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Abstract
Virtual machines were developed by IBM in the 1960’s

to provide concurrent, interactive access to a mainframe
computer. Each virtual machine is a replica of the un-
derlying physical machine and users are given the illu-
sion of running directly on the physical machine. Virtual
machines also provide benefits like isolation and resource
sharing, and the ability to run multiple flavors and con-
figurations of operating systems. VMware Workstation
brings such mainframe-class virtual machine technology
to PC-based desktop and workstation computers.
This paper focuses on VMware Workstation’s approach

to virtualizing I/O devices. PCs have a staggering variety
of hardware, and are usually pre-installed with an oper-
ating system. Instead of replacing the pre-installed OS,
VMware Workstation uses it to host a user-level applica-
tion (VMApp) component, as well as to schedule a priv-
ileged virtual machine monitor (VMM) component. The
VMM directly provides high-performance CPU virtualiza-
tion while the VMApp uses the host OS to virtualize I/O
devices and shield the VMM from the variety of devices.
A crucial question is whether virtualizing devices via such
a hosted architecture can meet the performance required of
high throughput, low latency devices.
To this end, this paper studies the virtualization and per-

formance of an Ethernet adapter on VMware Workstation.
Results indicate that with optimizations, VMware Work-
station’s hosted virtualization architecture can match na-
tive I/O throughput on standard PCs. Although a straight-
forward hosted implementation is CPU-limited due to vir-
tualization overhead on a 733 MHz Pentium R III system
on a 100 Mb/s Ethernet, a series of optimizations targeted
at reducing CPU utilization allows the system to match
native network throughput. Further optimizations are dis-
cussed both within and outside a hosted architecture.

1 Introduction
The concept of the virtual machine was invented by IBM as
a method of time-sharing extremely expensive mainframe
hardware [4, 5]. As defined by IBM, a “virtual machine” is
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Figure 1: A virtual machine monitor provides a virtual ma-
chine abstraction in which standard operating systems and
applications may run. Each virtual machine is fully isolated
from the rest of the virtual machines.

a fully protected and isolated copy of the underlying physi-
cal machine’s hardware. Thus, each virtual machine user is
given the illusion of having a dedicated physical machine.
Software developers can also write and test programs with-
out fear of crashing the physical machine and affecting the
other users.
Figure 1 illustrates the traditional organization of a vir-

tual machine system. A software layer called a virtual
machine monitor (VMM) takes complete control of the
machine hardware and creates virtual machines, each of
which behaves like a complete physical machine that can
run its own operating system (OS). Contrast this with a
normal system where a single operating system is in con-
trol of the machine.
To maximize performance, the monitor gets out of the

way whenever possible and allows the virtual machine to
execute directly on the hardware, albeit in a non-privileged
mode. The monitor regains control whenever the virtual
machine tries to perform an operation that may affect the
correct operation of other virtual machines or of the hard-
ware. The monitor safely emulates the operation before
returning control to the virtual machine. This direct execu-
tion property allows mainframe-class virtual machines to
achieve close to native performance and sets the technol-



ogy apart from machine emulators that always impose an
extra layer of interpretation on the emulated machine.
The result of a complete machine virtualization is the

creation of a set of virtual computers that runs on a physi-
cal computer. Different operating systems, or separate in-
stances of the same operating system, can run in each vir-
tual machine. The operating systems that run in virtual
machines are termed guest operating systems. Since vir-
tual machines are isolated from each other, a guest operat-
ing system crash does not affect the other virtual machines.
Users in different virtual machines cannot affect each other
catastrophically.
Most of the benefits of mainframe virtual machines

apply to the PC platform, and several new ones have
emerged. Onmainframes, virtual machines have been used
for timesharing, for partitioning machine resources among
different OSes and applications, as well as for OS and
software development and easing system migration. On
a desktop or workstation PC there is a need to run dif-
ferent operating systems – primarily the various flavors of
Microsoft R and UNIX -based operating systems. Vir-
tual machines allow these OSes to be run simultaneously
on a single computer.
Intel R -based PCs are also increasingly being used as

servers by traditional enterprises and service providers to
host applications. Frequently, an entire machine is ded-
icated to a particular service, application or customer in
order to provide fault isolation and performance guaran-
tees. In this arena, virtual machines can be used to host
applications, provide better resource utilization, and ease
system manageability. Virtual machines can also be eas-
ily migrated and replicated across machines to aid in ser-
vice provisioning. Virtual machines can contain identical
virtual hardware, even on hosts with different native hard-
ware, making virtual machines freely portable between dif-
ferent physical machines.

1.1 Virtualizing the PC platform
Several technical and pragmatic hurdles must be overcome
when virtualizing the PC platform. The traditional main-
frame approach runs virtual machines in a less privileged
mode in order to allow the VMM to regain control on priv-
ileged instructions, and relies on the VMM to virtualize
and interface directly to the I/O devices. Also, the VMM
is in complete control of the entire machine. This approach
doesn’t apply as easily to PCs for the following reasons.

Non-virtualizable processor – The Intel IA-32 proces-
sor architecture [10] is not naturally virtualizable.
Popek and Goldberg [11] showed that an architecture
can support virtual machines only if all instructions
that can inspect or modify privileged machine state
will trap when executed from any but the most priv-
ileged mode. Because the IA-32 processor does not
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Figure 2: VMware’s hosted virtual machine model splits the
virtualization software between a virtual machine monitor
that virtualizes the CPU, an application the uses a host op-
erating system for device support, and an operating system
driver for transitioning between them.

meet this condition, it is not possible to virtualize the
processor by simply executing all virtual machine in-
structions in a less privileged mode.

PC hardware diversity – There is a large diversity of
devices that may be found in PCs. This is a result of
the PC’s “open” architecture. In a traditional imple-
mentation, the virtual machine monitor would have
to manage these devices. This would require a large
programming effort to provide device drivers in the
VMM for all supported PC devices.

Pre-existing PC software – Unlike mainframes that are
configured and managed by experienced system ad-
ministrators, desktop and workstation PC’s are of-
ten pre-installed with a standard OS and set up and
managed by the end-user. In this environment, it is
extremely important to allow a user to adopt virtual
machine technologywithout losing the ability to con-
tinue using his existing OS and applications. It would
be unacceptable to completely replace an existing OS
with a virtual machine monitor.

