
Optimizing the Design and Implementation of the Linux ARM Hypervisor

Christoffer Dall Shih-Wei Li Jason Nieh
Department of Computer Science

Columbia University
{cdall,shihwei,nieh}@cs.columbia.edu

Abstract
Modern hypervisor designs for both ARM and x86

virtualization rely on running an operating system kernel,
the hypervisor OS kernel, to support hypervisor functionality.
While x86 hypervisors effectively leverage architectural
support to run the kernel, existing ARM hypervisors map
poorly to the virtualization features of the ARM architecture,
resulting in worse performance. We identify the key reason
for this problem is the need to multiplex kernel mode state
between the hypervisor and virtual machines, which each
run their own kernel. To address this problem, we take a
fundamentally different approach to hypervisor design that
runs the hypervisor together with its OS kernel in a separate
CPU mode from kernel mode. Using this approach, we
redesign KVM/ARM to leverage a separate ARM CPU
mode for running both the hypervisor and its OS kernel.
We show what changes are required in Linux to implement
this on current ARM hardware as well as how newer ARM
architectural support can be used to support this approach
without any changes to Linux other than to KVM/ARM
itself. We show that our redesign and optimizations can
result in an order of magnitude performance improvement for
KVM/ARM, and can provide faster performance than x86 on
key hypervisor operations. As a result, many aspects of our
design have been successfully merged into mainline Linux.

1 Introduction

Given their customizability and power efficiency, ARM
CPUs have become an attractive option across a wide range
of computer systems, from their dominance in mobile and
embedded systems to their increasing popularity in server
systems. Recognizing that virtualization is a key technology
for the successful deployment of ARM hardware, modern
ARM CPUs include hardware support for virtualization, the
Virtualization Extensions (VE). Popular ARM hypervisors,
including KVM [14] and Xen [30], utilize VE to run unmod-
ified commodity operating systems (OSes) and applications

across a wide range of deployment scenarios for virtual-
ization, from enterprise servers to locomotive computer
systems [5]. Despite these successes, we have shown that
ARM virtualization costs remain too high for important de-
ployment scenarios, including network-intensive workloads
such as network functions virtualization (NFV) [14, 12].

Hypervisor designs for ARM and x86 virtualization rely
on running a full OS kernel to support the hypervisor func-
tionality. This is true for both Type 1 hypervisors which
run an isolated hypervisor runtime and Type 2 hypervisors
which integrate with a host OS [17]. KVM, a Type 2 hyper-
visor, is integrated with the Linux kernel and leverages the
Linux kernel for common OS functionality such as schedul-
ing, memory management, and hardware support. Similarly,
Xen, a Type 1 hypervisor, runs a full copy of Linux in a
special privileged Virtual Machine (VM) called Dom0 to
leverage existing Linux drivers to provide I/O for other VMs.
These hypervisor OS kernels which support the hypervisor
run in the CPU’s kernel mode just like OS kernels run when
not using virtualization. Modern hypervisors use hardware
support for virtualization, avoiding the need to deprivilege
the guest OS kernel in a VM to run in user mode [8]. As
each VM runs a guest OS kernel in addition to the hypervisor
OS kernel, and both kernels run in the same kernel mode,
the shared hardware state belonging to kernel mode is multi-
plexed among the OS kernels. When a VM is running on the
CPU, the VM’s guest OS kernel is using the CPU’s kernel
mode, but when it becomes necessary to run the hypervisor,
for example to perform I/O on behalf of the VM, the hyper-
visor OS kernel takes over using the CPU’s kernel mode.

Transitioning from the guest OS kernel to the hypervisor
OS kernel involves saving the guest kernel’s state and
restoring the hypervisor kernel’s state, and vice versa. This
save and restore operation is necessary because both the
guest and hypervisor OS kernels use the same hardware state
such as registers and configuration settings, but in different
contexts. On x86, these transitions happen using operations
architecturally defined as part of the Intel Virtual Machine
Extensions (VMX). These hardware operations save and

USENIX Association 2017 USENIX Annual Technical Conference 221

restore the entire kernel mode register state, typically as a
result of executing a single instruction. Unlike x86, ARM
does not provide a hardware mechanism to save and restore
kernel mode state, but instead relies on software performing
these operations on each register, which results in much
higher overhead. The cost of transitioning from a VM to the
hypervisor can be many times worse on ARM than x86 [12].

To address this problem, we present a new hypervisor
design and implementation that takes advantage of unique
features of the ARM architectural support for virtualization in
the context of Type 2 hypervisors. We take a fundamentally
different approach that runs the hypervisor together with its
OS kernel in a separate CPU mode from kernel mode. ARM
VE provides an extra hypervisor CPU mode, EL2, designed
to run standalone hypervisors. EL2 is a separate mode from
the EL1 kernel mode, and the architecture allows switching
from EL1 to EL2 without saving or restoring any EL1
register state. In this design, the hypervisor and its OS kernel
no longer run in EL1, but EL1 is reserved exclusively to be
used by VMs. This means that the kernel mode hardware
state no longer has to be multiplexed between the hypervisor
OS kernel and a VM’s guest OS kernel, and transitioning
between the two does not require saving and restoring any
kernel mode state. This new design, using separate hardware
state for VMs and the hypervisor OS kernel can significantly
improve hypervisor performance.

Our new hypervisor design benefits from the Virtual-
ization Host Extensions (VHE) introduced in ARMv8.1.
With VHE, our design does not require any changes to
existing hypervisor OS kernels. Without VHE, our design
requires modifications to the hypervisor OS kernel so it can
run in EL2 instead of EL1. Although Type 1 hypervisors
also suffer from poor performance due to slow transitions
between the hypervisor OS kernel and guest OS kernels, our
design is not easily applicable to Type 1 hypervisors. We
focus on improving the performance of Type 2 hypervisors
on ARM given their widespread popularity, which is at least
in part due to their benefits over Type 1 hypervisors on ARM.
ARM hardware does not have the same legacy and standards
as x86, so Type 1 hypervisors have to be manually ported
to every hardware platform they support. Type 2 hypervisors
leverage their host OS and are automatically supported on
all hardware platforms supported by their host OS.

Running the hypervisor and its OS kernel in a separate
CPU mode with its own hardware state allows a number
of improvements to the hypervisor implementation. First,
transitioning from the VM to the hypervisor no longer
requires saving and restoring the kernel mode register state.
Second, the hypervisor OS kernel can program hardware
state used by the VM directly when needed, avoiding extra
copying to and from intermediate data strutures. Third,
the hypervisor and its OS kernel no longer need to operate
across different CPU modes with separate address spaces
which requires separate data structures and duplicated code.

Instead, the hypervisor can directly leverage existing OS
kernel functionality while at the same time configure ARM
hardware virtualization features, leading to reduced code
complexity and improved performance.

We have implemented our approach by redesigning
KVM/ARM and demonstrated that it is effective at providing
significant performance benefits with reduced implementa-
tion complexity. A number of our changes have been merged
into mainline Linux over the course of Linux kernel versions
v4.5 through v4.8, with additional changes scheduled to
be applied in upcoming kernel versions. We show that
our redesign and optimizations can result in an order of
magnitude performance improvement for KVM/ARM in
microbenchmarks, and can reduce virtualization overhead by
more than 50% for real application workloads. We show that
both hardware and software need to work together to provide
the optimal performance. We also show that our optimized
KVM/ARM provides significant performance gains com-
pared to x86, indicating that our hypervisor design combined
with the required architectural support for virtualization
provides a superior approach to x86 hardware virtualization.

