembler files.

Friday, July 16, 2010

LPV requirements

• Assumes guest kernel does not make
system calls to itself

• Module source code must also be handled

• GCC does not generate sensitive
instructions from C-code

Friday, July 16, 2010

LPV key points

• Encodes each sensitive instructions to a
single trap

• As efficient as trap-and-emulate

• Fully automated

• Doesn’t affect kernel code size

Friday, July 16, 2010

• KVM

• CPU virtualization on ARM

• Memory virtualization on ARM

• World Switch details

• Implementation status

Friday, July 16, 2010

Virtual memory

0 4 GB

Devices
Physical

Addresses RAM

Kernel

4 GB0

User space application
Virtual

Addresses

MMU

Page Tables

Friday, July 16, 2010

New address space

0 4 GB

Devices
Host physical

(Machine) Addresses RAM

Guest Kernel

4 GB0

Guest user space application
Guest virtual
Addresses

MMU

0 4 GB

Devices
Guest physical

Addresses
RAM

Friday, July 16, 2010

New address space

0 4 GB

Devices
Host physical

(Machine) Addresses RAM

Guest Kernel

4 GB0

Guest user space application
Guest virtual
Addresses

MMU

Shadow page tables

0 4 GB

Devices
Guest physical

Addresses
RAM

Friday, July 16, 2010

Shadow page tables

• Map

• Guest Virtual Addresses to

• Host Physical Addresses

• One per guest page table (process)

• Start out empty and add entries on page
faults (on demand)

Friday, July 16, 2010

Address translation

KVM process
Virtual Memory

Guest physical

Guest virtual

Host kernel Guest memory

Machine memory

Friday, July 16, 2010

Address translation

KVM process
Virtual Memory

Guest physical

Guest virtual

Host kernel Guest memory

Machine memory

Walk guest page tables
in software:
gva_to_gfn(...);

Friday, July 16, 2010

Address translation

KVM process
Virtual Memory

Guest physical

Guest virtual

Host kernel Guest memory

Machine memory

Built-in KVM
functionality:
gfn_to_hva(...);

Walk guest page tables
in software:
gva_to_gfn(...);

Friday, July 16, 2010

Address translation

KVM process
Virtual Memory

Guest physical

Guest virtual

Host kernel Guest memory

Machine memory

Kernel functionality:
page = virt_to_page(...);
pfn = page_to_pfn(page);

Built-in KVM
functionality:
gfn_to_hva(...);

Walk guest page tables
in software:
gva_to_gfn(...);

Friday, July 16, 2010

Shadow page table
consistency

• Caching shadow page tables is an
optimization

• Keep cached page tables in sync by
protecting guest page tables and tracking
updates

Friday, July 16, 2010

• Goal

• Protect host from guest

• Honor intended guest protection

• ARM provides flexible protection methods

• Access is specified per CPU privilege level

Memory Protection

Friday, July 16, 2010

Access Protection Bits

AP Privileged User

00 None None

01 R/W None

10 R/W R/O

11 R/W R/W

Friday, July 16, 2010

Access mapping
example

• Guest page table specifies:

• Privileged: R/W

• User: No Access

• Shadow page table bits in guest user mode:

• User: No Access

• Shadow page table bits in guest priv. mode:

• User: R/W

Friday, July 16, 2010

Access mapping
example

• Guest page table specifies:

• Privileged: R/W

• User: No Access

• Shadow page table bits in guest user mode:

• User: No Access

• Shadow page table bits in guest priv. mode:

• User: R/W

Friday, July 16, 2010

Access mapping
example

• Guest page table specifies:

• Privileged: R/W

• User: No Access

• Shadow page table bits in guest user mode:

• User: No Access

• Shadow page table bits in guest priv. mode:

• User: R/W

Friday, July 16, 2010

• KVM

• CPU virtualization on ARM

• Memory virtualization on ARM

• World Switch details

• Implementation status

Friday, July 16, 2010

KVM
RUN

User space

Kernel

World
switch

Native guest execution

Guest

Interrupt

World
switch

Handle
exit

Handle I/O?

Emulation

World Switches

Friday, July 16, 2010

World switch

• Disable interrupts

• Store host state

• Switch page tables

• Load guest state

• Enable interrupts

• Jump to guest code

• Store exit state

• Switch page tables

• Restore host state

• (Host kernel IRQ handler)

• Enable interrupts

• Return to ioctl call

To guest From guest

Friday, July 16, 2010

World switch

• Disable interrupts

• Store host state

• Switch page tables

• Load guest state

• Enable interrupts

• Jump to guest code

• Store exit state

• Switch page tables

• Restore host state

• (Host kernel IRQ handler)

• Enable interrupts

• Return to ioctl call

To guest From guest

Friday, July 16, 2010

World switch

• Disable interrupts

• Store host state

• Switch page tables

• Load guest state

• Enable interrupts

• Jump to guest code

• Store exit state

• Switch page tables

• Restore host state

• (Host kernel IRQ handler)

