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ABSTRACT 

Power consumption is one of the key concerns in modern 
computers within which I/O consumes a significant portion of 
power, from portable devices to servers. This concern has led to 
the development of various hardware and software techniques to 
improve the energy efficiency of I/O subsystems in the native 
platform. However, virtualization poses new challenges, 
preventing those techniques from achieving the desired level of 
energy efficiency.  

In this paper, we analyze how I/O virtualization challenges impact 
energy efficiency, and propose a novel power-aware I/O 
virtualization architecture to tackle them. Our preliminary 
research on portable devices shows that new architecture can 
significantly extend battery life in a typical idle scenario, 
compared to existing solutions.  

Categories and Subject Descriptors 

C.0 [Computer Systems Organization]: General–System 

architectures; D.4.4 [Operating Systems]: Communications 
Management; D.4.7 [Operating Systems]: Organization and 
Design;  
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Design, Management, Experimentation 

Keywords 
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1. INTRODUCTION 
The I/O subsystem consumes a significant portion of power in 
modern computers [7][9], leading to the development of various 
hardware and software techniques to help prolong battery life of 
portable devices or to reduce the costs around cooling servers. 

In hardware, some of or all internal components can be regulated 
to consume less power. Specific components may be slowed down 
if I/O requests don’t impose peak pressure, such as dynamic 
rotation speed of disk spindle motor [5]. Clock and voltage may 
be throttled to lower level. When there’s enough idle duration 
among I/O requests, both clock and power can be gated to 

consume the least power, such as PCIe D3 state [1]. 

At the same time, the modern OS manages to use hardware low 
power states in an energy efficient manner, such as trying to finish 
more jobs with the same number of joules, or to consume less 
power for the same task. Usually a system-wide coordination 
framework [15][16][17] is deployed, which connects to both 
resource owners (such as the I/O drivers) and resource consumers 
(such as the user applications). Resource consumers report their 
requirements to, and also proactively create chances for, the I/O 
driver to make good use of low power states of the device. This is 
usually feasible because the OS controls the entire system with 
insights into all layers, from the hardware, device driver to the 
applications. 

However, virtualization imposes new challenges to I/O energy 
efficiency regarding to system-wide coordination. With 
virtualization, resource consumers on I/O devices, such as various 
application workloads, are now consolidated into multiple 
separated virtual environments. The host OS doesn’t have original 
insights into those workloads running in VM, because the guest 
OS now has full control of them. Thus, the host I/O device driver 
lacks enough inputs and chances to make an energy efficient 
decision. It’s possible to rely on the I/O virtualization path, which 
may aggregate some indirect information about VM workload 
patterns. However, no I/O virtualization techniques provide such 
power awareness so far, as far as we know. 

We provide a full anatomy about the challenges of adding power 
awareness into the I/O virtualization path. A novel power aware 
I/O virtualization architecture, called PAIOV, is proposed to 
reunite VM workloads to the host power management framework. 
PAIOV shows flexibility in integrating with various I/O 
virtualization methods. Finally, we propose several techniques on 
PAIOV to proactively create power saving chances, which can be 
well integrated with the host power management framework. Our 
preliminary research on portable devices shows that PAIOV can 
reduce the virtualization overhead of battery life in a typical idle 
scenario to be as small as 4%, while existing solutions incur 
~15% overhead. 

Section 2 introduces I/O power management in a native system. 
The full anatomy of I/O virtualization challenges are provided in 
section 3. Section 4 is our proposal of a power-aware I/O 
virtualization solution. Section 5 introduces our preliminary 
experiments, while Section 6 introduces related work.  The last 
section is conclusion and future work. 

2. I/O POWER MANAGEMENT 
I/O power management architecture includes a Power 
Management Agent (PMA) in the driver and a Power State Agent 
(PSA) in the device. The PMA negotiates power management 

 
 
 
 
 
 
 
This paper appeared at the Second Workshop on I/O Virtualization 
(WIOV '10), March 13, 2010, Pittsburgh, PA, USA. 



policies, and then requests the PSA to regulate the device into 
various low power states, as shown in Figure 1.  

Both the device and the driver in Figure 1 contain a “Functional 
Core” component, denoting all functions other than for power 
management purposes. For example, the functional core of the 
device would include circuits necessary for handling I/O requests, 
mode setting, interrupts, etc. 