2 Background

We first provide a brief overview of current state-of-the-art
Type 2 hypervisor designs on both x86 and ARM and discuss
how they must multiplex kernel mode to run both their VM
and hypervisor OS kernels using hardware virtualization
support. For architectural support for virtualization on x86,
we focus on Intel VMX, though AMD-V is similar for the
purposes of this discussion.

2.1 Intel VMX
The Intel Virtual Machine Extensions (VMX) [21], support
running VMs through the addition of a new feature, VMX
operations. When VMX is enabled, the CPU can be in one of
two VMX operations, VMX root or VMX non-root operation.
Root operation allows full control of the hardware and is for
running the hypervisor. Non-root operation is restricted to op-
erate only on virtual hardware and is for running VMs. VMX
provides memory virtualization through Extended Page Ta-
bles (EPT) which limits the memory the VM can access in
VMX non-root. Both VMX root and non-root operation have
the same full set of CPU modes available to them, including
both user and kernel mode, but certain sensitive instructions
executed in non-root operation cause a transition to root op-
eration to allow the hypervisor to maintain complete control
of the system. The hypervisor OS kernel runs in root opera-
tion and a VM’s guest OS kernel runs in non-root operation,
but both run in the same CPU mode. Since the hypervisor
and the VM have separate execution contexts in form of
register state and configuration state, all of this state must be
multiplexed between root and non-root operation.

222 2017 USENIX Annual Technical Conference USENIX Association

VMX supports this multiplexing in hardware by defining
two VMX transitions, VM Entry and VM Exit. VM Entry
transitions from root to non-root operation which happens
when the hypervisor decides to run a VM by executing a
specific instruction. VM Exit transitions from non-root to
root operation which transfers control back to the hypervisor
on certain events such as hardware interrupts or when the
VM attempts to perform I/O or access sensitive state. The
transitions are managed by hardware using an in-memory
data structure called the Virtual-Machine Control Structure
(VMCS). VMX root and non-root operation do not have sepa-
rate CPU hardware modes, but VMX instead multiplexes the
modes between the hypervisor and VM by saving and restor-
ing CPU state to memory using hardware VMX transitions.

2.2 ARM VE
ARM took a very different approach than x86 in adding
hardware virtualization support. Instead of introducing an
orthogonal feature to distinguish between the hypervisor
and VM operation, ARM extended the existing CPU mode
hierarchy, originally just EL0 user mode and EL1 kernel
mode, by adding a separate more privileged mode called EL2
to run the hypervisor. Although ARM refers to EL0, EL1,
and EL2 as exception levels, we refer to them here as CPU
modes to simplify the discussion. EL2 cannot be used to run
existing unmodified OS kernels for a number of reasons. For
example, EL2 has its own set of control registers and has a
limited and separate address space compared to EL1, so it is
not compatible with EL1. Furthermore, EL2 does not easily
support running userspace applications in EL0 which expect
to interact with a kernel running in EL1 instead of EL2.

Therefore, both the hypervisor and VM OS kernels
must run in EL1, and this mode must be multiplexed
between the two execution contexts. On ARM, this can be
done by software running in EL2. EL2 is a strictly more
privileged mode than user and kernel modes, EL0 and EL1,
respectively, and EL2 has its own execution context defined
by register and control state, and can therefore completely
switch the execution context of both EL0 and EL1 in
software, similar to how the kernel in EL1 context switches
between multiple userspace processes running in EL0.

When both the hypervisor and VM OS kernels run at the
same privilege level on ARM without an equivalent feature
to x86 VMX operations, an obvious question is how to
differentiate between the roles of the hypervisor and the VM
kernel. The hypervisor kernel should be in full control of the
underlying physical hardware, while the VM kernel should
be limited to the control of virtual hardware resources. This
can be accomplished by using ARM VE which allows fine
grained control of the capabilities of EL1. Software running
in EL2 can enable certain sensitive instructions and events
executed in EL0 or EL1 to trap to EL2. For example, similar
to x86 EPT, ARM VE provides memory virtualization by

adding an additional stage of address translation, the stage 2
translations. Stage 2 translations are controlled from EL2 and
only affect software executing in EL1 and EL0. Hypervisor
software running in EL2 can therefore completely disable the
stage 2 translations when running the hypervisor OS kernel,
giving it full access to all physical memory on the system,
and conversely enable stage 2 translations when running VM
kernels to limit VMs to manage memory allocated to them.

ARM VE supports the multiplexing of EL1 analogously
to how EL0 is multiplexed between processes using EL1.
Because EL2 is a separate and strictly more privileged mode
than EL1, hypervisor software in EL2 can multiplex the entire
EL1 state by saving and restoring each register and config-
uration state, one by one, to and from memory. In line with
the RISC design of ARM, and in contrast to the CISC design
of x86, ARM does not provide any hardware mechanism to
multiplex EL1 between the hypervisor and VM kernels, but
instead relies on existing simpler mechanisms in the architec-
ture. For example, if a VM kernel tries to halt the physical
processor, because this is a sensitive instruction and the VM
is not allowed to control the physical CPU resource, this in-
struction will cause a trap to the more privileged EL2 mode,
which can then reuse existing instructions to save and restore
state and switch the EL1 execution context to the hypervi-
sor kernel context, configure EL1 to have full access to the
hardware, and return to EL1 to run the hypervisor OS kernel.

2.3 KVM
Figure 1 compares how the KVM hypervisor runs using
x86 VMX versus ARM VE. We refer to the hypervisor OS
kernel as the host OS kernel, the more commonly used term
with KVM, and applications interacting directly with the OS,
and running outside of a VM, as host user space. Figure 1(a)
shows how KVM x86 works. The hypervisor and host OS
run in root operation, with the host user space running in
the least privileged CPU mode level 3, and the host kernel
running in the privileged CPU mode, level 0, similar to
running on a native system. All of the VM runs in non-root
operation and the VM user space and kernel also run in level
3 and level 0, respectively. Transitions between root and
non-root mode are done in hardware using the atomic VMX
transitions, VM Entry and VM Exit.

Figure 1(b) shows how KVM/ARM works. Since the host
OS kernel cannot run in EL2, but EL2 is needed to enable
the virtualization features and to multiplex EL1, KVM/ARM
uses split-mode virtualization [14] to support both the host
OS kernel running in EL1 and at the same time run software
in EL2 to manage the virtualization features and multiplex
EL1. Most of the hypervisor functionality runs in EL1 with
full access to the hardware as part of the host OS kernel, and
a small layer, the lowvisor, runs in EL2.

When KVM x86 runs a VM, it issues a single instruction
to perform the VM Entry. The VM Entry operation saves the

USENIX Association 2017 USENIX Annual Technical Conference 223

Host Kernel
KVM VM Kernel

VM User
Space

Host User
Space

VM Entry
VM Exit

Root Non-Root

L0

L3

(a) KVM x86

Host Kernel
KVM VM Kernel

VM User
Space

Host User
Space

EL1

EL0

(b) KVM/ARM

Lowvisor
EL2

Run VM
Exit from VM Host Kernel

KVM

VM Kernel

VM User
Space

Host User
Space

EL1

EL0

(c) KVM/ARM in EL2

EL2
Eret

Trap

Eret Trap Eret Trap

Figure 1: Hypervisor Designs and CPU Privilege Levels

hypervisor execution context of the processor to the VMCS
and restores the VM execution context from the VMCS. On
a VM Exit, x86 VMX performs the reverse operation and
returns to the hypervisor. Since ARM does not have a single
hardware mechanism to save and restore the entire state of
the CPU, KVM/ARM issues a hypercall to trap to the lowvi-
sor in EL2, which saves and restores all the registers and
configuration state of the CPU, one by one, using a software
defined structure in memory. After changing the EL0 and
EL1 execution context to the VM, the lowvisor performs
an exception return (eret) to the VM. When the VM traps to
EL2, the lowvisor again saves and restores the entire state of
the CPU and switches the execution context of EL0 and EL1
back to the hypervisor. As we shall see in Section 5.1, while
the x86 VMX transitions are very complicated hardware
operations, and the traps on ARM from EL1 to EL2 are
cheap, multiplexing the kernel mode between two contexts
ends up being much more expensive on ARM as a result of
having to save and restore the entire CPU state in software.