• Enable interrupts

• Return to ioctl call

To guest From guest

Friday, July 16, 2010

World switch

• Disable interrupts

• Store host state

• Switch page tables

• Load guest state

• Enable interrupts

• Jump to guest code

• Store exit state

• Switch page tables

• Restore host state

• (Host kernel IRQ handler)

• Enable interrupts

• Return to ioctl call

To guest From guest

Friday, July 16, 2010

Switch page tables

PC

Friday, July 16, 2010

Shared Page

Machine memory

Guest Kernel

4 GB0

User space application
Guest Virtual

Addresses

Host Kernel

4 GB0

QEMU virtual memory
Host Virtual
Addresses

0xFFFF1000

0xFFFF1000

Friday, July 16, 2010

Shared Page

Machine memory

Guest Kernel

4 GB0

User space application
Guest Virtual

Addresses

Host Kernel

4 GB0

QEMU virtual memory
Host Virtual
Addresses

0xFFFF1000

0xFFFF1000

Friday, July 16, 2010

Shared Page Internals

Temporary Data

Code

Temporary
Stack

0xffff 1000

0xffff 1fff

Friday, July 16, 2010

• KVM

• CPU virtualization on ARM

• Memory virtualization on ARM

• World Switch details

• Implementation status

Friday, July 16, 2010

Status

• Successfully boots Linux VMs

• Host built on Android Kernel 2.6.27

• Tested guest kernels from 2.6.17 to 2.6.33

Friday, July 16, 2010

• Improve performance

• Cache shadow page tables

• Avoid unnecessary world-switches

• Binary patching

• Test device support

• Upstream!

Future work

Friday, July 16, 2010

ARMv6

• Physically tagged caches

• TLB “Application Space Identifiers” (ASID’s)

• New instructions

Friday, July 16, 2010

Related Work

• Commercial solutions:

• VMWare MVP, OK Labs, VirtualLogix, ...

• Open-source:

• QEMU

• XenARM

Friday, July 16, 2010

Conclusions

• ARM virtualization is important

• With LPV we now have KVM/ARM

• LPV is simple, fully automated, and efficient

• Minimally intrusive

• It works!

Friday, July 16, 2010

Tasks
• Caching of shadow page tables

• Moving things to shared page

• Coalesced MMIO

• GDB support

• Testing devices (on BeagleBoards, IGEPv2
boards etc.)

• ...

Friday, July 16, 2010

Want to contribute?

• Mailing list:
android-virt@lists.columbia.edu

• WIKI:
http://wiki.ncl.cs.columbia.edu

• Source code:
http://git.ncl.cs.columbia.edu/git

Friday, July 16, 2010

mailto:android-virt@lists.columbia.edu
mailto:android-virt@lists.columbia.edu
http://wiki.ncl.cs.columbia.edu
http://wiki.ncl.cs.columbia.edu
http://git.ncl.cs.columbia.edu/git/
http://git.ncl.cs.columbia.edu/git/

Extra Material

Friday, July 16, 2010

• Same as on x86:

• Test and Development

• OS freedom

• Multiple Personas

• Virtualization features

Use cases

Friday, July 16, 2010

Exceptions

• Traps & Interrupts

• CPU changes mode and execution starts
from “vectors” at either:

• 0x00000000 + offset

• or 0xFFFF0000 + offset

Friday, July 16, 2010

Exceptions and KVM/ARM

• KVM/ARM uses custom handlers to handle
exceptions while executing guest

• Exceptions are the only way to:
“exit from the guest”

• IRQ’s are forwarded to the host kernel
handlers

• Traps are handled by KVM/ARM

Friday, July 16, 2010

Guest Kernel

4 GB

User space application
Guest Virtual

Addresses

0xFFFF0000

Hardware exception
vector page

0x0

Guest exception
vector page

Guest exceptions

Guest uses “low” vectors

Friday, July 16, 2010

What happens at a conflict?

• KVM/ARM’s vectors are mapped with no-
access for user mode code at 0xffff0000

• The guest tries to access 0xffff0000 page

• KVM/ARM handles the permission fault

Friday, July 16, 2010

Guest Kernel

4 GB

User space application
Guest Virtual

Addresses

0xFFFF0000

Hardware exception
vector page

0x0

Guest exception
vector page

Exception page conflict

Friday, July 16, 2010

Guest Kernel

4 GB

User space application
Guest Virtual

Addresses

0x0

Hardware exception
vector page

0xffff0000

Guest exception
vector page

Exception page conflict

Guest uses “high” vectors

Friday, July 16, 2010

Guest Kernel

4 GB

User space application
Guest Virtual

Addresses

0xFFFF0000

Hardware exception
vector page

Exception page conflict

Guest uses “high” vectors,
but needs access to page 0

Friday, July 16, 2010