2.1 I/O PMA 
An I/O PMA is the bridge connecting the I/O sub-system to the 
coordinated power management framework in the OS, as shown 
in Figure 2. In such a framework, all PMAs are organized in a 
layered style, with the higher level PMA holding a broader view 
of the power management requirements. For example, the PMAs 
in the lowest level directly manage low power state of a set of 
resources (CPU, memory, I/O devices, etc.), while the higher level 
PMA may proxy requirements directly from user level 
applications. Some I/O PMAs may be the parent of others, based 
on platform hierarchy, as shown in Figure 2 by a PCI bridge. 

 

 

 

Based on that coordinated framework, the I/O PMA could receive 
requirements from consumers using that device, and also 
propagate its own requirement on other system resources. 
Exchanged requirements include kinds of QoS metrics (latency, 
throughput, media quality, etc.), statistics (I/O pattern, resource 
use, etc.), power budget (watt, thermal, etc.), and some general 
policies (performance-oriented, power-oriented, etc.). 

The I/O PMA makes energy efficient decisions based on 
negotiated policies, and then sends requests to the device’s PSA. 
Besides hunting for power saving chances passively, the I/O PMA 
may proactively regulate the functional core of the driver to create 
more chances, such as burst request in [16] with negligible 
performance drop. 

2.2 I/O PSA 
An I/O PSA exposes those power-friendly capabilities to the I/O 
PMA in a well-defined interface. The I/O PMA specifies a low 
power state request and send sent to the I/O PSA. Based on the 
requested state, the I/O PSA then regulates the functional core of 
the device to consume less power. The actual regulation method is 
specific to the device implementation, as introduced in section 1. 

Some I/O PSAs may include their own intelligence to trigger a 
transition to a low power state [5], when the I/O PMA is missing 
or less capable of making an optimal decision. 

 

 

3. I/O VIRTUALIZATION CHALLENGES 
Virtualization is bringing new challenges to traditional I/O power 
management, which haven’t been noted in previous I/O 
virtualization research because previously the only goal was 
performance [2] [3]. 

3.1 Problem 
The obvious challenge is the split power management framework; 
because multiple workloads are now consolidated into separate 
VMs. Each VM is a closed environment containing heterogeneous 
OS and application stacks. Workloads running within a VM are 
then disconnected from monolithic coordination framework on the 
host side. There‘s no channel to convey the workload 
requirements out of the VM to host I/O PMA, or to enforce 
power-friendly policies on the VM for creating more power-
saving chances. Without such a tight coordination channel, the 
host I/O power management techniques are then either 
conservative to save power, or even apt to save power overly with 
an undesired drop in performance. 

Obviously, new techniques are required to reunite a global 
coordination power management framework across separated 
VMs. 

3.2 Option-A: high level PMA proxy 
The intuitive option is to plant some cooperative PMAs into the 
proprietary power management framework in each VM. Those 
planted PMAs behave as the bridge between two frameworks of 
the host and the VM, to convey workload requirements and 
administrative policies to host I/O PMA. However the feasibility 
is not always there, regarding diverse virtualization usages: 

- VM is not owned by the physical machine owner in the 
public cloud. The customers renting computing resources 
fully control their own proprietary VMs. They don’t want to 
allow power saving customizations to help cloud service 
providers, if there is no return value. 

- VM may contain a heterogeneous power management 
framework compared to the host side, even when external 
customization is allowed. Such heterogeneities are reflected 

Figure 1: Architecture of the I/O Subsystem’s  
Power Management. 

Figure 2: Power Management Architecture in the OS. 

 



on API/ABI, PM capabilities, stability, and so on. In the 
extreme case, there’s no power management awareness in the 
VM at all. Due to the heterogeneities involved, the option A 
method of enabling power savings results in increasing 
complexity and maintenance costs. 

This limitation led us to think from another perspective, as 
follows. 

3.3 Option-B: virtual I/O proxy 
A more generic option, to reunite VM workloads with host I/O 
subsystem, is to introduce power awareness in the I/O 
virtualization path. The guest OS has intrinsic knowledge about 
internal workload activities, and thus is able to make intelligent 
decision to balance power and performance. The I/O virtualization 
path can expose virtual low power states to VM, and then deduce 
implicated workload requirements, based on the state chosen by 
VM. Even when VM is not able to specify virtual low power state, 
I/O virtualization path still allows for passive power-saving 
possibilities based on the access patterns of virtual I/O requests. 
This provides better flexibility than option A, given that the I/O 
virtualization path is well under the control of the host VMM. 

