
Teaching Operating Systems Using Code Review

Christoffer Dall
Dept of Computer Science

Columbia University
New York, NY

cdall@cs.columbia.edu

Jason Nieh
Dept of Computer Science

Columbia University
New York, NY

nieh@cs.columbia.edu

ABSTRACT
Learning about operating systems often involves modifying a
large and complex code base. Grading student projects can be
difficult and time consuming, yet students often do not learn
from their programming errors and struggle to understand core
operating system concepts. We present GradeBoard, a code review
system designed to simplify grading for instructors and enable
students to understand and learn from their errors. GradeBoard
provides an easy-to-use Web interface that allows instructors
to annotate student code submissions with grading comments
and scores, and students to discuss the comments and scores
with instructors. GradeBoard presents student code changes with
syntax highlighting and lets users collapse or expand code sections
to provide a desired level of context, making it easier to read and
understand student programming project submissions. Comments
and scores are easily identifiable by visual cues, improving inter-
action between instructors and students. We have deployed and
used GradeBoard in a large operating systems course involving
Linux kernel programming projects. GradeBoard provided robust,
easy-to-use functionality for reviewing Linux kernel code changes,
improved the instructional staff grading experience, and over 90%
of students surveyed indicated that GradeBoard improved their
understanding of the kernel programming projects better than
other alternatives.

Categories and Subject Descriptors: D.4.0 [Operating Sys-
tems]: General; K.3.1 [Computers and Education]: Computer Uses
in Education–distance learning; K.3.2 [Computers and Education]:
Computer and Information Science Education–computer science
education

Keywords: Operating Systems, Code Review, Instructional
Tools

1. INTRODUCTION
Programming projects are an important aspect of learning

about operating systems (OSes) [8,10]. Many approaches have
been developed for providing such hands-on programming expe-
rience, including OS simulation environments, pedagogical OSes,
and kernel development in commercial OSes. However, students of-
ten struggle with writing OS code and a disproportionate amount

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCSE’14, March 5–8, 2014, Atlanta, GA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-2605-6/14/03 ...$15.00.
http://dx.doi.org/10.1145/2538862.2538894.

of time is spent by instructors evaluating student code without
contributing to the actual learning process.

OS hands-on programming assignments typically provide stu-
dents with some common software code base as a starting point
for their programming projects, whether it be a small pedagogical
OS in which students add substantial components or a large
commercial OS that students modify to provide new features.
Grading these projects can be especially hard because the projects
involve not just writing an assignment from scratch in isolation,
but modifying code throughout a potentially large and complex
existing code base. To provide useful feedback to students to
help them learn from their mistakes, students can be asked to
give live demonstrations of their work, but this carries the risk
of missing errors in handling important corner cases such as
concurrency and synchronization, which are especially important
and at the same time difficult to get right. Another approach
is to run automated tests on student implementations, but test
cases treat an implementation largely as a black box and do not
cover subtle error cases or code design and readability.

To properly evaluate student work and give students useful
feedback, it is crucial to review the code itself. This can be difficult
to do for a variety of reasons. For example, many approaches
simply provide feedback in terms of a grade sheet that summarizes
the points deducted for various mistakes. This provides no direct
correlation with the actual submitted code, leaving students with
little choice but to try to hunt through numerous lines of code to
identify the mistakes they made. Even if instructors refer to code
using file names and line numbers, finding and following these
references is tedious and error prone for both instructors and
students, making it unlikely for students to learn from the process.

An alternative approach is to manually inline instructor com-
ments directly in submitted code and make the commented code
available to students to review. Unfortunately, this is at best a
time consuming grading process for both instructors and students.
Instructors are provided little help in grading numerous lines of
code that may be embedded in large complex pieces of software,
making the grading process difficult. Students must then use
command line tools to find instructor comments with no visual
structure or road map for figuring out where those comments
might be and which ones might be of greatest importance for
learning. The end result is that such grading is often a one-way
process in which students see their grades but do not gain a
complete understanding of their programming errors.