VMware Workstation has a hosted architecture that al-
lows it to co-exist with a pre-existing host operating sys-
tem, and rely upon that operating system for device sup-
port. Figure 2 illustrates the components of this hosted
architecture. This architecture allows VMware to cope
with the diversity of PC hardware and to be compatible
with pre-existing PC software. Currently, Windows NT R ,
Windows R 2000 and Linux can serve as hosts. This paper
focuses on the performance aspects of relying on a host OS
for accessing I/O devices.
The rest of this paper is organized as follows. Sec-

tion 2 describes VMware Workstation’s hosted architec-
ture, its benefits and costs, and looks at the specific ex-



ample of a virtual Ethernet network interface card (NIC).
Section 3 demonstrates the performance of NIC virtual-
ization with VMware Workstation 2.0, breaks down the
overheads for a few different workloads, and measures im-
provements achieved by optimizations the data suggested.
Section 4 presents several approaches for improving I/O
performance beyond the optimizations described in Sec-
tion 3, some of which go beyond the capabilities of a
hosted architecture. Section 5 describes related work in
the area of supporting multi-platform computing on a sin-
gle machine. Finally, Section 6 summarizes the observed
properties of the hosted architecture and draws some con-
clusions about this approach to I/O virtualization.

2 A Hosted Virtual Machine Architecture
VMware Workstation virtualizes I/O devices using a novel
design called the Hosted Virtual Machine Architecture.
The primary feature of this design is that it takes advan-
tage of a pre-existing operating system for I/O device sup-
port and still achieves near native performance for CPU-
intensive workloads. Figure 2 illustrates the structure of a
virtual machine in the hosted architecture.
VMware Workstation installs like a normal application

on an operating system, known as the host operating sys-
tem. When run, the application portion (VMApp) uses a
driver loaded into the host operating system (VMDriver)
to establish the privileged virtual machine monitor compo-
nent (VMM) that runs directly on the hardware. From then
on, a given physical processor is executing either the host
world or the VMM world, with the VMDriver facilitating
the transfer of control between the two worlds. A world
switch between the VMM and the host worlds involves
saving and restoring all user and system visible state on
the CPU, and is thus more heavyweight than a normal pro-
cess switch.
In this architecture, the CPU virtualization is handled

by the VMM. A guest application or operating system
performing pure computation runs just like a traditional
mainframe-style virtual machine system. However, when-
ever the guest performs an I/O operation, the VMM will
intercept it and switch to the host world rather than access-
ing the native hardware directly. Once in the host world,
the VMApp will perform the I/O on behalf of the virtual
machine through appropriate system calls. For example,
an attempt by the guest to fetch sectors from its disk will
become a read() issued to the host for the correspond-
ing data. The VMM also yields control to the host OS upon
receiving a hardware interrupt. The hardware interrupt is
reasserted in the host world so that the host OS will process
the interrupt as if it came directly from hardware.
The hosted architecture is a powerful way for a PC-

based virtual machine monitor to cope with the vast array
of available hardware. One of the primary purposes of an

operating system is to present applications with an abstrac-
tion of the hardware that allows hardware-independent
code to access the underlying devices. For example, a
program to play audio CD-ROMs will work on both IDE
and SCSI CD-ROM drives because operating systems pro-
vide an abstract CD-ROM interface. VMware Workstation
takes advantage of this generality to run on whole classes
of hardware without itself needing special device drivers
for each possible device.
The most significant trade-off of a hosted architecture

is in potential I/O performance degradation. Because I/O
emulation is done in the host world, a virtual machine ex-
ecuting an I/O intensive workload can accrue extra CPU
time switching between the VMM and host worlds, as well
as significant time in the host world performing I/O to the
native hardware. This increases the CPU overhead associ-
ated with any I/O operation.
Another trade-off of the hosted architecture is that the

host OS is in full control of machine resources. Even
though the VMM has full system and hardware privileges,
it behaves cooperatively and allows the host OS to sched-
ule it. The host OS can also page out the memory allo-
cated to a particular virtual machine except for a small set
of pages that the VMM has pinned on behalf of the virtual
machine. This allows VMware Workstation to be treated
by the host OS like a regular application, but occasionally
at the expense of performance if the host OS makes poor
resource scheduling choices for the virtual machine.

2.1 Virtualizing I/O Devices

Every VMware virtual machine is configured from the
same set of potential virtual devices. Supported are stan-
dard PC devices such as a PS/2 keyboard, PS/2 mouse,
floppy drive, IDE controllers with ATA disks and ATAPI
CD-ROMs, a Soundblaster 16 sound card, and serial and
parallel ports. Each virtual machine can also populate its
virtual PCI slots with virtual BusLogic SCSI controllers,
AMD PCNet Ethernet adapters, and an SVGA video
controller for a special VMware virtual display card. Note
that since the hardware besides the SVGA controller is
made up of standard PC devices, existing guest operat-
ing system device drivers can communicate with it without
modification.
In order to virtualize an I/O device, the VMM must

be able to intercept all I/O operations issued by the guest
operating system. On a PC, those accesses are generally
done via special privileged IA-32 IN and OUT instruc-
tions. These are trapped by the VMM and emulated either
in the VMM or the VMApp by software that understands
the semantics of the specific I/O port accessed. Any ac-
cesses that interact with the physical I/O hardware must be
handled in the VMApp, but the VMM can potentially han-
dle accesses that do not interact with the hardware, e.g.,
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bridged to a physical Ethernet adapter, or connected to a virtual network interface in the host OS. The virtual bridge and
hub are implemented via a VMNet driver that is loaded into the host OS.

status ports or ports that merely latch data that will be used
later. Restricting virtual devices to only a subset of avail-
able PC hardware greatly reduces the number of I/O ports
that must be handled and the breadth of possibilities that
handlers need to understand.
Virtualizing I/O devices with the hosted architecture

can incur overhead from world switches between the
VMM and the host, and even from the expense of handling
the privileged instructions used to communicate with the
hardware. However, these overheads matter only for de-
vices with either high sustained throughput or low latency.
The keyboard, for example, is perfectly suited to hosted
virtualization.