3 Hypervisor OS Kernel Support

Running the hypervisor OS kernel in the same CPU mode as
the VM kernels invariably results in multiplexing the kernel
CPU mode, either in hardware or software, which adds over-
head from the need to save and restore state. If instead a ded-
icated separate CPU mode were available to run the hypervi-
sor OS kernel, this would avoid the need to multiplex a single
mode and allow the hardware to simply trap from the VM to
the hypervisor OS kernel to manage the underlying hardware
and service the VM. Being able to transition back and forth
between the full hypervisor functionality and the VM quickly
without repeatedly saving and restoring the entire CPU state
can reduce latency and improve virtualization performance.

Running the hypervisor OS kernel in a separate mode
requires support from both hardware and software. The
hardware must obviously be designed with a separate mode
in addition to the mode used to run the VM kernel and

VM user space. The hardware for the separate mode must
support running full OS kernels that interact with user space
applications. Furthermore, the hypervisor software must be
designed to take advantage of running the hypervisor OS
kernel in a separate CPU mode. As explained in Section 2,
x86 does not meet these requirements because it does not
have a separate CPU mode for the hypervisor OS kernel.
ARM at least provides a separate CPU mode, EL2, but it
was not designed for running hypervisor OS kernels. We
show how this limitation can be overcome.

Figure 1(c) shows how KVM/ARM can be re-designed to
run both the hypervisor (KVM) and its hypervisor OS kernel
(Linux) together in EL2. This design is superior to previous
ARM hypervisor designs including existing KVM/ARM
and Xen on ARM, because it allows for very fast transitions
between the VM and the hypervisor, including when running
the hypervisor OS kernel, because there is no need to
repeatedly save and restore the entire CPU state when
transitioning between the VM and the hypervisor OS kernel.
Furthermore, because the hypervisor is integrated with its
hypervisor OS kernel, it can directly manage the underlying
hardware using existing functionality such as device drivers
in the hypervisor OS kernel without having to run special
privileged VMs as is the case on Xen [12].

However, running an existing OS kernel in EL2 requires
modifying the hardware or OS kernel, because EL2 was
designed only to run hypervisors and lacks key features
available in EL1, ARM’s kernel mode, used to support OS
kernels. First, EL2 uses a separate set of control registers
accessed using different instructions than the EL1 control
registers, causing incompabilities with a kernel written
to run in EL1. Second, EL2 lacks support for host user
space, which is needed to run applications such as QEMU,
which provides device emulation. Running host user space
applications in EL0 in conjunction with software running
in EL2 without using EL1, as shown in Figure 1(c), requires
handling exceptions from EL0 directly to EL2, for example
to handle system calls, hardware interrupts, and page faults.

224 2017 USENIX Annual Technical Conference USENIX Association

EL2 provides a Trap General Exceptions (TGE) bit to
configure the CPU to route all exceptions from EL0 directly
to EL2, but setting this bit also disables the use of virtual
memory in EL0, which is problematic for real applications.
Finally, EL2 uses a different page table format and only
supports a single virtual address range, causing problems for
a kernel written to use EL1’s page table format and EL1’s
support for two separate virtual address space ranges.

3.1 Virtualization Host Extensions
To run existing hypervisor OS kernels in EL2 with almost
no modifications, ARM introduced the Virtualization Host
Extensions (VHE) in ARMv8.1. VHE is an architectural
hardware modification that provides improved support for
Type 2 hypervisors on ARM. It provides three key features.

First, VHE introduces additional EL2 registers to provide
the same functionality available in EL1 to software running
in EL2. VHE adds new virtual memory configuration
registers, a new context ID register used for debugging, and
a number of new registers to support a new timer. With
these new registers in place, there is a corresponding EL2
system register for each EL1 system register. VHE then
transparently changes the operation of instructions that
normally access EL1 system registers to access EL2 registers
instead when they run in EL2. By transparently changing
the operation of the instructions, existing unmodified OSes
written to issue EL1 system register instructions will instead
access EL2 system registers when run in EL2. VHE also
changes the bit layout of some EL2 system registers to share
the same layout and semantics as their EL1 counterparts.

Second, VHE supports running host user space applica-
tions that use virtual memory in EL0 and interact directly
with a kernel running in EL2. VHE introduces new func-
tionality so that the EL0 virtual memory configuration can
be managed by either EL1 or EL2, depending on a run time
configuration setting, which allows EL2 to route exceptions
from EL0 directly to EL2 and at the same time support
virtual memory in EL0. VHE extends the functionality of
the TGE bit such that when enabled and exceptions from
EL0 are routed to EL2, virtual memory support is enabled in
EL0 and controlled using EL2 page table registers. A Type
2 hypervisor will typically configure EL0 to use the EL2
system registers when running the hypervisor, and configure
EL0 to use the EL1 system registers when running the VM.

Third, VHE changes the page table format of EL2 to use
the same format as used in EL1, which avoids the need to
change an existing OS kernel’s page table management code
to support different formats. VHE also adds support to EL2
for an additional separate virtual address space which can
be used to provide the same split between kernel and user
space addresses commonly used by existing ARM OSes in
EL1 and EL0.

Using VHE to run Linux as the hypervisor OS kernel

in conjunction with KVM requires very little effort. The
early boot code in Linux simply sets a single bit in a register
to enable VHE, and the kernel itself runs without further
modification in EL2.

While the hypervisor OS kernel can run largely unmod-
ified in EL2, the hypervisor itself must be modified to run
with VHE. In particular, because EL1 system register access
instructions are changed to access EL2 registers instead, the
hypervisor needs an alternative mechanism to access the
real EL1 registers, for example to prepare a VM’s execution
context. For this purpose, VHE adds new instructions,
the _EL12 instructions, which access EL1 registers when
running in EL2 with VHE enabled. The hypervisor must
be modified to replace all EL1 access instructions that
should continue to access EL1 registers with the new _EL12

access instructions when using VHE, and use the original
EL1 access instructions when running without VHE.

3.2 el2Linux
Unfortunately, VHE hardware is not yet publicly available
and remains an optional extension to the ARM architecture.
As an alternative, we introduce el2Linux [11], a lightly
modified version of Linux that runs in EL2 on non-VHE
hardware. el2Linux brings the benefits of running Linux as
the hypervisor OS kernel in a separate CPU mode to existing
hardware alongside the KVM hypervisor. It involves three
main kernel modifications to Linux.

First, to control its own CPU mode, Linux must access
EL2 register state when running in EL2, and we modify the
Linux kernel source code as needed to access EL2 system
registers instead of EL1 registers. This can be done using
either build time conditionals or at runtime using instruction
patching to avoid overhead from introducing additional
conditional code paths in the kernel.