To address these problems, we present GradeBoard, a Web-
based code submission and review system for providing grading
feedback to students to help them learn more efficiently. Grade-
Board provides a rich and flexibleWeb interface to make code more
accessible, which helps instructors grade and comment on code and

New
Programming

Project

Create
Student

Repositories

Download
repositories

(Git)

Edit and
commit locally

(Git)

Submit to
server using Git

Upload to
Review Board

(GradeBoard)

Grade Code
(Review Board)

Student
Feedback

(Review Board)

Instructor
Feedback

(Review Board)

Done

Instructors Students Students

Students

InstructorsInstructorsStudentsInstructors

Figure 1: GradeBoard workflow

helps students read and understand code comments. Code changes
are shown in a side-by-side diff view with code syntax highlighting,
making it much easier to read and understand changes to a large
existing code base than reading code diffs using command line tools.
GradeBoard collapses large chunks of unmodified code, letting in-
structors focus on grading changed or new code, a feature especially
useful when instructors need to consider small changes to large files.
Students receive summaries of grading comments and see instruc-
tor comments as visual overlays in the code, which they can click on
to ask questions about grading comments. Instructors can reply in
one or several rounds to provide additional feedback. GradeBoard’s
Web-based interface is easily accessible from any computer with
a Web browser without any further configuration or installation.

GradeBoard is based on standard widely used software devel-
opment tools, the Git version control system [13] and the Review
Board code review system [3]. This provides several benefits.
First, because these tools are commercially supported, we can
focus limited resources on teaching rather than spending time
on in-house tool development. Second, because these tools are
widely used in industry, students gain experience with real-world
software development. Third, because these tools are open-source
and widely-used in commercial settings, they continue to be devel-
oped and improved, which naturally evolves the tools and enables
students to learn in a modern context.

We successfully deployed and used GradeBoard in a large intro-
ductory OS course at Columbia University. Our experience shows
that GradeBoard proved very useful for both instructors and
students. Over 90% of students participating in a survey found
that using GradeBoard improved their understanding of program-
ming projects. Many students even said that using GradeBoard
encouraged them to submit well-formatted code. The instructional
staff found that GradeBoard significantly reduced time spent on
grading kernel source code and reduced the number of grading
mistakes by conveniently showing instructors the necessary con-
text to code changes. Instructors were also very pleased with
the ease of use and convenient overview of graded and ungraded
projects. GradeBoard also facilitated more consistent grading by
allowing instructors to inspect and discuss each other’s grading.

2. USAGE MODEL
Figure 1 shows the GradeBoard workflow. It leverages a code

distribution and submission system based on Git and a Web-based
code review system based on Review Board. GradeBoard runs on
an instructor-controlled server. Students can access GradeBoard
from any computer and work on their programming projects on
any computer on or outside the University network.

To assign a new programming project, an instructor creates a
Git repository on the GradeBoard server containing the common
code base used as a starting point for the student projects. For
example, projects using Linux will typically use the Linux kernel
as the common code base. Once the base repository is set, an
instructor issues a single create-hmwk command and the repos-
itory is automatically duplicated, or cloned, for each student so
that each student has a copy of the common code base. Student
repositories can be cloned for individual students or teams of
students, based on instructor preference.

To work on an assigned programming project, students down-
load their repositories to their own computers using standard
Git commands. Students can only access repositories assigned
to them by the instructor. Students work on the code using
their own computers and make incremental commits to their Git
repositories using standard Git commands. Students are allowed
to make commits and push those commits to the GradeBoard
server up until a specified project deadline, at which point any
further attempts to submit are blocked. The last pushed commit
is considered the student’s final submission to be graded.