2.2 Virtualizing a Network Card
An excellent example of a device that requires both high
sustained throughput and low latency is a network inter-
face card (NIC). Therefore, to understand how hosted de-
vice virtualization works and its performance implications,
the following sections focus on the specific example of em-
ulating a NIC in VMware Workstation. Figure 3 illustrates
the components of the system. The virtual NIC appears to
the guest as a full-fledged PCI Ethernet controller, com-
plete with its own MAC address. The NIC emulation can
be connected to the host in two ways– it can be bridged
to the same physical network as a physical NIC or it can
be connected to a virtual network created on the host. In
both cases, the connection is implemented by a VMware
VMNet driver that is loaded in the host operating system.
A virtual NIC that is bridged to a physical NIC is a true

Ethernet bridge in the strictest sense. Its packets are sent
on the wire with its own unique MAC address. The VMNet

driver runs the bridged physical NIC in promiscuous mode
so that replies to that MAC address are picked up. The
virtual NIC appears on the local Ethernet segment indis-
tinguishably from any real machine. As a result, a virtual
machine with a bridged virtual NIC can fully participate in
accessing and providing network services.
A virtual NIC that is connected to a virtual network

does not require an Ethernet interface on the host. Unlike
the bridged case, the virtual network is completely private
within the host and any participating virtual machines. If
desired, the host OS can perform routing or IP masquerad-
ing to connect a virtual network to any type of external
network, even to a non-Ethernet network. This paper will
focus only on virtual NICs bridged to a physical NIC.
A virtual NIC itself is implemented via a combination

of code in the VMM and the VMApp. The VMM exports a
number of virtual I/O ports and a virtual IRQ that represent
the virtual network adapter in the virtual machine. Reads
and writes to these I/O ports, as well as virtual DMA trans-
fers between the adapter and the virtual machine’s mem-
ory are semantically equivalent to those of a real network
adapter. In VMware Workstation, the virtual NIC models
an AMD Lance Am79C970A [1] controller, except that it
is not limited to any specific network speed.

2.3 Sending and Receiving via a Virtualized NIC
Figure 4 depicts the components involved when sending
and receiving packets via the hosted virtual NIC emula-
tion described above. The guest operating system runs
the device driver for a Lance controller. The driver ini-
tiates packet transmissions by reading and writing a se-
quence of virtual I/O ports, each of which switches back
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to the VMApp to emulates the Lance port accesses. On the
final OUT instruction of the sequence, the Lance emula-
tion does a normal write() to the VMNet driver, which
passes the packet onto the network via a host NIC and then
the VMApp switches back to the VMM, which raises a vir-
tual IRQ to notify the guest device driver the packet was
sent.
Packet receives occur in reverse. The bridged host NIC

delivers the packet to the VMNet. The VMApp periodi-
cally runs select() on its connection to the VMNet and
read()s the packet and requests that the VMM raise a
virtual IRQ when it discovers any incoming packets. The
VMM posts the virtual IRQ and the guest’s Lance driver
issues a sequence of I/O accesses to acknowledge the re-
ceipt to the hardware.
The boxed regions of the figure indicate extra work

introduced by virtualizing the port accesses that actually
send and receive packets. There is additional work in han-
dling the intermediate I/O accesses and the privileged in-
structions associated with handling a virtual IRQ. Of the
intermediate accesses, the ones to the virtual Lance’s ad-

dress register are handled completely within the VMM and
all accesses to the data register switch back to handling
code in the VMApp.
This extra overhead consumes CPU cycles and in-

creases the load on the CPU. The next section studies the
effect of this extra overhead on I/O performance as well as
CPU utilization. It breaks down the overheads along the
boxed paths and describes overall time usage in the VMM
and VMApp during the course of network activity.

3 Virtual Machine Networking Performance
A hosted virtualization strategy for I/O devices offers ex-
cellent flexibility and portability but at a potential tradeoff
in performance for high throughput devices. Due to its
nature, the hosted architecture incurs the following over-
heads: i) a world switch from the VMM to the host is re-
quired whenever the virtual machine needs to access real
hardware, ii) I/O interrupt handling potentially involves
the VMM, host OS, and guest OS interrupt handlers, iii)
a packet transmission by the guest OS involves two device
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guest OS to a virtual AMD Lance NIC that initiates a physical network packet transmission on a 733 MHz CPU machine.

drivers - one in the guest and one on the host, and iv) there
is an extra copy from the guest OS’s physical memory to
the host OS’s kernel buffers on a packet transmit. Since
these overheads consume CPU cycles, a system that is na-
tively capable of saturating a high performance Ethernet
link might instead become CPU bound when run within a
virtual machine.
This section analyzes the overheads of sustained TCP

transmits from a virtual machine. Experimental results of
sustained TCP receives yield similar results and conclu-
sions, and are not presented here due to space constraints.
An analysis of these workloads exposes the major sources
of virtualization overhead on a hosted architecture. Fre-
quent switches between the host and VMM worlds is the
most significant overhead. A set of optimizations targeted
at these overheads improves the virtual networking sub-
system substantially. The experimental results show that a
set of three optimizations doubles sustained TCP transmit
throughput on a slower machine that is CPU bound, and
reduces CPU utilization significantly on a faster machine
that is I/O bound.

3.1 Experimental Setup
The experiments were performed on two Intel-based PCs
that are physically connected to each other via Intel Ether-
Express 100 Mb/s Ethernet NICs and a direct, crossover
cable:

PC-350 – a 350 MHz Pentium II system with 128
MBytes of RAM running a Linux 2.2.13 kernel

PC-733 – a 733 MHz Pentium III system with 256
MBytes of RAM running a Linux 2.2.17 kernel.

A virtual machine is configured with a virtual AMD
Lance NIC bridged to the native Intel EtherExpress NIC.

The virtual machine runs a standard RedHat 6.2 Linux
guest OS plus the 2.2.17-14 kernel update and uses the
standard Linux pcnet32 driver to communicate over the
virtual network. This virtual machine is hosted in two con-
figurations on VMware Workstation 2.0:

VM/PC-350 – the virtual machine with 64 MBytes of
RAM hosted by PC-350.

VM/PC-733 – the virtual machine with 128 MBytes of
RAM hosted by PC-733.