Second, to support host user space applications such as
QEMU in EL0 interacting with a kernel running in EL2, we
install a tiny runtime in EL1, which includes an exception
vector to forward exceptions to EL2 by issuing a hypercall
instruction. The result is that exceptions from EL0 are
forwarded to EL2 via EL1. However, this introduces two
sources of additional overhead for applications running
outside of a VM. One is a small overhead from going
through EL1 to EL2 when handling an exception in EL0.
The other is a larger overhead due to the need to multiplex
EL1 between the EL1 runtime and a VM’s guest OS kernel.
While saving and restoring the EL1 state is expensive, it is
only necessary when running host user space applications,
not on each transition between a VM and the hypervisor. For
the KVM hypervisor, returning to host user space is already
an expensive transition on both ARM and x86. As a result,
KVM is heavily optimized to avoid returning to host user
space. Measurements presented in Section 5 indicate this
overhead is negligible in practice.

USENIX Association 2017 USENIX Annual Technical Conference 225

Third, to support virtual memory for host user space appli-
cations in EL0 and the kernel running in EL2 while preserv-
ing normal Linux virtual memory management semantics,
we make two Linux modifications. One provides a way to
bridge the differences between the different page table for-
mats of EL0 and EL2, and the other uses the single EL2 page
table to mimic the behavior using two EL0/EL1 page tables.

Bridging the differences between different page table
formats of EL0 and EL2 is important because Linux memory
management is designed around the assumption that the
same page tables are used from both user and kernel mode,
with potentially different access permissions between the
two modes. This allows Linux to maintain a consistent
per-process view of virtual memory from both the kernel
and user space. Violating this assumption would require
invasive and complex changes to the Linux kernel. el2Linux
takes advantage of the fact the differences between EL0/EL1
and EL2 page table formats are relatively small and can be
bridged to use the same page tables for both EL0 and EL2
by slightly relaxing a security feature and accepting a higher
TLB invalidation frequency on some workloads.

el2Linux relaxes a security feature because the EL2 page
table format only has a single non-execute bit which must
be shared by EL0 and EL2 to use the same page tables for
both EL0 and EL2. When setting this bit on a page table
entry which is used in both EL2 and EL0, the page is not
executable by the kernel or user space, and when clearing
this bit, the page is executable by both. Since kernel pages
containing code must be executable by the kernel, the single
non-execute bit means they end up executable by both user
space and the kernel. This problem does not exist for EL1
page tables because they support two bits to control if a page
is executable or non-executable, one for EL0 and one for
EL1. We emphasize that while this is a slight relaxation
of a security feature, it is not a direct security exploit. All
kernel pages can still not be read or written from user
space, but only executed, and can still only be executed
with user privileges. This security relaxation may work
against the purpose of kernel hardening techniques such as
kernel address space randomization (KASLR), because user
software can try to execute random addresses in the kernel’s
address space and rely on signals to regain control, and by
observing the register state of the CPU or by observing other
side effects, applications can attempt to reason about where
the kernel maps its code and data within its address space.

Alternative solutions exist to support virtual memory for
host user space applications in EL0 without relaxing this
security feature, but require more invasive changes to Linux.
One approach would be to simply not use the same page
tables between the kernel and user space and maintain two
page tables per process, one used by the host user space in
EL0 and one used by the kernel in EL2. This solution would
require additional synchronization mechanisms to make sure
the two page tables always maintained a consistent view of

a process address space between user space threads and the
kernel. Another approach would be to not allow Linux to
access user space pointers from within the kernel and instead
require Linux to translate every user space virtual address
into a kernel virtual address by walking the EL0 user space
page tables in software from within the kernel on every user
access such as read or write system calls that transfer data
between user space processes and the kernel.

el2Linux may incur a higher TLB invalidation frequency
because virtual memory accesses performed in EL2 are not
tagged with an Address Space Identifier (ASID), which are
used to distinguish different address space resolutions in
the TLB to avoid having to invalidate TLB entries when
changing address spaces, for example when switching
between processes. While the kernel address space is shared
for all processes, the kernel also some times accesses user
space addresses when copying data between user space, for
example when handling system calls. Such accesses should
be tagged with the process ASID to ensure that TLB entries
only match for the right process. Since memory accesses
performed in EL2 are not associated with a ASID, we
must invalidate all EL2 entries in the TLB when switching
between processes. This does not affect TLB entries for
memory accesses done by user space applications, as these
still run in EL0 and all EL0 accesses still use ASIDs. We did
not observe a slowdown in overall system performance as a
result of this design, and estimate that for most virtualization
workloads the effect will be minimal, but it could be sub-
stantial for other host workloads. Note that VHE hardware
uses ASIDs in EL2 and does not have this limitation.

Finally, el2Linux uses an approach similar to x86 Linux to
enable a single EL2 page table to mimic the behavior using
two EL0/EL1 page tables. Instead of having separate page
tables for user and kernel address spaces as is done in EL1,
el2Linux splits a single address space so that half is for user
space and the other half is for a shared kernel space among
all processes. Similar to x86 Linux, el2Linux only maintains
a single copy of the second level page tables for the kernel
and points to these from the first level page table across all
processes. ARM supports a maximum of 48 bits of contigu-
ous virtual addresses, resulting in a maximum of 47 bits of
address space for both the kernel and each user space process.

4 Hypervisor Redesign

While running the hypervisor OS kernel in a separate CPU
mode is a key aspect of our approach, it turns out that this
alone is insufficient to significantly improve virtualization
performance, as we will show in Section 5. The hypervisor
itself must also be redesigned to take advantage of not having
to multiplex the same CPU mode between the hypervisor OS
kernel and the VM. We redesigned KVM/ARM based on this
insight. A key challenge was to do this in such a way that our
modifications could be accepted by the Linux community,

226 2017 USENIX Annual Technical Conference USENIX Association

which required also supporting legacy systems in which
users may still choose to run the hypervisor OS kernel in
EL1. We describe three techniques we used to redesign
KVM/ARM’s execution flow to improve performance.

First, we redesigned KVM/ARM to avoid saving and
restoring EL1 registers on every transition between a VM
and the hypervisor. The original KVM/ARM had to save and
restore EL1 state on every transition because EL1 was shared
between a VM’s guest OS kernel and the hypervisor OS
kernel. Since the hypervisor OS kernel now runs in EL2 and
does not use the EL1 state anymore, it can load the VM’s EL1
state into CPU registers when it runs the VM’s virtual CPU
(VCPU) on the physical CPU for the first time. It does not
have to save or modify this state again until it runs another
VCPU or has to configure its EL1 runtime to run applications
in host user space. This entails not only eliminating copying
EL1 state to in-memory hypervisor data structures on
each transition between a VM and the hypervisor, but
also modifying KVM/ARM to directly access the physical
CPU for the running VCPU’s EL1 register state since the
hypervisor data structures may be out of date. To preserve
backwards compatibility to also use KVM/ARM without
Linux running in EL2, we keep track of whether a VCPU’s
EL1 registers are loaded onto the physical CPU or stored in
memory and direct accesses to EL1 registers in KVM/ARM
to the appropriate location using access functions.

Second, we redesigned KVM/ARM to avoid enabling and
disabling virtualization features on every transition between
the VM and the hypervisor. The original KVM/ARM had to
disable virtualization features when running the hypervisor
OS kernel so it could have full access to the underlying
hardware, but then enable virtualization features when
running a VM so it only had restricted access to virtualized
hardware. The configuration of virtualization features
such as stage 2 translations, virtual interrupts, and traps on
sensitive instructions only apply to software running in EL1
and EL0. Since the hypervisor OS kernel now runs in EL2, it
automatically has full access to the underlying hardware and
the configuration of virtualization features do not apply to
it. Instead, the virtualization features simply remain enabled
for running VMs in EL1 and EL0, eliminating frequent
writes to the group of special EL2 registers that configures
the virtualization features. The only time the virtualization
features need to be disabled is for running host user space
applications and its supporting EL1 runtime, which happens
relatively infrequently.