However, there are also challenges with this option, which 
haven’t been resolved yet: 

- Few I/O virtualizations currently provide virtual low power 
states. This is echoed in Qemu emulated devices, the Xen 
frontend (FE) NIC driver [4] and the KVM virtio NIC driver 
[12]. VMs are even denied controlling the power of pass-
through devices in many implementations. 

- Diverse I/O virtualization approaches provide various 
chances to add power awareness. Some present VM with 
virtualized I/O resources; while others may grant VM with 
direct access to physical I/O. VM may reuse unmodified 
drivers, or load a new cooperative entity. No common 
architecture exists to the best of our knowledge. 

- Virtual I/O semantics may cause VM power management 
technique to generate an undesired effect. Some techniques 
are designed upon physical I/O semantics. This doesn’t hold 
true, however, for virtual I/O, such as those honoring disk 
spin-down while virtual disk has no spindle motor. There’s 
still a long way from the virtual I/O to the physical I/O 
subsystem, so the benefits may be amortized to, instead, hurt 
performance without help on power. Such side effects have 
to be balanced carefully. 

- I/O patterns from multiple VMs are out of step, which 
compresses power-saving room in physical I/O subsystems. 
Even when each VM proactively arranges I/O requests in 
bursts, those bursts are dispersed system-wide, with few idle 
periods. 

- VMs may be prioritized based on signed SLAs. 
Differentiation must be given based on the extent of power 
management in the relevant I/O virtualization path. 

 This had led to our design for a new I/O virtualization 
architecture, capable of reuniting host the I/O subsystem with its 
clients to gain energy efficiency. 

4. POWER AWARE I/O 
VIRTUALIZATION 
We propose Power Aware I/O Virtualization (PAIOV) as the 
solution to improve I/O energy efficiency, which is designed with 
two goals in mind: 1) Modularized to allow component 
modification in various I/O virtualization implementations; 2) 
Enabled for host I/O power management in wide usage models, 
regardless of whether workload hints are directly available from 
the guests. 

4.1 Architecture Overview 
PAIOV architecture is shown in Figure 3. Ignoring the gray boxes, 
the vertical dotted line shows the split in environment before 
PAIOV is added, in which both the host and the guest may have 
their own power management frameworks. The two frameworks 
are disconnected, so the I/O PMA connecting to the host 
framework lacks a coordination channel and cannot determine 
what the workloads running in VM are. 

 

 

 

The gray boxes represent entities newly introduced or enhanced 
by PAIOV, including: 

- A virtual PSA in the host to emulate a set of low power states 
for virtual devices 

- A virtual I/O PMA in the guest driver, with connections to 
the guest PM framework 

- A proxy PMA on the host side, connecting to the host PM 
framework 

The virtual I/O PMA resides in the guest PM framework, and thus 
is able to leverage OS intelligence on the workload requirements. 
The virtual I/O PMA is connected to the virtual PSA through an 
I/O Virtual Power Management (VPM) channel. Then the virtual 
PSA behaves as the bridge to flow the guest OS decision into the 
host PM framework, through a new entity, the “Proxy PMA”. The 
Proxy PMA is implemented according to the host PM 
specification. Before forwarding the virtual PSA info to the host 
PM framework, the proxy PMA translates it into a recognizable 
format desired by the host I/O PMA. 

Figure 3: Architecture of Power Aware I/O 
Virtualization (PAIOV). 



Coordination may also happen in the opposite direction. The 
proxy PMA occurs in the host PM, as a consumer on the host I/O 
sub-system so it can be integrated into existing coordination 
techniques, to tightly assist the host I/O power management, such 
as proposed in Currentcy [16]. That type of tight cooperation not 
only requires the proxy PMA to reveal guest workload 
requirements, but also encourages the proxy PMA to create more 
power saving chances by regulating virtual I/O activities. The 
proxy PMA may forward regulation policy to the virtual PSA, the 
virtual I/O PMA, or even propagate into the guest PM framework, 
and then reach guest workloads. Actual regulation may happen at 
either entity if it’s allowed. 

4.2 Implementation Notes 
PAIOV is designed with modularization from the ground up, 
adapting to various I/O virtualization methods. 

In the emulated I/O method, we enhance device model to expose 
virtual PSA, according to existing device semantics, such as the 
D3 state in a PCIe device [1]. An unmodified guest driver 
manipulates low power state through a well defined interface. 
Whether to have a virtual I/O PMA, however, fully depends on 
guest driver implementation. So, there is no assurance that virtual 
PSA can always acquire useful information from the guest. 