The throughput experiments use a simple program
called nettest that was developed internally for bench-
marking network performance. The program opens a TCP
connection between two IP addresses and copies a user
specified amount of data with individual send()s and
recv()s of a user specified size. The data transferred is
merely repeated copies of the same in-memory buffer (to
avoid paging and disk overhead) and is discarded on the re-
ceive side as soon as it arrives. The program measures the
entire transfer and reports the average throughput in Mb/s.

3.2 Packet Transmit Overheads
The first series of experiments investigates the behavior of
sustained virtual machine TCP transmits from VM/PC-
733 to PC-350. We configure nettest to send 100
megabytes using 4096-byte read()s and write()s.
With VMware Workstation 2.0, we find that the workload
is CPU bound with an average throughput over 30 consec-
utive runs of 64 Mb/s.
The workload is then instrumented to determine where

the CPU time is spent. The first instrumentation gauges the
time spent transmitting a packet by reading the the Pentium
Processor’s Time Stamp Counter (TSC) register [10] at key
points during the virtualization of the OUT instruction that



Total Time
Category Percent Time Average Time
VMM Time 77.3% N/A
Transmitting via the VMNet 8.7% 13.8 s
Emulating the Lance status register 4.0% 3.1 s
Handling host IRQs (device interrupts) 3.4% N/A
Emulating the Lance transmit path 3.3% 5.2 s
Receiving via the VMNet 0.8% 1.8 s

VMM Time
Category Percent Time Average Time
IN/OUTs requiring switching to the VMApp 26.8% 7.45 s
Instructions not requiring virtualization 22.0% N/A
General instructions requiring virtualization 11.6% N/A
IN/OUTs handled in the VMM 8.3% 1.36 s
IN/OUTs to the Lance Address Port 8.1% 0.74 s
Transitioning to/from virtualization code 4.8% N/A
Virtualizing the IRET instruction 4.8% 3.93 s
Delivering virtual IRQs (device interrupts) 4.6% N/A

Table 1: Distribution of CPU time during network transmission. The largest overheads are I/O space accesses requiring a
world switch to the VMApp and the time spent handling them once in the VMApp.

triggers a packet transmission. The TSC allows a mea-
surement of the total cycle count of the path, plus internal
breakdowns of interesting subsegments.
Figure 5 presents the latency involved along the instru-

mented network transmit path on PC-733. It takes a total
of 0.57+4.45+1.23+17.55 = 23.8 s from the start of the
OUT instruction until the return from the VMNet system
call that puts the packet on the wire. End-to-end, it takes
31.63 s from the start of the OUT instruction that triggers
a packet transmission until control is returned to the virtual
machine and the next guest OS instruction is executed.
Of those 31.63 s, 30.65 s is spent in world switches

and in the host world. Assuming the 17.55 s of VMNet
driver time in the host world is dominated by the unavoid-
able cost of actually transmitting the packet, we find that
hosted virtualization architecture imposes 30.65 - 17.55 =
13.10 s of overhead that would not be present if the VMM
talked directly to the host NIC.
This overhead alone does not explain why the workload

is CPU bound. At 31.63 s per 1520-byte packet, it only
takes roughly 0.26 seconds to transmit 100 megabits. Each
packet transmission actually involves a series of 11 other
IN/OUT instructions issued by the guest Ethernet driver as
well as interrupt processing and virtualization overheads.
To investigate these other overheads, the next set of ex-

periments uses time-based sampling to profile the distri-
bution of time spent in the VMM and VMApp over the
entire workload. The samples measure the percentage of
time spent in code sections and the number of samples that
hit a section (when available). This gives a more com-

prehensive picture of the overheads present in transmitting
packets and reveals some unnecessarily expensive paths.
Table 1 summarizes the highest categories.
The profile shows that more than a quarter of the time in

the VMM is spent preparing to call the VMApp because of
an I/O instruction, recording the result and then returning
to the virtual machine. Additionally, each of those transi-
tions also cost a world switch from the VMM to the host
and back, which was calculated at around 8.90 s on PC-
733 above (the switch time is part of the 77.3% running
the VMM, but not part of any of the VMM Time num-
bers). Given that an I/O instruction on native hardware
completes in a matter of tens of cycles, this is easily two
orders of magnitude slower.
The other significant source of overhead is spread

through the categories in Table 1: IRQ processing. The
virtual AMDLance NIC as well as the physical Intel Ether-
Express NIC raises an IRQ (device interrupt) on every
packet sent and received. Thus, the interrupt rate on the
machine is very high for network-intensive workloads. On
a hosted architecture, each IRQ that arrives while execut-
ing in the VMM world runs the VMM’s interrupt handler
then switches to the host world. The host world runs the
host OS’s interrupt handler for that IRQ, and passes control
to the VMApp to process any resulting actions. If the IRQ
pertains to the guest (e.g., the IRQ indicates that a packet
was received that is destined for the guest), the VMApp
will then need to deliver a virtual IRQ to the guest OS.
This involves switching back to the VMM world, deliver-
ing an IRQ to the virtual machine, and running the guest
OS’s interrupt handler.



This magnifies the cost of an IRQ since VMM and host
interrupt handlers as well as guest interrupt handlers are
run. Additionally, virtual interrupt handling routines exe-
cute privileged instructions that are expensive to virtualize.
In Table 1, most of the IN/OUTs handled in the VMM are
accesses to the virtual interrupt controller and the major-
ity of the IRET instructions are the guest interrupt handler
finishing. Note also that the cost of servicing an interrupt
taken in the VMM world is much higher than servicing an
interrupt taken in the host world due to the VMM interrupt
handler and a world switch back to the host.
Yet another overhead in the hosted architecture which

is not apparent from the raw profile is the inability of the
VMApp and VMM to distinguish between a hardware in-
terrupt which produces an event for the virtual machine
(e.g., a packet to be delivered to the guest was received)
from one that is unrelated to the virtual machine. Only
the host OS and its drivers determine that. This leads to
a balancing act: The VMApp can do nothing when the
VMM returns to the VMApp on an IRQ, or it call se-
lect() in the VMApp. Calling select() too fre-
quently is wasteful, whereas calling select() too infre-
quently may cause harmful delays in handling network I/O
events.