Figure 2: GradeBoard dashboard

Figure 3: GradeBoard diff file overview

To upload the submissions to the GradeBoard review system for
grading, an instructor simply executes a single create-review

command, which causes GradeBoard to go through each student
submission and upload and make it available for review through
the Web-based Review Board system. As shown in Figure 2, a
dashboard lists all the uploaded student submissions, along with
information about each submission such as a summary description,
the submitter, how many times the submission has been reviewed
by instructional staff, and if there are any comments created by
the specific instructional staff member currently logged in. Mul-
tiple instructional staff members is supported, which can include,
for example, an instructor and multiple teaching assistants or
graders. Instructors can add additional columns of information
and can sort, filter, and search on all columns.

To grade a student submission, instructors select an ungraded
submission from the dashboard and see a side-by-side diff view

Figure 4: GradeBoard instructor view of submitted homework assignment. Part (A) shows changes to an existing file. When clicking
a line, the comment dialog for that line appears (B). When writing the first comment, the review status bar (C) appears at the top
of the screen. Existing comments are shown as overlays on the line numbers for either single lines (D) or multiple lines (E). New
files are shown as a single column (F). Numbers in comment overlays indicate number of comments on the line.

of the submitted code. As can be seen in Figure 3, the top of
the diff view shows an overview of modified and added files. The
overview shows the full path and file name and the number of
changed code blocks for each file and reviewers can click on a file
to scroll to changes in that file.

Figure 4 shows the main part of the instructor diff view. Each
new file is clearly marked with a separate box with the full path
and file name in the header of each box. The side-by-side diff view
(A) shows the new version of a file on the right and the old version
of a file on the left. New files are annotated as such and show only a
single column (F). Source code is syntax highlighted to ease reading
code. Green lines are new lines, yellow lines are modified lines, and
red lines are deleted lines. Large chunks of unmodified lines are col-
lapsed to a single gray line, and users can click to expand these lines.
The ability to expand lines and see the full context of a modified
file is especially useful for reviewing kernel code, where contextual
information can be crucial to understand added code. Changes on
a particular line are also highlighted so users easily can pinpoint
the exact changes. Line numbers are shown on both the original
and changed file. Instructors comment on a single line or a block of
lines by simply clicking anywhere on these lines, causing a dialog
window to appear (B) where instructors can easily enter comments.
GradeBoard supports a live Web 2.0-style interface with ad-hoc
commenting by continuously saving comments whenever a user
edits them. GradeBoard stores a collection of comments to a code
submission as a review. When the first comment is added, a review
is automatically created and a review status bar (C) is added to
the top of the screen. Reviews are initially created as drafts not
accessible by other instructors until they are published, and not

Figure 5: GradeBoard summary of review

accessible by students until they are released. Overlays (D) and (E)
on the line numbers indicate instructor comments for those lines.

Instructors grade submissions by commenting on source code
lines as described above and choose a number of points to deduct
in the comment dialog for each grading comment. Instructors can
also edit a draft review by clicking the Edit Review button in the
review status tool bar, which presents a summary view allowing
instructors to edit comments and subtracted points. Figure 5 shows
the summary view, which displays the total number of deducted
points and is useful to check the grading of a project before
publishing the review. Publishing a review does not make the
grading available to students, but lets other instructors access the

Figure 6: GradeBoard inline grading comment discussion

review so they can discuss the grading style and points deducted
internally before releasing grades to students.When all submissions
have been graded, instructors can release all grades to the students
at the same time by simply clicking a button in the Web interface.

Students review their grading by logging into GradeBoard where
they can only see their own submitted projects. When students
click on one of their submissions they are presented with a sum-
mary view similar to that shown in Figure 5 and a diff view similar
to that shown in Figure 4, except that students cannot modify their
grading score. Students see comments in the diff view as overlays
on the line numbers and simply moving the mouse cursor over the
overlays shows the comment. Students reply to comments directly
in the summary view or by clicking comment overlays in the diff
view. Students can prepare a draft response similar to how instruc-
tors create draft reviews. A response is a collection of questions on
grading comments and students publish a response by clicking the
Publish button on the response status bar analogous to the review
status bar. There is no release step for students since there is no
need for all student comments to be sent to instructors at the same
time. GradeBoard shows the questions and answers as a threaded
discussion under each grading comment in the summary view as
shown in Figure 6. Instructors reply to student questions similarly
to how students ask questions and this feedback loop can be re-
peated as many times as required to explain concepts to students.