Third, we redesigned KVM/ARM to avoid the use of
shared, intermediate data structures between EL1 and EL2.
The original KVM/ARM using split-mode virtualization had
to communicate across EL1 and EL2 modes via intermediate
data structures mapped in both CPU modes because much
of the hypervisor functionality was implemented in the hy-
pervisor OS kernel running in EL1 but needed to have some
aspect run in EL2 to program EL2 hardware. The hypervisor

ends up processing data twice, once in EL1 which results
in writing data to an intermediate data structure, and once in
EL2 to process the intermediate data structure and program
the hardware. Similarly, duplicative processing also hap-
pened when intermediate data structures were used to store
EL2 state that needed to be read by the hypervisor OS kernel
in EL1 but could only be read by the hypervisor in EL2.
This complicates the code and results in many conditional
statements. To make matters worse, since EL1 and EL2 run
in separate address spaces, accessing the intermediate data
structures can result in a TLB miss for both EL1 and EL2.
Since the hypervisor OS kernel now runs in EL2 together
with the rest of KVM/ARM, there is no longer any need for
these intermediate data structures. The previously separate
logic to interact with the rest of the hypervisor OS kernel and
to program or access the EL2 hardware can be combined into
a single optimized step, resulting in improved performance.

A prime example of how eliminating the need for
intermediate data structures helped was the virtual interrupt
controller (VGIC) implementation, which is responsible
for handling virtual interrupts for VMs. VGIC hardware
state is only accessible and programmable in EL2, however
hypervisor functionality pertaining to virtual interrupts relies
on the hypervisor OS kernel, which ran in EL1 with the
original KVM/ARM. Since it was not clear when running in
EL2 what VGIC state would be needed in EL1, the original
KVM/ARM would conservatively copy all of the VGIC state
to intermediate data structures so it was accessible in EL1, so
that, for example, EL1 could save the state to in-memory data
structures if it was going to run another VM. Furthermore,
the original KVM/ARM would identify any pending virtual
interrupts but then could only write this information to an
intermediate data structure, which then needed to be later
accessed in EL2 to write them into the VGIC hardware.

Since the hypervisor OS kernel now runs in EL2 together
with the rest of KVM/ARM, the redesigned KVM/ARM
no longer needs to conservatively copy all VGIC state to
intermediate data structures, but can instead have the hyper-
visor kernel access VGIC state directly whenever needed.
Furthermore, since the redesign simplified the execution flow,
it became clear that some VGIC registers were never used by
KVM and thus never needed to be copied, saved, or restored.
It turns out that eliminating extra VGIC register accesses is
very beneficial because VGIC register accesses are expensive.
Similarly, since the hypervisor OS kernel now runs in EL2,
there is no need to check for pending virtual interrupts in
both EL1 and EL2. Instead these steps can be combined into
a single optimized step that also writes them into the VGIC
hardware as needed. As part of this redesign, it became
clear that the common case that should be made fast is
that there are no pending interrupts so only a single simple
check should be required. We further optimized this step by
avoiding the need to hold locks in the common case, which
was harder to do with the original KVM/ARM code base that

USENIX Association 2017 USENIX Annual Technical Conference 227

had to synchronize access to intermediate data structures.
To maintain backwards compatibility support for systems

not running the hypervisor and its host OS kernel in
EL2, while not adding additional runtime overhead from
conditionally execution almost all operations in the run
loop, we take advantage of the static key infrastructure in
Linux. Static keys patch the instruction flow at runtime
to avoid conditional branches, and instead replaces no-ops
with unconditional branches when a certain feature is
enabled. During initialization of KVM/ARM, we activate
or deactivate the static branch depending on whether
KVM/ARM runs in EL2 or EL1. For example, the run loop
uses a static branch to decide if it should call the lowvisor
to start switching to a VM in EL2, or if it should simply run
the VM if the hypervisor is already running in EL2.

5 Experimental Results

We have successfully merged many of our implementation
changes in redesigning KVM/ARM into the mainline Linux
kernel, demonstrating the viability of our approach. Getting
changes accepted into mainline Linux takes time, and as
such, our improvements have been merged into mainline
Linux over the course of Linux kernel versions v4.5 through
v4.8, with remaining changes scheduled to be applied in
upcoming kernel versions.

We evaluate the performance of our new hypervisor design
using both microbenchmarks and real application workloads
on ARM server hardware. Since no VHE hardware is
publicly available yet, we ran workloads on non-VHE ARM
hardware using el2Linux. We expect that el2Linux provides
a conservative but similar measure of performance to what
we would expect to see with VHE since the critical hypervi-
sor execution paths are almost identical between the two, and
VHE does not introduce hardware features that would cause
runtime overhead from the hardware. In this sense, these
measurements provide the first quantitative evaluation of
the benefits of VHE, and provide chip designers with useful
experimental data to evaluate whether or not to support
VHE in future silicon. We also verified the functionality and
correctness of our VHE-based implementation on ARM soft-
ware models supporting VHE. As a baseline for comparison,
we also provide results using KVM on x86 server hardware.

ARM measurements were done using a 64-bit ARMv8
AMD Seattle (Rev.B0) server with 8 Cortex-A57 CPU cores,
16 GB of RAM, a 512 GB SATA3 HDD for storage, and a
AMD 10 GbE (AMD XGBE) NIC device. For benchmarks
that involve a client interfacing with the ARM server, we
ran the clients on an x86 machine with 24 Intel Xeon
CPU 2.20 GHz cores and 96 GB RAM. The client and the
server were connected using 10 GbE and we made sure the
interconnecting switch was not saturated during our measure-
ments. x86 measurements were done using Dell PowerEdge
r320 servers, each with a 64-bit Xeon 2.1 GHz E5-2450 with

8 physical CPU cores. Hyper-Threading was disabled on
the r320 servers to provide a similar hardware configuration
to the ARM servers. Each r320 node had 16 GB of RAM,
4 500 GB 7200 RPM SATA RAID5 HDs for storage, and a
Dual-port Mellanox MX354A 10 GbE NIC. For benchmarks
that involve a client interfacing with the x86 server, we ran
the clients on an identical x86 client. CloudLab [10] infras-
tructure was used for x86 measurements, which also provides
isolated 10 GbE interconnect between the client and server.

To provide comparable measurements, we kept the
software environments across all hardware platforms and
hypervisors the same as much as possible. KVM/ARM was
configured with passthrough networking from the VM to an
AMD XGBE NIC device using Linux’s VFIO direct device
assignment framework. KVM on x86 was configured with
passthrough networking from the VM to one of the physical
functions of the Mellanox MX354A NIC. Following best
practices, we configured KVM virtual block storage with
cache=none. We configured power management features
on both server platforms and ensured both platforms were
running at full performance. All hosts and VMs used Ubuntu
14.04 with identical software configurations. The client
machine used for workloads involving a client and server
used the same configuration as the host and VM, but using
Ubuntu’s default v3.19.0-25 Linux kernel.

We ran benchmarks on bare-metal machines and in VMs.
Each physical or virtual machine instance used for running
benchmarks was configured as a 4-way SMP with 12 GB
of RAM to provide a common basis for comparison. This
involved two configurations: (1) running natively on Linux
capped at 4 cores and 12 GB RAM, (2) running in a VM
using KVM with 8 physical cores and 16 GB RAM with the
VM capped at 4 virtual CPUs (VCPUs) and 12 GB RAM.
For network related benchmarks, the clients were run natively
on Linux and configured to use the full hardware available.