Passthrough I/O has a similar situation, as the emulated I/O with 
an unmodified driver used in guest. Intuitively, there’s no 
requirement to intercept power management decisions from the 
guest. However, it’s not true since power dependencies exist in 
platform hierarchy, such as between the PCI bridge and the 
downstream device. When the downstream device is granted to a 
guest, PAIOV will deny guest access to the real PSA of that 
device. Instead, a virtual PSA intercepts the guest request and 
then sends it to the host PM framework, which decides whether to 
forward it to the real PSA. 

There are some cases where a cooperative virtual I/O driver is 
loaded in the guest, such as in paravirtualized I/O (Xen 
frontend/backend and Virtio) and in self virtualized I/O (VMDq 
and SR-IOV). Though they differ in the way virtual or real I/O 
resources are accessed, they do have one merit in common. 
Virtual I/O PMA and I/O VPM channels are customizable to 
communicate rich information and also respect the distinct 
characteristics of the deployed I/O virtualization method. For 
example, new virtual I/O semantics can be observed, by noting 
that a virtual device is composed of a set of instructions 
consuming CPU, memory, and I/O resources. Virtual I/O PMA 
can arrange virtual I/O activity to benefit host PMAs controlling 
the CPU and memory, other than simply for I/O PMA. 

The virtual PSA in PAIOV is implemented with plenty of power 
awareness. Besides forwarding guest power decisions, it also 
regulates emulation logic of virtual devices to consume less power, 
such as by relaxing the polling timer, according to a low power 
request it received. Various policies exist about how to map a 
virtual low power state to internal resource management, but we 
are not covering that topic here. 

4.3 Proxy PMA 
The proxy PMA is the most important component in PAIOV 
architecture, playing two main roles. 

The first role is to digest information from the virtual PSA, 
including explicit workload requirements delivered from 
cooperative virtual I/O PMA, specified virtual low power states 
from an unmodified virtual I/O PMA, and also virtual I/O access 
patterns gathered from device emulation logic. The last category is 
useful when the guest driver is missing a virtual I/O PMA, 
providing the least information indirectly implicating VM 
workload activities. The proxy PMA then translates those hints 
into a recognizable format into the host PM framework to 
influence the host I/O PMA. 

The other role is to proactively create power saving chances for 
the host I/O subsystem, since fine-grained cooperation between 
resource consumers and resource providers normally brings good 
energy efficient decisions. The proxy PMA must adapt to the 
specific coordination interface defined in the host PM framework, 
such as new file operation APIs defined in the Cooperative I/O 
[17]. In the meantime, the proxy PMA also regulates the I/O 
dispatch process of device emulation in a way which explicitly 
honors the host I/O PMA semantics: 

- The proxy PMA could coordinate with other proxy PMAs 
serving other VMs, before dispatching I/O requests to the 
host I/O subsystem. Since every VM is scheduled randomly, 
mixed I/O access patterns of all VMs tends to be dispersed 
even when each proxy PMA adds burstiness to its own path. 
For example, Currentcy [16] allows multiple consumers, 
pooling their currentcy, to satisfy the entry price of disk spin-
up, if a single consumer can’t afford enough currentcy. 
Similarly, multiple proxy PMAs can pool their currentcy 
together and then burst their I/O requests at the same pace. 

- The proxy PMA coordination can also take SLA and QoS 
into consideration, which is especially useful in the public 
cloud. A master-slave relationship can be created among 
multiple proxy PMAs. The proxy PMA with the strictest 
SLA is the master, having, at its disposal, maximum freedom 
to issue I/O requests. On the other hand, the proxy PMA, 
with relaxed SLA, simply regulates I/O dispatch in 
piggyback mode, such as holding its I/O request until the 
master does so. Amazon now allows customer to bid on 
unused EC2 capability, called spot instances [19]. However, 
spot instances can be terminated at any time, once the bid is 
below the latest spot prices. This is one perfect example to 
use slave mode, since the customer won’t expect strict SLA 
with it. 

- The proxy PMA also needs to handle urgent conditions, such 
as overheating circumstances. When an urgent condition 
occurs, the host PM framework notifies all relevant entities 
to reduce its activity in cooling the system down. The proxy 
PMA could throttle the virtual I/O dispatch aggressively, 
since thermal is now the first concern. When the VM has 
direct access to physical I/O subsystem, the proxy PMA may 
ask the VMM to throttle virtual interrupts injected into that 
VM, if the VMM provides such interface. This has the 
indirect effect of reducing guest I/O activities. 