Students and instructors are notified through e-mail when
grades are released, when students ask questions about grading
comments, and when instructors answer student questions. The
e-mails contain a link to the submission being discussed and a
summary of the grading comments and related discussions for
that review. The e-mail summary additionally provides a link
on each comment directing users to a response form for that
comment on the Web interface.

Using GradeBoard to discuss grading comments improves the
learning experience for students for a number of reasons. First,
replying to a grading comment is faster and more convenient than
sending an e-mail or attending office hours to ask for clarification,
making it more likely that students ask questions about areas
in which they struggle. An increase in the number of student
questions on grading comments is a good thing, since answering
these questions directly ensures that students understand the core
concepts they struggle with. Second, GradeBoard’s user interface
provides a discussion type layout of the questions and answers to
grading comments making it easy to track the conversation. The
discussion thread is shown inline in the code so instructors and
students can easily inspect the code being discussed and refer to
it in questions and answers. Third, the entire instructional staff
has access to the grading comments and discussions, which allows

one instructor to answer a question when another instructor is not
available and allows one instructor to further clarify the answer
from another instructor.

3. SYSTEM ARCHITECTURE
GradeBoard consists of three major components: The first com-

ponent is a source code revision system, Git, used to distribute a
common code base to students, to collaborate on projects within
student teams, and to submit final solutions to programming
projects. The second component is a Web-based code review sys-
tem based on the commercially maintained open-source software
Review Board. The third component is a management tool used to
integrate Git and Review Board for a teaching environment. Git
is used completely unmodified and GradeBoard is only slightly
modified from Review Board making it easy to leverage new
features from new releases of both systems.

GradeBoard is easy to install and configure on any Linux server.
We install the Git management system Gitosis [15] to manage
repository access control and the Review Board application is
easily installed by following the instructions on the official Review
Board Web site [4] and applying our small patch.

The management tool provides instructors with a set of com-
mands that are executed from the instructor’s local machine and
interact remotely with the GradeBoard server. GradeBoard man-
agement tools abstract low-level Git and Review Board commands
from instructors and let instructors issue a single command on be-
half of all students and their teams. For example, instructors issue
a single create-hmwk command and all student template repos-
itories for that programming project are automatically created.
The management tool accomplishes this by maintaining a central
list of enrolled students and their teams. When student enrollment
changes during the course of the semester, instructors need only to
change the central list of enrolled students, and the system adjusts
authentication settings and group memberships accordingly to
prevent, for example, that a student who dropped the course
receives future e-mails from the system. Similarly, if a student
joins the class late, an instructor simply adds that student and her
team assignment to the list of enrolled students and GradeBoard
automatically sends out a welcome e-mail with instructions on
how to get started with the system to the new student.

Instructors create template repositories for each student or
student team from a single shared code base by first creating a
base repository on the server, for example containing a copy of
the Linux kernel. Instructors then use the management tool to
clone the base repository for each registered student or student
team. GradeBoard leverages existing Git features to use hard links
for every shared file, inducing minimal disk space overhead. A
standard version 2.6.35 Linux kernel repository consumes 492MB
of disk space, which would amount to 50GB of disk space for 100
students if the repositories were to be simply copied or created
from scratch for each student. Using hard links only consumes
128KB per extra unmodified clone, resulting in less than 500MB
of total used disk space for all unmodified student repositories.
In addition to imposing only modest hardware requirements, the
low disk space usage also simplifies backup procedures.

The management tool command create-review utility col-
lects all student changes to the base project source code repository
and uploads these changes to the code review system. Review
Board accesses the base repository to generate a combined diff of
the changes and uses the original source code to show context when,
for example, users expand a collapsed section in the diff view.