To minimize measurement variability, we pinned each
VCPU of the VM to a specific physical CPU (PCPU) and
ensured that no other work was scheduled on that PCPU.
We also statically allocated interrupts to a specific CPU, and
for application workloads in VMs, the physical interrupts
on the host system were assigned to a separate set of PCPUs
from those running the VCPUs.

We compare across Linux v4.5 and v4.8 on ARM to
quantify the impact of our improvements, as the former does
not contain any of them while the latter contains a subset of
our changes merged into mainline Linux. To ensure that our
results are not affected by other changes to Linux between
the two versions, we ran both v4.5 and v4.8 Linux natively on
both the ARM and x86 systems and compared the results and
we found that there were no noticeable differences between
these versions of Linux. For comparison purposes, we mea-
sured four different system configurations, ARM, ARM EL2,
ARM EL2 OPT, and x86. ARM uses vanilla KVM/ARM
in Linux v4.5, the kernel version before any of our imple-

228 2017 USENIX Annual Technical Conference USENIX Association

Name Description
Hypercall Transition from the VM to the hypervisor and return to the

VM without doing any work in the hypervisor. Measures
bidirectional base transition cost of hypervisor operations.

I/O Kernel Trap from the VM to the emulated interrupt controller
in the hypervisor OS kernel, and then return to the VM.
Measures a frequent operation for many device drivers
and baseline for accessing I/O devices supported by the
hypervisor OS kernel.

I/O User Trap from the VM to the emulated UART in QEMU and
then return to the VM. Measures base cost of operations
that access I/O devices emulated in the hypervisor OS
user space.

Virtual IPI Issue a virtual IPI from a VCPU to another VCPU
running on a different PCPU, both PCPUs executing VM
code. Measures time between sending the virtual IPI
until the receiving VCPU handles it, a frequent operation
in multi-core OSes.

Table 1: Microbenchmarks

mentation changes were merged into Linux. ARM EL2 uses
the same KVM/ARM in Linux v4.5 but with modifications
to run el2Linux to quantify the benefits of running Linux
in EL2 without also redesigning the KVM/ARM hypervisor
itself. ARM EL2 OPT uses our redesigned KVM/ARM in
Linux v4.8, including all of the optimizations described in
this paper, both those already merged into Linux v4.8 and
those scheduled to be applied in upcoming Linux versions.

5.1 Microbenchmark Results
We first ran various microbenchmarks as listed in Table 1,
which are part of the KVM unit test framework [23]. We
slightly modified the test framework to measure the cost
of virtual IPIs and to obtain cycle counts on the ARM
platform to ensure detailed results by configuring the VM
with direct access to the cycle counter. Table 2 shows the
microbenchmark results. Measurements are shown in cycles
instead of time to provide a useful comparison across server
hardware with different CPU frequencies.

The Hypercall measurement quantifies the base cost of
any operation where the hypervisor must service the VM.
Since KVM handles hypercalls in the host OS kernel, this
metric also represents the cost of transitioning between the
VM and the hypervisor OS kernel. For Hypercall, the ARM
EL2 OPT is a mere 12% of the ARM cost and roughly
50% of the x86 cost, measured in cycles. Comparing the
ARM and ARM EL2 costs, we see that only running the
hypervisor OS kernel in a separate CPU mode from the VM
kernel does not by itself yield much improvement. Instead,
redesigning the hypervisor to take advantage of this fact is
essential to obtain a significant performace improvement as
shown by the ARM EL2 OPT costs.

The I/O Kernel measurement quantifies the cost of I/O
requests to devices supported by the hypervisor OS kernel.
The cost consists of the base Hypercall cost plus doing
some work in the hypervisor OS kernel. For I/O Kernel, the

Microbenchmark ARM ARM EL2 ARM
EL2 OPT

x86

Hypercall 6,413 6,277 752 1,437
I/O Kernel 8,034 7,908 1,604 2,565
I/O User 10,012 10,186 7,630 6,732
Virtual IPI 13,121 12,562 2,526 3,102

Table 2: Microbenchmark Measurements (cycle counts)

ARM EL2 OPT cost is only 20% of the original ARM cost
because of the significant improvement in the Hypercall cost
component of the overall I/O Kernel operation.

The I/O User measurement quantifies the cost of I/O
requests that are handled by host user space. For I/O User,
ARM EL2 OPT cost is only reduced to 76% of the ARM
cost. The improvement is less in this case because our
el2Linux implementation requires restoring the host’s EL1
state before returning to user space since running user
applications in EL0 without VHE uses an EL1 runtime, as
discussed in Section 3.2. However, returning to user space
from executing the VM has always been known to be slow,
as can also be seen with the x86 I/O User measurement in Ta-
ble 2. Therefore, most hypervisor configurations do this very
rarely. For example, the vhost configuration of virtio [25]
paravirtualized I/O that is commonly used with KVM
completely avoids going to host user space when doing I/O.

Finally, the Virtual IPI measurement quantifies the cost
of issuing virtual IPIs (Inter Processor Interrupts), a frequent
operation in multi-core OSes. It involves exits from both the
sending VCPU and receiving VCPU. The sending VCPU
exits because sending an IPI traps and is emulated by the
underlying hypervisor. The receiving VCPU exits because it
gets a physical interrupt which is handled by the hypervisor.
For Virtual IPI, ARM EL2 OPT cost is only 19% of the
original ARM cost because of the significant improvement
in the Hypercall cost, which benefits both the sending and
receiving VCPUs in terms of lower exit costs.

Our microbenchmark measurements show that our
KVM/ARM redesign is roughly an order of magnitude faster
than KVM/ARM’s legacy split-mode design in transitioning
between the VM and the hypervisor. The ARM EL2
numbers show slight improvement over the ARM numbers,
due to the removal of the double trap cost [14] introduced
by split-mode virtualization. However, a key insight based
on our implementation experience and these results is that
only running the hypervisor OS kernel in a separate CPU
mode from the VM kernel is insufficient to have much
of a performance benefit, even on architectures like ARM
which have the ability to quickly switch between the two
separate CPU modes without having to multiplex any state.
However, if the hypervisor is designed to take advantage of
running the hypervisor OS kernel in a separate mode, and
the hardware provides the capabilities to do so and to switch
quickly between the two modes, then the cost of low-level
VM-to-hypervisor interactions can be much lower than on

USENIX Association 2017 USENIX Annual Technical Conference 229

Name Description
Kernbench Compilation of the Linux 3.17.0 kernel using the

allnoconfig for ARM using GCC 4.8.2.
Hackbench hackbench [24] using Unix domain sockets and 100

process groups running with 500 loops.
Netperf netperf v2.6.0 [22] starting netserver on the server and

running with its default parameters on the client in three
modes: TCP STREAM, TCP MAERTS, and TCP RR,
measuring throughput and latency, respectively.

Apache Apache v2.4.7 Web server with a remote client running
ApacheBench [28] v2.3, which measures number of
handled requests per second serving the 41 KB index file
of the GCC 4.4 manual using 100 concurrent requests.

Memcached memcached v1.4.14 using the memtier benchmark
v1.2.3 with its default parameters.

Table 3: Application Benchmarks

systems like x86, even though they have highly optimized
VM Entry and Exit hardware mechanisms to multiplex a
single CPU mode between the hypervisor and the VM.

5.2 Application Benchmark Results
We next ran a mix of widely-used CPU and I/O intensive
application workloads as listed in Table 3. For workloads
involving a client and a server, we ran the client on a
dedicated machine and the server on the configuration
being measured, ensuring that the client was never saturated
during any of our experiments. Figure 2 shows the relative
performance overhead of executing in a VM compared to
natively without virtualization.