3.3 Reducing Network Virtualization Overheads

Guided by the results from the previous subsection that
showworld switch overheads as having the biggest impact,
we implemented a set of optimizations aimed at reducing
the number of world switches dramatically without depart-
ing from the hosted I/O architecture.

Handling I/O ports in the VMM Recall that the only
virtual I/O accesses that require a world switch to the host
are the ones that require a physical I/O device access. The
vast majority of the I/O instructions are accesses to the
Lance data port and only a third of them trigger packet
transmissions. The remaining accesses merely modify the
state of the virtual Lance data port, which can be easily
done directly in the VMM without a world switch. Thus,
an emulation of an OUT instruction that does not require
real I/O can now be achieved in less than a tenth of the time
it takes in VMware Workstation 2.0.
We also further reduce the cost of processing I/O ac-

cesses to the Lance address port by taking advantage of
the property that the Lance address register has memory
semantics, i.e., reads and writes have no side effects and
only latch the last value written. Thus, even though the in-
structions to access it are privileged instructions, the VMM
can treat them as simple MOV instructions that happen to
store to a special location. This allows the VMM to strip
away several layers of virtualization and reduce the han-
dling of the accesses to a handful of instructions.

Send combining The second optimization further re-
duces world switches by taking advantage of the fact that
I/O intensive workloads have a high interrupt rate and the
VMM must switch to the host whenever it takes a host
IRQ. In VMware Workstation 2.0, each packet sent on the
Lance adapter causes a world switch to the host to send
the packet over the bridged network. Since part of the
Lance data port emulation is now performed in the VMM,
the VMM can delay the actual transmission until the next
interrupt-induced switch to the host world.
Specifically, send combining work as follows: the

VMM detects whether the system is experiencing a high
world switch rate. If the rate (as recalculated periodically
with an exponentially decaying counter) is high enough
when the guest transmits a packet, the VMM queues it in a
ring buffer and resumes the virtual machine. The next time
a real interrupt occurs and control returns to the VMApp it
transmits any pending packets in the ring buffer. This ef-
fectively allows a packet transmission world switch to be
combined with an interrupt-induced one.
Queueing the packets can be done without copying by

leaving them in the virtual Lance controller’s transmit ring
buffer. If too many packets are delayed (currently default-
ing to 3), the VMM will force a world switch to trans-
mit the packets in order to insure that the native NIC is
kept busy. In addition, there is a guaranteed world switch
on the next IRQ from the host system timer so no packet
will ever be delayed more than one tick (at which point
the VMAppwill discontinue send combining if necessary).
This optimization works well on I/O intensive workloads
because interrupt rates are high enough that world switches
are saved while I/O utilization is sustained.
Send combining also benefits both guest and host IRQs.

Since the guest continues executing as soon as the packets
are queued, there is a high probability that the guest will
transmit multiple packets before the next mandatory world
switch. This allows the VMApp to process multiple trans-
mit packets on a single world switch and deliver only a
single virtual IRQ for the batch. As noted earlier, virtual
IRQ delivery and the associated privileged virtualization
are expensive operations. Furthermore, transmitting mul-
tiple packets at once increases the probability that native
send-complete interrupts are taken while executing in the
host world and hardware interrupts taken in the host world
are serviced faster than those taken in the VMM world.

IRQ notification The third optimization is targeted at
reducing host system calls for receiving notification of
packet sends and receives. The VMApp establishes a piece
of shared memory with the VMNet driver at initialization
and the driver sets a bitvector whenever packets are avail-
able. Then, on every NIC IRQ, instead of an expensive
select() on all of the devices, the VMApp checks the
shared memory, receives any pending packets, and imme-
diately returns to the VMM.



Total Time
Category Percent Time Average Time
VMM Time 71.5% N/A
Transmitting via the VMNet 17.9% 22.7 s
Receiving via the VMNet 2.5% 22.7 s
Emulating the Lance transmit path 1.8% 3.0 s

VMM Time
Category Percent Time Average Time
Guest idle 30.4% N/A
Instructions not requiring virtualization 22.2% N/A
Guest context switches 11.5% N/A
Host IRQ processing while guest idle 10.7% N/A
Virtualizing privileged instructions 7.9% N/A
IN/OUTs to the PIC (Interrupt Controller) 2.5% 0.78 s
Virtualization overheads of guest IRQs 2.5% N/A
IN/OUTs to the Lance status register 2.3% 0.91 s
Transitioning to/from virtualization code 1.5% N/A
IN/OUTs to the Lance that world switch 0.5% N/A

Table 2: Distribution of CPU time during network transmission, with VMM optimizations. Many of the VMM time entries now
represent a collection of individual instructions, which renders the Average Time not applicable. Categories marked with
‘ ’ are partly derived from direct measurements presented in Section 3.5 for reasons described below.

In summary, the three major optimizations applied are
as follows: Lance related I/O port accesses from the virtual
machine are handled in the VMMwhenever possible. Dur-
ing periods of heavy network activity, packet transmissions
are merged and sent during IRQ-triggered world switches.
This reduces the number of world switches, the number of
virtual IRQs, and the number of host IRQs taken while ex-
ecuting in the VMM world. Finally, the VMNet driver is
augmented with shared memory that allows the VMApp to
avoid calling select() in some circumstances.
Figure 6 shows that these optimizations reduce CPU

overhead enough to allow VM/PC-733 to saturate a 100
Mbit Ethernet link, and the throughput for VM/PC-350
more than doubles. Table 2 lists the CPU overhead break-
down from the time-based sampling measurements on
VM/PC-733 with the optimizations in place. Overall, the
profile shows that the majority of the I/O related overhead
is gone from the VMM and that there is now time when
the guest OS idles. Additionally, guest context switch vir-
tualization overheads now become significant as the guest
switches between nettest and its idle task.
The “Guest idle” and “Host IRQ processing while guest

idle” categories in Table 2 are derived with input from di-
rect measurements presented in Section 3.5. A sample-
based measurement of idle time indicates that 41.1% of
VMM time is spent idling the guest and taking host IRQs
while idling. However, discriminating the host IRQ pro-
cessing time and guest idle time via time-based sampling
alone is hard because of synchronized timer ticks and the
heavy interrupt rate produced by the workload. We use di-

rect measurements that show that 21.7% of total time is
spent in the guest idle loop to arrive at the idle time break-
down in Table 2.

The most effective optimization is handling IN and
OUT accesses to Lance I/O ports directly in the VMM
whenever possible. This eliminates world switches on
Lance port access that do not require real I/O. Additionally,
Table 1 indicates that accessing the Lance address register
consumes around 8% of the VMM’s time and taking ad-
vantage of the register’s memory semantics has completely
eliminated that overhead from the profile as shown in Ta-
ble 2.

An interesting observation is that the time to transmit
a packet via the VMNet does not change noticeably – all
of the gains are along other paths. Instrumenting the opti-
mized version in appropriate locations shows that the av-
erage cycle count on the path to transmit a packet onto the
physical NIC is within 100 cycles of the totals from Fig-
ure 5. However, this is contrary to the times in Table 2 for
sending via the VMNet driver. This disagreement stems
from transmitting more than one packet at a time. While
simply sending and timing individual packets, the baseline
and optimized transmits look very similar, but with send
combining active, up to 3 packets are sent back to back.
This increases the chance of taking a host transmit IRQ
from a prior transmit while in the VMNet driver. Since Ta-
ble 2 reports the time from the start to finish of the call into
the VMNet driver, it also includes the time the host kernel
spends handling IRQs.
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3.4 Throughput vs. Data Size: Transmit

The next series of experiments investigates the effect of
the per-write() data size on the overall throughput. The
data was gathered with the same nettest program and
100 MByte copies, but the amount of data copied per
write() was varied from 512 to 65536 bytes by pow-
ers of two. 30 runs were taken and averaged at each data
size with both the optimized and 2.0 versions. Figure 6
shows the sustained transmit throughput from the various
machine configurations and optimization levels.
As expected, the native machines (both PC-733 and

PC-350 achieve identical throughput) saturate the 100
Mbit link. VM/PC-733 becomes CPU bound well before
saturating the network link. With the optimizations how-
ever, VM/PC-733 matches native throughput. Although
VM/PC-350 remains CPU bound with the optimizations,
its sustained throughput doubles and matches the perfor-
mance of the unoptimized VM/PC-733. The two VM/PC-
350 curves are consistent in shape with their PC-733 coun-
terparts.

3.5 CPU Utilization

Figure 6 shows that VM/PC-733 is able to saturate a 100
Mbit link without becoming CPU bound, but VM/PC-350
is CPU bound, even with optimizations. Natively, PC-733
and PC-350 easily saturate a 100 Mbit link. The final ex-
periments set out to gather information about how utilized
the CPU is in the different configurations.
We instrumented the system to obtain a precise mea-

surement of idle time. Normally, when a guest issues a halt
(HLT) instruction, VMware Workstation switches back to
the VMApp which then blocks on a select()on all de-
vices. Instead, we enabled an option whereby a guest HLT
instruction spins and halts the CPU in the VMM rather than
yielding control back to the host OS. Using the TSC reg-
ister, we measure idle time starting from when the guest
issues a HLT instruction to when the next hardware inter-
rupt occurs. This idle time represents CPU cycles that is
available to the guest OS for running other computation.
Note that not all of this idle time would be available for
other host OS computation, as there are a couple of world



Idle Time While Running nettest
PC-733 86%
Optimized VM/PC-733 21.7%
Optimized VM/PC-733 without IRQ notification 17.9%
Optimized VM/PC-733 without send combining and IRQ notification 2.0%
Version 2.0 VM/PC-733 0%

Table 3: Percentage of total time spent idle for various configurations transmitting data on PC-733.

switches and some system call overhead (e.g., the se-
lect() system call) if we switched back to the VMApp
on a guest HLT instruction.
For the native idle times, the standard profiler built into

Linux kernels was augmented to account for time spent ex-
ecuting user code and in the kernel idle loop, and then the
percentage of total ticks spent in the idle loop was taken.
The idle times in Table 3 show that in VM/PC-733,

with a transmit size of 4KB, the guest has transitioned
from being CPU bound at 64 Mb/s to being I/O bound
with 21.7% idle time. In comparison, PC-733 has 86% idle
time. At this point, nearly all of the remaining overheads
are either part of CPU virtualization or part of the nature
of the hosted architecture. The next section discusses fur-
ther optimizations both within and outside the scope of a
hosted architecture.

4 Performance Enhancements
The previous section showed that targeted optimizations
can reduce the CPU overhead due to virtualization to the
point where performance becomes I/O bound. This section
describes strategies for further improving I/O performance
and decreasing CPU utilization. The major areas for opti-
mization include i) reducing CPU and interrupt controller
virtualization overheads, ii) modifying the guest OS and/or
its drivers, iii) modifying the host OS, and iv) accessing the
native hardware directly from the virtual machine monitor.
The last two techniques are departures from a pure hosted
virtual machine architecture. Recall that the hosted archi-
tecture is designed with the requirement that existing host
operating systems continue to run as usual, and that the
virtualization software uses the host OS’s API to access
hardware devices.

4.1 Reducing CPU Virtualization Overhead
The optimized profile of Table 2 still shows significant
overhead for “core CPU virtualization” overheads such as
delivering virtual IRQs to a guest operating system, han-
dling IRET instructions, and the MMU overheads associ-
ated with context switches. However, a discussion of any
of these topics in enough detail to make concrete sugges-
tions requires an understanding of VMware Workstation’s
core virtualization technology, and is beyond the scope of
this paper.

The profile does however suggest one easy optimiza-
tion to reduce virtualization overhead. Guest OS accesses
to the virtual PIC (interrupt controller) accounts for 2.5%
of VMM time. A network card saturating a 100 megabit
link is transmitting around 8000 packets per second and, in
the case of TCP, receiving a steady flow of incoming ACK
packets as well. This causes the virtual machine to receive
a high rate of virtual IRQs. For each IRQ, the Linux guest
IRQ handler issues five accesses to the virtual PIC. Since
the virtual PIC is independent of the real PIC, it is handled
in the VMM without requiring world switches. We can
further optimize these accesses. One of the five accesses
has memory semantics and can be inlined as a MOV in-
struction (just like the Lance address register). The other
four accesses cause the current virtual PIC implementation
to completely recalculate its internal state in a very general
way – this can be specialized to reduce the overhead of
those accesses.

4.2 Modifying the Guest OS

It is possible to modify the guest OS to avoid using instruc-
tions that virtualize inefficiently. Going a step further, it is
also possible to provide a safe call into the VMM from the
guest OS to provide some semantic knowledge about the
guest to the VMM, or to perform some operations on its
behalf. This technique comes at the price of compatibility
with off-the-shelf guest OSes.
An optimization we tried in this category is to alter the

Linux kernel to avoid page table switches when switching
to the idle task. An idle guest spends a significant amount
of time context switching to and from its idle task. A guest
context switch operation uses a number of privileged in-
structions and changes guest page tables. This requires
VMM intervention to implement the guest context switch
safely. In the experiments above, as optimizations are
added to reduce CPU utilization, the virtual machine ex-
ecution profiles show an increasing fraction of CPU over-
head due to virtualizing guest context switches. The VMM
in VM/PC-733 spends 8.5% of its time virtualizing page
tables switches.
Linux’s 2.2 kernels run the idle task as a kernel thread

with the kernel’s page table. The kernel’s page table is a
subset of every user application’s page table. This implies
that it is not necessary to switch page tables when switch-



ing to the idle thread. Further, if the idle thread runs with
the page table of the last user process to run and the idle
thread ends up yielding back to the same process, another
page table switch can be avoided. This optimization re-
lies on trusting the idle thread not to corrupt user memory,
a reasonable requirement since the idle thread runs at a
trusted kernel-level.
We prototyped the optimization of running the idle task

with the prior user application’s page table by modifying
the Linux kernel’s context switch function. This modifi-
cation halves the MMU derived virtualization overhead,
and almost all of the saved CPU cycles become CPU idle
time. Besides reducing virtualization overhead, such an
optimization may also benefit software-based IA-32 CPU
implementations where the overhead of emulating the in-
structions involved in a context switch is significant.

4.3 Optimizing the Guest Driver Protocol
A hosted architecture allows the NIC emulation code to
communicate to the host via an abstracted interface that is
independent of the host’s native hardware. It is possible
to design a similarly abstracted imaginary Ethernet con-
troller whose interface is an idealization designed explic-
itly to virtualize well. For example, the Linux pcnet32
driver issues 12 I/O instructions and takes one IRQ for ev-
ery single packet transmitted. An idealized virtual NIC
could use only a single OUT to indicate a packet is ready
to send and completely skip the transmit IRQ, or to only
get an IRQ when space becomes available in the array of
outgoing packets. The idealized device can also arrange its
transmit and receive buffers very simply in memory rather
than with the elaborate flexibility, but complexity of the
Lance controller’s buffers. In fact, VMware’s server prod-
ucts support a vmxnet network adapter that implements
such an ideal interface.
The major drawback of creating an idealized virtual

NIC is the need for custom device drivers for every guest
OS. Since the AMD Lance is a well supported NIC, most
operating systems already include drivers for it. These ex-
isting drivers work unmodified in the guest OSes. Any ide-
alized NIC would need to have an array of its own drivers
written, distributed, and maintained. Thus, while an ideal-
ized driver is a potential accelerating option, it is likely fea-
sible only for critical situations on a select group of guest
operating systems, such as in a server environment.

4.4 Modifying the Host OS
Just as expensive virtualization overheads can sometimes
be removed by modifying the guest rather than by modi-
fying the VMM, some bumps in the hosted architecture’s
handling of networking are best smoothed by modifying
the host. One promising change is to expand the ways in
which the Linux networking stack allocates and handles

sk buffs. Each time the VMApp sends a packet via the
VMNet driver, the driver allocates an sk buff and copies
the data from the VMApp into the sk buff. The Linux
kernel profiler shows that a very significant portion of the
time spent in the host kernel while running the network
transmit workload is due to copying data from the VMApp
into an sk buff.
In Linux, sk buff creation uses kmalloc() to allo-

cate the data area. If a driver could specify its own data
region, then it would be possible to transmit packets via
the VMNet driver without the copy. The driver would
need to be responsible for making sure that its allocated
sk buffs are neither leaked nor freed too early. How-
ever, for the VMnet driver, the backing for the sk buff
data area would come from the memory representing the
virtual machine’s physical memory. This memory would
be at least as persistent as the virtual machine itself, and
any packets transmitted via a VMNet would presumably
only be interesting as long as their corresponding virtual
machine exists.
The primary disadvantage of modifying the host OS is

that it requires the cooperation of OS vendors, or, in the
case of Linux, the active support of Linux kernel maintain-
ers. Otherwise the optimization will not be available on
unmodified off-the-shelf host OSes.

4.5 Bypassing the Host OS

As long as actual transmits to and receives from the phys-
ical network require a world switch back to the host oper-
ating system and the VMApp, an unavoidable latency and
CPU overhead will remain. Additionally, the VMM will
have to take native IRQs while running, world switch them
back to the host, and wait for incoming packets to work
through the host and VMApp before they reach the guest.
This fundamentally limits the I/O performance of a hosted
virtual machine architecture. To truly maximize I/O band-
width, the VMM must drive the I/O device directly. The
guest OS could potentially drive the device directly too,
but this requires either hardware support or memory access
restrictions to preserve safety and isolation.
With its own device drivers, the VMM can send and re-

ceive packets without any mandatory world switches and
relay receive IRQs to the guest almost immediately. Ad-
ditionally, there would be no need for a separate VMNet
driver. However, adding device drivers to the VMM repre-
sents a major trade-off. Recall that VMware Workstation
supports a wide variety of hardware devices because of the
hosted architecture. It automatically gains support for new
I/O devices and bug-fixes in existing drivers as soon as the
host OS does. A VMM that requires its own NIC drivers
would require an investment of resources in developing,
testing, and updating its hardware support.
As described, each VMM is associated with a single



virtual machine. In order to share an I/O device among
several virtual machines, the VMM would have to be ex-
tended to include a global component that recognizes the
individual virtual machines and their VMMs. The global
component would effectively be a kernel that is specifi-
cally designed for managing VMM worlds. In addition to
driving the device, the global component would have to
provide software to multiplex more than one VMM onto
a single I/O device. This technique is used in VMware
ESX Server , where achieving native I/O performance
for high-speed devices is an important requirement.

5 Related Work
Providing interoperability and preserving compatibility are
frequently necessary when introducing any new technol-
ogy. As computer architectures and operating systems ad-
vance, they need to remain compatible with existing soft-
ware and applications. By providing a hardware abstrac-
tion layer, virtual machine technology allows hardware dif-
ferences to be hidden from legacy software, and allows
multiple incompatible computing environments to co-exist
on a machine.
Achieving native machine performance is a prime tar-

get of virtual machine technology. The ability to execute
virtual machine code directly on the hardware allows the
technology to outperform other technologies based on ma-
chine simulation or emulation. Subsequent to the early
mainframe virtual machine support, IBM designed a num-
ber of architectural features to further enhance the perfor-
mance of virtual machines. Gum [7] describes a number
of hardware assists in the IBM System/370 architecture for
further reducing the overhead of handling privileged guest
instructions, guest memory address translation, and multi-
processing support.
Borden et al. [2] describe PR/SM, a partitioning feature

on the IBM 3090 series of mainframes that allows specific
devices, I/O channels and memory address ranges to be
dedicated to a virtual machine. Guest I/O accesses can
then be handled directly by the hardware without requir-
ing VMM intervention. Borden et al. report that this fea-
ture allows a virtual machine with dedicated I/O devices to
achieve within 1–2% of native hardware performance. A
PC-based server platformwith similar partitioning features
would allow VMware’s virtual machines to do the same.
Hall and Robinson [8] describe virtualizing the VAX

architecture which, like the IA-32 architecture, is not natu-
rally virtualizable and has more than two protection rings.
They rely on modifications to the VAX architecture as well
as the microcode. In contrast, VMware’s virtualization
technology does not require any hardware modifications.
Bugnion et al. [3] apply virtual machine technology

towards providing scalable performance on large scale
NUMA machines. Most commodity operating systems

do not scale to a large NUMA machine without extensive
modifications. However, a virtual machine monitor can be
designed from the ground up to manage such a machine
and hide its NUMA nature from a commodity OS. The ma-
chine can then run multiple commodity OS images, with
each OS allocated as many CPUs as it can scale to.
VMware Workstation’s hosted virtual machine archi-

tecture relies on user-level emulation of I/O devices. This
parallels the approach taken by microkernel-based operat-
ing systems (e.g., Mach [6]) which rely on user-level em-
ulation of operating system APIs to provide multiple ap-
plication environments on a single machine. The primary
difference lies at the abstraction layer: while virtual ma-
chines abstract the hardware layer, microkernels abstract
the OS API layer. Härtig et al. [9] describe techniques for
improving the performance of microkernel-based systems.

6 Summary and Conclusions
This paper describes VMware’s hosted virtual machine ar-
chitecture as implemented in VMware Workstation. This
architecture enables VMware Workstation to support a
wide variety of PC hardware without special device drivers
and to present a constant and hence portable virtual hard-
ware environment. Additionally, co-existing with an com-
modity operating system simplifies installation and use for
users and reduces the complexity of the virtual machine
monitor component for the developers.
The hosted architecture splits its functionality between

a VMM component that virtualizes the CPU, and a
VMApp component that runs as a normal application on
a host OS and handles I/O to the native devices on behalf
of a virtual machine. I/O intensive workloads, in addition
to running significant amounts of privileged code, require
heavy-weight world switches from the VMM back to the
VMApp on the host. While this is unimportant for low
bandwidth devices like keyboards or mice, it can poten-
tially prevent more demanding devices from achieving the
same I/O saturation as their native counterparts. This paper
focuses specifically on NIC virtualization. It presents opti-
mizations to VMware Workstation 2.0 that allow a virtual
machine hosted on a 733MHz Pentium III CPU to saturate
the network without becoming CPU bound.
The key strategy behind all the implemented optimiza-

tions is to reduce the number of world switches. The first
optimization takes advantage of the fact that only a fraction
of the I/O accesses to the virtual NIC causes packets to be
transmitted. The remainder do not require any access to the
host hardware, allowing the VMM to handle them directly
instead of switching back to the host world. This optimiza-
tion alone reduces CPU utilization to the point where the
network link is completely saturated on a 733 MHz CPU.
The second optimization reduces the remaining world

switches and trims their overhead. When the world switch



rate is high enough, rather than switch back to the VMApp
immediately to send each packet, the VMM gathers up to
3 packets at a time before switching back to the VMApp
to send them all at once. An extra benefit of this clustering
is that transmit IRQs from the native NIC becomes more
likely to arrive in the host world (while sending successive
packets) than in the VMMworld where they would require
an immediate world switch.
The third optimization uses sharedmemory between the

VMNet driver and the VMApp to reduce the need to issue
select() calls from the VMApp. This optimization al-
lows the VMApp to detect which NIC IRQ requires con-
tacting the VMNet and which NIC IRQ can immediately
switch back to the VMM without spending extra time in
the VMApp. Together, these three optimizations reduce
the CPU utilization of the 733 MHz CPU virtual machine
to around 78%. The optimizations also more than dou-
ble the achievable network throughput on a 350MHz CPU
virtual machine.
The experimental results confirm that CPU overheads

of a hosted virtualization strategy can prevent an I/O in-
tensive virtual machine workload from matching the per-
formance of the same workload on native hardware. In the
straightforward implementation, frequent I/O causes fre-
quent world switches that artificially limit the I/O utiliza-
tion because the workload becomes CPU bound. How-
ever, even while remaining within a hosted virtual ma-
chine architecture, we are able to eliminate spurious world
switches and even restructure around seemingly manda-
tory crossings with significant reduction in CPU utiliza-
tion to the point that a 733 MHz Pentium III system is I/O
bound with plenty of CPU cycles to spare.
CPUs are constantly getting faster and a 733 MHz Pen-

tium III is at or below entry level for today’s corporate PCs.
Further, very few desktop workloads saturate a full 100
Mbit link with any regularity or frequency. Taken in con-
junction with the portability, device independence, and co-
existence a hosted architecture provides, VMware Work-
station’s achievable I/O performance strikes a good bal-
ance between performance and compatibility for its target
desktop usage. The balance may change of course when
gigabit networks become prevalent, depending on how fast
CPUs will be by then.
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