Review Board’s authentication system supports creating user
groups, which allows us to configure access permissions such that

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

Improved	

homework	

understanding	

Preferred	
 over	

E-­‐mailed	
 score	

sheets	

Preferred	
 over	

comments	
 in	

Git	

Encouraged	

well-­‐formaFed	

code	

Agree	
 Disagree	

(a) Overall student experiences (b) Usefulness of discussion features (c) Improved experience reading diffs

Figure 7: Survey Results

students can only access their own submissions and instructors can
access all submissions. Review Board’s default configuration lets
submitters modify their own submissions without any restrictions,
which does not work in a teaching environment where students
cannot be allowed to modify a submission after a project deadline.
To address this limitation we changed Review Board’s default
behavior to not allow users to upload or edit submissions. We also
added a custom authentication setting that allows specific users to
upload and edit all submissions, and we configure Review Board
to only apply this setting to the instructor authentication group.

A modest number of simple changes are required to the stan-
dard Review Board lines of code in Review Board v1.6.1, less than
100 lines of Python code and about 200 lines of HTML/JavaScript
have been added to support the authentication mechanism and
calculating grading scores. These changes are non-intrusive to
Review Board’s standard functionality as a code review tool and
do not modify existing features. They only add new optional
features and can therefore easily be integrated in the standard
Review Board code base without compromising other functionality.
For example, we applied the same patch to two different versions
of Review Board without any complications.

4. EXPERIENCES
We implemented and evaluated the use of GradeBoard in the

Fall 2011 introductory OS class at Columbia University. During
the course, six two-week programming projects were assigned [1].
Each project involved modifying the Linux kernel relating to a
core OS subject and included a written non-programming part as
well as the programming project. To run GradeBoard, we used
a single central server with two Intel Xeon 3.06GHz CPUs, 2GB
RAM, and 16GB RAID-1 storage, though more modest hardware
could have been used. 2GB RAM was useful to keep the Linux
kernel repository and Web server state in memory.

The GradeBoard commenting feature was heavily used. Stu-
dents commented on over 80% of the graded programming projects,
often asking for further clarification of a programming error. For
example, a number of students did not fully understand problems
in their programming project relating to synchronization and race
conditions, a topic which students typically struggle to fully com-
prehend. GradeBoard’s commenting feature allowed instructors
to easily tailor the level of explanation detail for each student.

At the end of the course, we asked students to evaluate their
experiences using GradeBoard. Out of more than 100 students
enrolled at the end of the semester, 57% of the students, completed
the evaluation survey. Figures 7a, 7b, and 7c show the results of the

survey. More than 90% of the students who completed the survey
said that the use of GradeBoard improved their understanding
of the programming projects by being able to see comments from
instructors directly in context with the submitted source code lines.
More than 80% of the students preferred GradeBoard to e-mailed
score sheets or viewing instructor comments committed to source
code repositories. Almost half the students who completed the
survey, said that using GradeBoard encouraged them to submit
easier-to-read, more well-formatted code. Finally, the majority of
the students found GradeBoard useful for discussing grading with
the instructional staff, and improved the experience of reading code
diffs compared to reading flat diff files. However, a few students
also felt that the GradeBoard Web interface was difficult to learn.

In addition to being well received by students, GradeBoard was
tremendously beneficial for the instructional staff. TAs were very
pleased with the interface and felt that it significantly improved
the experience of grading and strongly preferred using GradeBoard
compared to manually have to write up grade sheets or clone repos-
itories and add comments to student code. This was confirmed by
TAs from previous years, who told us they would have strongly
preferred using GradeBoard compared to other alternatives.

GradeBoard also turned out to be helpful when interacting
in person with students, for example during office hours, where
students would often ask questions about grading comments or
would ask for help to understand design flaws or other errors
in their submission. In this situation, instructors and students
benefited from accessing GradeBoard on a shared computer to
inspect and discuss the code and comments together. This avoided
the need to search for previous e-mail discussions, look up grade
sheets, or spend time waiting to download the student source
code, improving the efficiency and experience of office hours for
both instructional staff and students alike.

5. RELATED WORK
Some structured grading systems have been developed. Version

control systems have been proposed [7,11] for grading feedback
by allowing instructors to directly edit student assignments and
commit grading comments in student source code repositories.
This command line based approach is inconvenient and does not
provide an easy-to-use graphical or Web interface for browsing
through graded programming assignments. This is problematic
as the students who need the most feedback are those who are
also most likely to have less developed skills at reading patches
directly and using version control tools to be able to find and
review grading feedback. In contrast, GradeBoard does not require

students to use any command line utilities to read and understand
grading comments. GradeBoard’s Web interface is easy-to-use
and provides syntax highlighting and the ability to view the full
context of code changes combined with visual cues to instructor
comments and student feedback.

Praktromat [16] provides basic automatic testing of submissions
and allows students to review each other’s programming projects.
However, Praktomat only provides a text dump of the entire
programming project submission. Unlike GradeBoard, it does not
provide any way to view only the changes made to a common code
base, and lacks a convenient easy-to-use dynamic and graphical
Web-based interface for code review.

Caesar [12] focuses on social reviewing where code submissions
are broken up into chunks and each chunk is reviewed by different
reviewers, who can be other students or members of the instruc-
tional staff. Caesar is not suitable for OS kernel programming
projects where the amount of code may be small, but extremely
dense, and solutions must be read as a whole to verify correctness.
Caesar lacks GradeBoard’s ability to easily switch back and forth
among different views of a code submission, seeing parts of files,
whole files or only code changes, all valuable features especially
for reviewing OS programming projects.

CodeWave [14] provides an Integrated Development Environ-
ment (IDE) with shared real-time editing and record/replay
functionality focusing on evaluating the development process in
addition to final submissions. However, its IDEmay not be suitable
for OS programming and is not designed for viewing changes to a
large common code base. CodeWave also lacks GradeBoard’s abil-
ity to easily switch between different views of a code submission.

MarkUs [9] is an open-source Web-based tool for grading stu-
dent submissions. However, it is designed to only show complete
submitted files and not changes to an existing large code base.
MarkUs’s inability to view diffs limits its utility for reviewing any
programming projects involving large common code bases, such as
OS kernel programming projects. OSBLE [6] is another Web-based
code review tool that does not support reviewing code changes to a
common code base and lacks GradeBoard’s ability to easily switch
back and forth among different views of a code submission. These
pedagogical code review systems have to be separately maintained
by a limited community of volunteer open-source developers or
students, resulting in maintenance overhead and limited function-
ality. In contrast, GradeBoard builds on open-source tools that
are already widely used in commercial software development with
strong commercial community support, ensuring robust function-
ality that can scale to support large code bases and programming
projects, such as those used in many Linux-based OS courses.

While GradeBoard builds on Review Board, other commer-
cial code review systems are also available. Our experience with
those systems indicates that they may be less well-suited for
providing grading feedback. For example, Gerrit [5], used for
the Android Open Source Project (AOSP), does not provide a
convenient summary view of a code review, requiring students to
click through all submitted files to look for annotations that could
be used for instructor comments. It is built around a vastly more
complicated authentication model and has a more complicated
and less intuitive user interface. As another example, Atlassian
Crucible [2] is proprietary, cannot be easily modified to work in
a teaching environment, and may incur licensing fees.

6. CONCLUSIONS
We have developed GradeBoard, a Web-based code review sys-

tem that saves time for both teachers and students by simplifying
the process of reading, grading, and commenting on student code

submissions. GradeBoard makes it easy to identify student code
changes to an existing code base with syntax highlighting and lets
users collapse or expand code sections to provide the desired level
of context. These features make GradeBoard especially useful
for teaching operating systems, since students may modify code
throughout a large and complex code base. Students learn more
from hands-on programming projects when using GradeBoard
for two reasons. First, grading comments are much easier to
understand as they are shown as annotations directly on student
code. Second, students and instructors can easily engage in dialog
directly in context with the grading comments, ensuring that
students fully understand and learn from their mistakes. Because
GradeBoard builds on widely used commercial tools, it is easy to
maintain and keep up with commercial practice, and introduces
students to standard code review procedures and tools, enhancing
their educational experience. Our experiences teaching operating
systems using GradeBoard show that GradeBoard is preferred
by students over other alternatives, improved students’ under-
standing of their homework code, and significantly improved the
instructors’ experience of grading compared to other alternatives.