We normalize measurements to native execution for the
respective platform, with one being the same as native perfor-
mance. ARM numbers are normalized to native execution on
the ARM platform, and x86 numbers are normalized to native
execution on the x86 platform. Lower numbers mean less
overhead and therefore better overall performance. We focus
on normalized overhead as opposed to absolute performance
since our goal is to improve VM performance by reducing
the overhead from intervention of the hypervisor and from
switching between the VM and the hypervisor OS kernel.

Like the microbenchmark measurements in Section 5.1,
the application workload measurements show that ARM
EL2 performs similarly to ARM across all workloads,
showing that running the hypervisor OS kernel in a separate
CPU mode from the VM kernel without changing the
hypervisor does not benefit performance much. The ARM
EL2 OPT results, however, show significant improvements
across a wide range of applications workloads.

For cases in which original ARM did not have much
overhead, ARM EL2 OPT performs similarly to original
ARM as there was little room for improvement. For example,
Kernbench runs mostly in user mode in the VM and seldom
traps to the hypervisor, resulting in very low overhead on
both ARM and x86. However, the greater the initial overhead
for original ARM, the greater the performance improvement
achieved with ARM EL2 OPT. For example, original ARM

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Application Benchmarks

ARM ARM	EL2 ARM	EL2	OPT X86

Figure 2: Application Benchmark Performance

incurs more than 60% overhead for Memcached while ARM
EL2 OPT reduces that overhead by more than five times to
roughly 10% compared to native execution. Memcached
causes frequent traps to the hypervisor OS kernel to process,
configure, and forward physical interrupts. As a result, this
workload benefits greatly from the much reduced hypercall
cost for ARM EL2 OPT compared to original ARM. As an-
other example, original ARM incurs roughly 15% overhead
for Apache while ARM EL2 OPT reduces that overhead by
roughly 50% to 8% compared to native execution, which is
even smaller than x86. Apache requires processing network
interrupts and sending virtual IPIs, both of which benefit
from the reduced hypercall cost for ARM EL2 OPT.

It is instructive to take a closer look at the various
Netperf measurements, TCP STREAM, TCP RR and
TCP MAERTS, which show ARM EL2 OPT providing
different performance improvements over original ARM and
x86. Since we use passthrough to directly assign the network
device to the VM, the primary source of overhead comes
from interrupt handling because the VM can otherwise
directly program the device without intervention from the
hypervisor. The network devices used on both the ARM
and x86 servers generate physical RX interrupts when
receiving network data, which is the primary operation of
TCP STREAM and TCP RR. These physical interrupts
are handled by VFIO in the host kernel and KVM must
forward them as virtual interrupts to the VM, which results
in execution overhead. The driver for the AMD XGBE NIC
used in the ARM server frequently masks and unmasks
interrupts for this device due to driver implementation details
and support for NAPI, which switches between interrupt
driven and polling mode for the VM network driver. On the
other hand, the driver for the Mellanox NIC used in the x86
server does not enable and disable IRQs using the interrupt
controller, but instead manages masking of interrupts at the
device level, which avoids traps to the hypervisor for these
operations because the device is directly assigned to the VM.

TCP STREAM is a throughput benchmark and since

230 2017 USENIX Annual Technical Conference USENIX Association

x86 has fewer traps to the hypervisor than ARM due to
these NIC diferences, x86 has lower virtualization overhead
than any ARM configuration, including ARM EL2 OPT.
The same explanation applies to Memcached as well. The
TCP RR workload is a latency measurement benchmark,
which sends a single network packet back and forward
between the client and the server in serial, and every single
packet causes an interrupt for both ARM and x86, resulting
in overhead on both platforms. Since ARM EL2 OPT
has lower transition costs between the VM and hypervisor
when comparing against either original ARM or x86, it also
ends up having the lowest overhead for TCP RR. For both
TCP STREAM and TCP RR, ARM EL2 OPT reduces the
overhead of original ARM by approximately 50% as a result
of the reduced cost of transitioning between the hypervisor
OS kernel and the VM when masking and unmasking virtual
interrupts, and when forwarding physical interrupts as virtual
interrupts, respectively. TCP MAERTS shows almost no
overhead for all configurations, because sending packets
from the VM to the client generates almost no interrupts
and the VMs can access the devices directly because of their
passthrough device configuration.

6 Related Work

Virtualization on x86 started with software-only ap-
proaches [3, 7], but as virtualization became increasingly
important, Intel introduced VMX hardware virtualiza-
tion support to run VMs with unmodified guest OSes
and eliminate the need for binary translation and CPU
paravirtualization [29]. Initially, hypervisors using
hardware virtualization support did not provide good
performance [1], but as the hardware support matured
and provided additional features like EPT, performance
improved using VMX. Much other work has been also
done on analyzing and improving the performance of x86
virtualization [27, 26, 2, 18, 9, 16, 19, 6], but none of these
techniques addressed the core issue of the cost of sharing
kernel mode across guest and hypervisor OS kernels.

Full-system virtualization of the ARM architecture in
some ways mirrors the evolution of x86 virtualization.
Early approaches were software only, could not run
unmodified guest OSes, and often suffered from poor perfor-
mance [20, 13, 15, 4]. As virtualization became increasingly
important on ARM, ARM introduced hardware virtualization
support to run VMs with unmodified guest OSes, but ARM
took a very different approach to CPU virtualization that
made it difficult to implement popular hypervisors such as
KVM due to mismatches between the hardware support
and assumptions about the software design [14]. As a
result, ARM hypervisor implementations have much higher
costs for many common VM operations than their x86
counterparts [12]. We show that by taking advantage of the
additional CPU mode provided by ARM VE to run not only

the hypervisor but also its OS kernel, in conjunction with
a redesign of the hypervisor itself, it is possible to achieve
superior VM performance on ARM versus x86.

7 Conclusions

Although ARM and x86 architectural support for virtual-
ization are quite different, previous hypervisors across both
architectures shared a common limitation; the need to share
kernel mode state between the host OS kernel used by the hy-
pervisor and guest OS kernels used in VMs. Our work shows
for the first time how, with the proper architectural support
and hypervisor design, the hypervisor and its OS kernel can
be run in a separate CPU mode from VMs, avoiding the cost
of multiplexing shared CPU state between the hypervisor and
VMs. We show how this codesign of hardware and software
support for virtualization can be used to reimplement an ex-
isting hypervisor, KVM/ARM, with evolutionary changes to
the code base without requiring a clean slate implementation.
This approach was essential in allowing us to merge many of
our changes into mainline Linux. We show that our approach
can be implemented using currently available ARM
hardware, and that new hardware features in future ARM
architecture versions can be used to support this approach
without any changes to Linux other than to KVM/ARM
itself. We show that our KVM/ARM redesign can provide an
order of magnitude performance improvement over previous
versions of KVM/ARM on key hypervisor operations. We
also show that the combination of hardware and software
virtualization support on ARM can provide roughly two
times better performance than its counterpart on x86. Our
results indicate that running the hypervisor and its hypervisor
OS kernel in a separate CPU mode from the VMs as
possible on ARM can provide superior performance to x86
approaches because it allows for faster transitions between
the hypervisor and VMs. As virtualization continues to be of
importance, our work provides an important counterpoint to
x86 practices which we believe is instrumental in designing
future virtualization support for new architectures.

8 Acknowledgments

Marc Zyngier implemented some VGIC optimizations
and supported our efforts to upstream our improvements
to KVM/ARM. Ard Biesheuvel helped us understand the
virtual memory changes needed to run Linux in EL2. Eric
Auger implemented VFIO passthrough support for ARM
and provided help in configuring passthrough on ARM
server hardware. Paolo Bonzini and Alex Williamson helped
analyze KVM x86 performance. Mike Hibler provided
support for system configurations in CloudLab. This work
was supported in part by Huawei Technologies and NSF
grants CNS-1422909, CNS-1563555, and CCF-1162021.