Above are some early ideas in this area. Future exploration is 
necessary to determined wider policies. 



5. EXPERIMENTS 
Our research is still in the early phases. We chose a typical 
virtualization scenario for portable devices, in which both the host 
and VM are idle. Virtualization on portable devices has gained 
increasing interest quickly and is actually necessary for them [18]. 

An Intel® Atom™ processor1 based netbook is used, running in 
1.8 GHz, with 1 G memory and 80 G disk. Moblin™ v.2 [13] is 
installed on the host, and a Windows XP VM is created with 1 
vcpu, 128 M memory, and 4 G disk, using KVM [14]. Seamless 
RDP [11] is used to launch an XP application in host Moblin v.2, 
without showing the XP desktop. We measured the battery life 
when the system was idle, which is the typical scenario of a 
portable device, and then compared the battery life and power 
consumption, with and without virtualization, as shown in Figure 
4. “Native” is the environment without virtualization. “Base” is 
the case after XP is launched with one IE6.0 launched in seamless 
RDP channel, without PAIOV. Comparing “Base” to “Native”, 
power consumption increases by 19%, while battery life decreases 
by 15%. 

battery life pow er

Native Base PAIOV

 

 

Analysis of our preliminary experiment shows that I/O 
virtualization is the major cause of shortened battery life, lacking 
virtual PSA in device emulation and effective proxy PMA. The 
device model (Qemu) is always placed in a busy mode, preparing 
to service peak requests, though the system is actually idle. In 
such a mode, several high frequency timers are always armed, 
such as a 4 ms timer in audio emulation and a 33 ms timer in 
VGA card emulation. Besides that, Qemu also places the 
underlying host stack into a similar busy mode, which adds more 
overhead. For example, the audio server of the host Moblin v.2 
also stays in a state equipped with hot timers. Similar power 
unawareness exists in various I/O emulations. 

                                                                 
1 Copyright © 2010, Intel Corporation. All rights reserved. Atom 

and Moblin are trademarks of Intel Corporation in the U.S. and 
other countries. 

We implement a simple PAIOV prototype, by introducing a 
virtual PSA and a proxy PMA to virtual devices with hot activities, 
observed in the paragraph above. Take the virtual sound card 
(ES1370) for example. Guest PMA in the XP sound card driver 
requests to disable the channel when there’s no sound stream in 
VM. The virtual PSA intercepts the request, and then puts the 
virtual device into a low power mode, in which all hot timers are 
stopped. Then the virtual PSA sends a request to the proxy PMA, 
which is connected to the power management framework of 
Moblin v.2. Finally, the proxy PMA notifies the audio PMA of 
Moblin v.2 to enter low power mode. The result is promising, as 
shown by the “PAIOV” bar. The battery life gap reduces from 
15% to 4%, and power consumption shows a similar effect, 
reducing from 19% to the current 6%. 

6. RELATED WORK 
Various coordinated power management frameworks have been 
proposed. In such a coordinated environment, the energy budget 
can be enforced in a multi-layer OS environment with energy-
aware resource allocation [10]. VirtualPower [6] introduces a 
coordination framework in data center virtualization. VMs are 
allowed to manage a set of virtual frequency scaling points. The 
VMM intercepts these points and takes them as hints to manage 
the physical scaling points, which is conducted following local 
and global configuration policies. Though it shares a similar 
philosophy, it doesn’t touch energy efficiency issues in the I/O 
virtualization area. ClientVisor [8] coordinates power 
management roles between VMM and a primary VM, in a specific 
desktop virtualization model, and thus cannot be applied to 
generic I/O virtualization. 

7. CONCLUSIONS AND FUTURE WORK 
In this paper, we analyze I/O virtualization challenges regarding 
to I/O energy efficiency. Consequently, a novel power aware I/O 
virtualization architecture (PAIOV) is proposed, adapting to 
various I/O virtualization methods and diverse virtualization 
usages. Several techniques are proposed to efficiently integrate 
PAIOV with the existing host PM framework efficiently. In our 
experiment of a PAIOV prototype, we reduced battery life 
overhead in the idle scenario from the original 15% to current 4%. 
However, our work is still in the early stages, for example only the 
idle standby scenario is measured. Next, we’ll extend PAIOV to 
various working modes (video playback, mp3 playback, web 
browsing, etc.) with various I/O virtualization approaches. The 
integration between proxy PMA and host coordination framework 
would be among our top interests, too. 
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