7. ACKNOWLEDGEMENTS
This work was supported in part by NSF grants CNS-1162447,

CCF-1162021, and CNS-1018355.

8. REFERENCES
[1] J. Andrus

and J. Nieh. Teaching Operating Systems Using Android. In
Proceedings of the 43rd ACM Technical Symposium on Computer
Science Education (SIGCSE 2012), pages 613–618, Mar. 2012.

[2] Atlassian. Crucible. http://www.atlassian.com/software/crucible/.

[3] Beanbag Inc. Review Board. http://www.reviewboard.org.

[4] Beanbag Inc. Review Board Installation Guide. http:
//www.reviewboard.org/docs/manual/dev/admin/installation/linux.

[5] Google. Gerrit Code Review. http://code.google.com/p/gerrit.

[6] C. Hundhausen, A. Agrawal, and K. Ryan. The Design of
an Online Environment to Support Pedagogical Code Reviews. In
Proceedings of the 41st ACM Technical Symposium on Computer
Science Education (SIGCSE 2010), pages 182–186, Mar. 2010.

[7] O. Laadan, J. Nieh, and N. Viennot. Teaching Operating Systems
Using Virtual Appliances and Distributed Version Control. In
Proceedings of the 41st ACM Technical Symposium on Computer
Science Education (SIGCSE 2010), pages 480–484, Mar. 2010.

[8] O. Laadan, J. Nieh, and N. Viennot. A Structured Approach
to Linux Kernel Projects for Teaching Operating Systems. In
Proceedings of the 42nd ACM Technical Symposium on Computer
Science Education (SIGCSE 2011), pages 287–292, Mar. 2011.

[9] MarkUs Project. MarkUs. http://www.markusproject.org.

[10] J. Nieh and C. Vaill. Experiences Teaching
Operating Systems Using Virtual Platforms and Linux. In
Proceedings of the 36th ACM Technical Symposium on Computer
Science Education (SIGCSE 2005), pages 520–524, Feb. 2005.

[11] K. L. Reid and G. V. Wilson. Learning by Doing: Introducing
Version Control as a Way to Manage Student Assignments. In
Proceedings of the 36th ACM Technical Symposium on Computer
Science Education (SIGCSE 2005), pages 272–276, Feb. 2005.

[12] M. Tang.
Caesar: A Social Code Review Tool for Programming Education.
Master’s thesis, Massachusetts Institute of Technology, Sept. 2011.

[13] L. Torvalds. Git. http://git-scm.com.

[14] J. Vandeventer and B. Barbour. CodeWave: A Real-Time,
Collaborative IDE for Enhanced Learning in Computer Science. In
Proceedings of the 43rd ACM Technical Symposium on Computer
Science Education (SIGCSE 2012), pages 75–80, Feb. 2012.

[15] T. Virtanen. Gitosis: Software for
Hosting Git Repositories. https://github.com/res0nat0r/gitosis.

[16] A. Zeller. Making students read and review code. In Proceedings of
the 5th Annual Conference on Innovation and Technology in Com-
puter Science Education (ITiCSE 2000), pages 89–92, Sept. 2000.

http://www.atlassian.com/software/crucible/
http://www.reviewboard.org
http://www.reviewboard.org/docs/manual/dev/admin/installation/linux
http://www.reviewboard.org/docs/manual/dev/admin/installation/linux
http://code.google.com/p/gerrit
http://www.markusproject.org
http://git-scm.com
https://github.com/res0nat0r/gitosis

	Introduction
	Usage Model
	System Architecture
	Experiences
	Related Work
	Conclusions
	Acknowledgements
	References