USENIX Association 2017 USENIX Annual Technical Conference 231

References

[1] ADAMS, K., AND AGESEN, O. A Comparison of
Software and Hardware Techniques for x86
Virtualization. In Proceedings of the 12th International
Conference on Architectural Support for Programming
Languages and Operating Systems (Oct. 2006),
pp. 2–13.

[2] AGESEN, O., MATTSON, J., RUGINA, R., AND
SHELDON, J. Software Techniques for Avoiding
Hardware Virtualization Exits. In Proceedings of the
2012 USENIX Annual Technical Conference (June
2012), pp. 373–385.

[3] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND,
S., HARRIS, T., HO, A., NEUGEBAUER, R., PRATT,
I., AND WARFIELD, A. Xen and the Art of
Virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (Oct.
2003), pp. 164–177.

[4] BARR, K., BUNGALE, P., DEASY, S., GYURIS, V.,
HUNG, P., NEWELL, C., TUCH, H., AND ZOPPIS, B.
The VMware Mobile Virtualization Platform: is that a
hypervisor in your pocket? SIGOPS Operating
Systems Review 44, 4 (Dec. 2010), 124–135.

[5] BONZINI, P. Virtualizing the locomotive, Sept. 2005.
https://lwn.net/Articles/657282/.

[6] BUELL, J., HECHT, D., HEO, J., SALADI, K., AND
TAHERI, H. R. Methodology for Performance
Analysis of VMware vSphere under Tier-1
Applications. VMware Technical Journal 2, 1 (June
2013), 19–28.

[7] BUGNION, E., DEVINE, S., ROSENBLUM, M.,
SUGERMAN, J., AND WANG, E. Y. Bringing
Virtualization to the x86 Architecture with the Original
VMware Workstation. ACM Transactions on
Computer Systems 30, 4 (Nov. 2012), 12:1–12:51.

[8] BUGNION, E., NIEH, J., AND TSAFRIR, D.
Hardware and Software Support for Virtualization,
vol. 12 of Synthesis Lectures on Computer Architecture.
Morgan & Claypool Publishers, Feb. 2017.

[9] CHERKASOVA, L., AND GARDNER, R. Measuring
CPU Overhead for I/O Processing in the Xen Virtual
Machine Monitor. In Proceedings of the 2005 USENIX
Annual Technical Conference (May 2005),
pp. 387–390.

[10] CLOUDLAB. http://www.cloudlab.us.

[11] DALL, C., AND LI, S.-W. el2linux.
https://github.com/chazy/el2linux.

[12] DALL, C., LI, S.-W., LIM, J. T., NIEH, J., AND
KOLOVENTZOS, G. ARM Virtualization:
Performance and Architectural Implications. In
Proceedings of the 43rd International Symposium on
Computer Architecture (2016), pp. 304–316.

[13] DALL, C., AND NIEH, J. KVM for ARM. In
Proceedings of the Ottawa Linux Symposium (July
2010), pp. 45–56.

[14] DALL, C., AND NIEH, J. KVM/ARM: The Design
and Implementation of the Linux ARM Hypervisor. In
Proceedings of the 19th International Conference on
Architectural Support for Programming Languages
and Operating Systems (Mar. 2014), pp. 333–348.

[15] DING, J.-H., LIN, C.-J., CHANG, P.-H., TSANG,
C.-H., HSU, W.-C., AND CHUNG, Y.-C. ARMvisor:
System Virtualization for ARM. In Proceedings of the
Ottawa Linux Symposium (July 2012), pp. 93–107.

[16] GAMAGE, K., AND KOMPELLA, X. Opportunistic
Flooding to Improve TCP Transmit Performance in
Virtualized Clouds. In Proceedings of the 2nd ACM
Symposium on Cloud Computing (Oct. 2011),
pp. 24:1–24:14.

[17] GOLDBERG, R. P. Architectural Principles for Virtual
Computer Systems. PhD thesis, Harvard University,
Cambridge, MA, 1972.

[18] GORDON, A., AMIT, N., HAR’EL, N.,
BEN-YEHUDA, M., LANDAU, A., SCHUSTER, A.,
AND TSAFRIR, D. ELI: Bare-Metal Performance for
I/O Virtualization. In Proceedings of the 17th
International Conference on Architectural Support for
Programming Languages and Operating Systems (Feb.
2012), pp. 411–422.

[19] HEO, J., AND TAHERI, R. Virtualizing
Latency-Sensitive Applications: Where Does the
Overhead Come From? VMware Technical Journal 2,
2 (Dec. 2013), 21–30.

[20] HWANG, J., SUH, S., HEO, S., PARK, C., RYU, J.,
PARK, S., AND KIM, C. Xen on ARM: System
Virtualization using Xen Hypervisor for ARM-based
Secure Mobile Phones. In Proceedings of the 5th
Consumer Communications and Newtork Conference
(Jan. 2008), pp. 257–261.

[21] INTEL CORPORATION. Intel 64 and IA-32
Architectures Software Developer’s Manual,
325384-056US, Sept. 2015.

[22] JONES, R. Netperf.
http://www.netperf.org/netperf/.

232 2017 USENIX Annual Technical Conference USENIX Association

https://lwn.net/Articles/657282/
http://www.cloudlab.us
https://github.com/chazy/el2linux
http://www.netperf.org/netperf/

[23] KIVITY, A. KVM Unit Tests. http://www.linux-
kvm.org/page/KVM-unit-tests.

[24] RED HAT. Hackbench, Jan. 2008.
http://people.redhat.com/mingo/cfs-

scheduler/tools/hackbench.c.

[25] RUSSELL, R. virtio: Towards a De-Facto Standard for
Virtual I/O Devices. SIGOPS Operating Systems
Review 42, 5 (July 2008), 95–103.

[26] SANTOS, J. R., TURNER, Y., JANAKIRAMAN, G. J.,
AND PRATT, I. Bridging the Gap between Software
and Hardware Techniques for I/O Virtualization. In
Proceedings of the 2008 USENIX Annual Technical
Conference (June 2008), pp. 29–42.

[27] SUGERMAN, J., VENKITACHALAM, G., AND LIM,
B.-H. Virtualizing I/O Devices on VMware
Workstation’s Hosted Virtual Machine Monitor. In
Proceedings of the 2001 USENIX Annual Technical
Conference (June 2001), pp. 1–14.

[28] THE APACHE SOFTWARE FOUNDATION. ab.
http://httpd.apache.org/docs/2.4/

programs/ab.html.

[29] UHLIG, R., NEIGER, G., RODGERS, D., SANTONI,
A. L., MARTINS, F. C. M., ANDERSON, A. V.,
BENNETT, S. M., KAGI, A., LEUNG, F. H., AND
SMITH, L. Intel Virtualization Technology. IEEE
Computer 38, 5 (May 2005), 48–56.

[30] XEN ARM WITH VIRTUALIZATION EXTENSIONS.
http://wiki.xenproject.org/wiki/Xen_ARM_

with_Virtualization_Extensions.

USENIX Association 2017 USENIX Annual Technical Conference 233

http://www.linux-kvm.org/page/KVM-unit-tests
http://www.linux-kvm.org/page/KVM-unit-tests
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
http://httpd.apache.org/docs/2.4/programs/ab.html
http://httpd.apache.org/docs/2.4/programs/ab.html
http://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions
http://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions

