
Power-Aware I/O Virtualization
Kun Tian, Yaozu Dong
Intel China Software Center

{Kevin.tian, eddie.dong}@intel.com

ABSTRACT

Power consumption is one of the key concerns in modern
computers within which I/O consumes a significant portion of
power, from portable devices to servers. This concern has led to
the development of various hardware and software techniques to
improve the energy efficiency of I/O subsystems in the native
platform. However, virtualization poses new challenges,
preventing those techniques from achieving the desired level of
energy efficiency.

In this paper, we analyze how I/O virtualization challenges impact
energy efficiency, and propose a novel power-aware I/O
virtualization architecture to tackle them. Our preliminary
research on portable devices shows that new architecture can
significantly extend battery life in a typical idle scenario,
compared to existing solutions.

Categories and Subject Descriptors

C.0 [Computer Systems Organization]: General–System

architectures; D.4.4 [Operating Systems]: Communications
Management; D.4.7 [Operating Systems]: Organization and
Design;

General Terms

Design, Management, Experimentation

Keywords

I/O virtualization, Power management

1. INTRODUCTION
The I/O subsystem consumes a significant portion of power in
modern computers [7][9], leading to the development of various
hardware and software techniques to help prolong battery life of
portable devices or to reduce the costs around cooling servers.

In hardware, some of or all internal components can be regulated
to consume less power. Specific components may be slowed down
if I/O requests don’t impose peak pressure, such as dynamic
rotation speed of disk spindle motor [5]. Clock and voltage may
be throttled to lower level. When there’s enough idle duration
among I/O requests, both clock and power can be gated to

consume the least power, such as PCIe D3 state [1].

At the same time, the modern OS manages to use hardware low
power states in an energy efficient manner, such as trying to finish
more jobs with the same number of joules, or to consume less
power for the same task. Usually a system-wide coordination
framework [15][16][17] is deployed, which connects to both
resource owners (such as the I/O drivers) and resource consumers
(such as the user applications). Resource consumers report their
requirements to, and also proactively create chances for, the I/O
driver to make good use of low power states of the device. This is
usually feasible because the OS controls the entire system with
insights into all layers, from the hardware, device driver to the
applications.

However, virtualization imposes new challenges to I/O energy
efficiency regarding to system-wide coordination. With
virtualization, resource consumers on I/O devices, such as various
application workloads, are now consolidated into multiple
separated virtual environments. The host OS doesn’t have original
insights into those workloads running in VM, because the guest
OS now has full control of them. Thus, the host I/O device driver
lacks enough inputs and chances to make an energy efficient
decision. It’s possible to rely on the I/O virtualization path, which
may aggregate some indirect information about VM workload
patterns. However, no I/O virtualization techniques provide such
power awareness so far, as far as we know.

We provide a full anatomy about the challenges of adding power
awareness into the I/O virtualization path. A novel power aware
I/O virtualization architecture, called PAIOV, is proposed to
reunite VM workloads to the host power management framework.
PAIOV shows flexibility in integrating with various I/O
virtualization methods. Finally, we propose several techniques on
PAIOV to proactively create power saving chances, which can be
well integrated with the host power management framework. Our
preliminary research on portable devices shows that PAIOV can
reduce the virtualization overhead of battery life in a typical idle
scenario to be as small as 4%, while existing solutions incur
~15% overhead.

Section 2 introduces I/O power management in a native system.
The full anatomy of I/O virtualization challenges are provided in
section 3. Section 4 is our proposal of a power-aware I/O
virtualization solution. Section 5 introduces our preliminary
experiments, while Section 6 introduces related work. The last
section is conclusion and future work.

2. I/O POWER MANAGEMENT
I/O power management architecture includes a Power
Management Agent (PMA) in the driver and a Power State Agent
(PSA) in the device. The PMA negotiates power management

This paper appeared at the Second Workshop on I/O Virtualization
(WIOV '10), March 13, 2010, Pittsburgh, PA, USA.

policies, and then requests the PSA to regulate the device into
various low power states, as shown in Figure 1.

Both the device and the driver in Figure 1 contain a “Functional
Core” component, denoting all functions other than for power
management purposes. For example, the functional core of the
device would include circuits necessary for handling I/O requests,
mode setting, interrupts, etc.

2.1 I/O PMA
An I/O PMA is the bridge connecting the I/O sub-system to the
coordinated power management framework in the OS, as shown
in Figure 2. In such a framework, all PMAs are organized in a
layered style, with the higher level PMA holding a broader view
of the power management requirements. For example, the PMAs
in the lowest level directly manage low power state of a set of
resources (CPU, memory, I/O devices, etc.), while the higher level
PMA may proxy requirements directly from user level
applications. Some I/O PMAs may be the parent of others, based
on platform hierarchy, as shown in Figure 2 by a PCI bridge.

Based on that coordinated framework, the I/O PMA could receive
requirements from consumers using that device, and also
propagate its own requirement on other system resources.
Exchanged requirements include kinds of QoS metrics (latency,
throughput, media quality, etc.), statistics (I/O pattern, resource
use, etc.), power budget (watt, thermal, etc.), and some general
policies (performance-oriented, power-oriented, etc.).

The I/O PMA makes energy efficient decisions based on
negotiated policies, and then sends requests to the device’s PSA.
Besides hunting for power saving chances passively, the I/O PMA
may proactively regulate the functional core of the driver to create
more chances, such as burst request in [16] with negligible
performance drop.

2.2 I/O PSA
An I/O PSA exposes those power-friendly capabilities to the I/O
PMA in a well-defined interface. The I/O PMA specifies a low
power state request and send sent to the I/O PSA. Based on the
requested state, the I/O PSA then regulates the functional core of
the device to consume less power. The actual regulation method is
specific to the device implementation, as introduced in section 1.

Some I/O PSAs may include their own intelligence to trigger a
transition to a low power state [5], when the I/O PMA is missing
or less capable of making an optimal decision.

3. I/O VIRTUALIZATION CHALLENGES
Virtualization is bringing new challenges to traditional I/O power
management, which haven’t been noted in previous I/O
virtualization research because previously the only goal was
performance [2] [3].

3.1 Problem
The obvious challenge is the split power management framework;
because multiple workloads are now consolidated into separate
VMs. Each VM is a closed environment containing heterogeneous
OS and application stacks. Workloads running within a VM are
then disconnected from monolithic coordination framework on the
host side. There‘s no channel to convey the workload
requirements out of the VM to host I/O PMA, or to enforce
power-friendly policies on the VM for creating more power-
saving chances. Without such a tight coordination channel, the
host I/O power management techniques are then either
conservative to save power, or even apt to save power overly with
an undesired drop in performance.

Obviously, new techniques are required to reunite a global
coordination power management framework across separated
VMs.

3.2 Option-A: high level PMA proxy
The intuitive option is to plant some cooperative PMAs into the
proprietary power management framework in each VM. Those
planted PMAs behave as the bridge between two frameworks of
the host and the VM, to convey workload requirements and
administrative policies to host I/O PMA. However the feasibility
is not always there, regarding diverse virtualization usages:

- VM is not owned by the physical machine owner in the
public cloud. The customers renting computing resources
fully control their own proprietary VMs. They don’t want to
allow power saving customizations to help cloud service
providers, if there is no return value.

- VM may contain a heterogeneous power management
framework compared to the host side, even when external
customization is allowed. Such heterogeneities are reflected

Figure 1: Architecture of the I/O Subsystem’s
Power Management.

Figure 2: Power Management Architecture in the OS.

on API/ABI, PM capabilities, stability, and so on. In the
extreme case, there’s no power management awareness in the
VM at all. Due to the heterogeneities involved, the option A
method of enabling power savings results in increasing
complexity and maintenance costs.

This limitation led us to think from another perspective, as
follows.

3.3 Option-B: virtual I/O proxy
A more generic option, to reunite VM workloads with host I/O
subsystem, is to introduce power awareness in the I/O
virtualization path. The guest OS has intrinsic knowledge about
internal workload activities, and thus is able to make intelligent
decision to balance power and performance. The I/O virtualization
path can expose virtual low power states to VM, and then deduce
implicated workload requirements, based on the state chosen by
VM. Even when VM is not able to specify virtual low power state,
I/O virtualization path still allows for passive power-saving
possibilities based on the access patterns of virtual I/O requests.
This provides better flexibility than option A, given that the I/O
virtualization path is well under the control of the host VMM.

However, there are also challenges with this option, which
haven’t been resolved yet:

- Few I/O virtualizations currently provide virtual low power
states. This is echoed in Qemu emulated devices, the Xen
frontend (FE) NIC driver [4] and the KVM virtio NIC driver
[12]. VMs are even denied controlling the power of pass-
through devices in many implementations.

- Diverse I/O virtualization approaches provide various
chances to add power awareness. Some present VM with
virtualized I/O resources; while others may grant VM with
direct access to physical I/O. VM may reuse unmodified
drivers, or load a new cooperative entity. No common
architecture exists to the best of our knowledge.

- Virtual I/O semantics may cause VM power management
technique to generate an undesired effect. Some techniques
are designed upon physical I/O semantics. This doesn’t hold
true, however, for virtual I/O, such as those honoring disk
spin-down while virtual disk has no spindle motor. There’s
still a long way from the virtual I/O to the physical I/O
subsystem, so the benefits may be amortized to, instead, hurt
performance without help on power. Such side effects have
to be balanced carefully.

- I/O patterns from multiple VMs are out of step, which
compresses power-saving room in physical I/O subsystems.
Even when each VM proactively arranges I/O requests in
bursts, those bursts are dispersed system-wide, with few idle
periods.

- VMs may be prioritized based on signed SLAs.
Differentiation must be given based on the extent of power
management in the relevant I/O virtualization path.

 This had led to our design for a new I/O virtualization
architecture, capable of reuniting host the I/O subsystem with its
clients to gain energy efficiency.

4. POWER AWARE I/O
VIRTUALIZATION
We propose Power Aware I/O Virtualization (PAIOV) as the
solution to improve I/O energy efficiency, which is designed with
two goals in mind: 1) Modularized to allow component
modification in various I/O virtualization implementations; 2)
Enabled for host I/O power management in wide usage models,
regardless of whether workload hints are directly available from
the guests.

4.1 Architecture Overview
PAIOV architecture is shown in Figure 3. Ignoring the gray boxes,
the vertical dotted line shows the split in environment before
PAIOV is added, in which both the host and the guest may have
their own power management frameworks. The two frameworks
are disconnected, so the I/O PMA connecting to the host
framework lacks a coordination channel and cannot determine
what the workloads running in VM are.

The gray boxes represent entities newly introduced or enhanced
by PAIOV, including:

- A virtual PSA in the host to emulate a set of low power states
for virtual devices

- A virtual I/O PMA in the guest driver, with connections to
the guest PM framework

- A proxy PMA on the host side, connecting to the host PM
framework

The virtual I/O PMA resides in the guest PM framework, and thus
is able to leverage OS intelligence on the workload requirements.
The virtual I/O PMA is connected to the virtual PSA through an
I/O Virtual Power Management (VPM) channel. Then the virtual
PSA behaves as the bridge to flow the guest OS decision into the
host PM framework, through a new entity, the “Proxy PMA”. The
Proxy PMA is implemented according to the host PM
specification. Before forwarding the virtual PSA info to the host
PM framework, the proxy PMA translates it into a recognizable
format desired by the host I/O PMA.

Figure 3: Architecture of Power Aware I/O
Virtualization (PAIOV).

Coordination may also happen in the opposite direction. The
proxy PMA occurs in the host PM, as a consumer on the host I/O
sub-system so it can be integrated into existing coordination
techniques, to tightly assist the host I/O power management, such
as proposed in Currentcy [16]. That type of tight cooperation not
only requires the proxy PMA to reveal guest workload
requirements, but also encourages the proxy PMA to create more
power saving chances by regulating virtual I/O activities. The
proxy PMA may forward regulation policy to the virtual PSA, the
virtual I/O PMA, or even propagate into the guest PM framework,
and then reach guest workloads. Actual regulation may happen at
either entity if it’s allowed.

4.2 Implementation Notes
PAIOV is designed with modularization from the ground up,
adapting to various I/O virtualization methods.

In the emulated I/O method, we enhance device model to expose
virtual PSA, according to existing device semantics, such as the
D3 state in a PCIe device [1]. An unmodified guest driver
manipulates low power state through a well defined interface.
Whether to have a virtual I/O PMA, however, fully depends on
guest driver implementation. So, there is no assurance that virtual
PSA can always acquire useful information from the guest.

Passthrough I/O has a similar situation, as the emulated I/O with
an unmodified driver used in guest. Intuitively, there’s no
requirement to intercept power management decisions from the
guest. However, it’s not true since power dependencies exist in
platform hierarchy, such as between the PCI bridge and the
downstream device. When the downstream device is granted to a
guest, PAIOV will deny guest access to the real PSA of that
device. Instead, a virtual PSA intercepts the guest request and
then sends it to the host PM framework, which decides whether to
forward it to the real PSA.

There are some cases where a cooperative virtual I/O driver is
loaded in the guest, such as in paravirtualized I/O (Xen
frontend/backend and Virtio) and in self virtualized I/O (VMDq
and SR-IOV). Though they differ in the way virtual or real I/O
resources are accessed, they do have one merit in common.
Virtual I/O PMA and I/O VPM channels are customizable to
communicate rich information and also respect the distinct
characteristics of the deployed I/O virtualization method. For
example, new virtual I/O semantics can be observed, by noting
that a virtual device is composed of a set of instructions
consuming CPU, memory, and I/O resources. Virtual I/O PMA
can arrange virtual I/O activity to benefit host PMAs controlling
the CPU and memory, other than simply for I/O PMA.

The virtual PSA in PAIOV is implemented with plenty of power
awareness. Besides forwarding guest power decisions, it also
regulates emulation logic of virtual devices to consume less power,
such as by relaxing the polling timer, according to a low power
request it received. Various policies exist about how to map a
virtual low power state to internal resource management, but we
are not covering that topic here.

4.3 Proxy PMA
The proxy PMA is the most important component in PAIOV
architecture, playing two main roles.

The first role is to digest information from the virtual PSA,
including explicit workload requirements delivered from
cooperative virtual I/O PMA, specified virtual low power states
from an unmodified virtual I/O PMA, and also virtual I/O access
patterns gathered from device emulation logic. The last category is
useful when the guest driver is missing a virtual I/O PMA,
providing the least information indirectly implicating VM
workload activities. The proxy PMA then translates those hints
into a recognizable format into the host PM framework to
influence the host I/O PMA.

The other role is to proactively create power saving chances for
the host I/O subsystem, since fine-grained cooperation between
resource consumers and resource providers normally brings good
energy efficient decisions. The proxy PMA must adapt to the
specific coordination interface defined in the host PM framework,
such as new file operation APIs defined in the Cooperative I/O
[17]. In the meantime, the proxy PMA also regulates the I/O
dispatch process of device emulation in a way which explicitly
honors the host I/O PMA semantics:

- The proxy PMA could coordinate with other proxy PMAs
serving other VMs, before dispatching I/O requests to the
host I/O subsystem. Since every VM is scheduled randomly,
mixed I/O access patterns of all VMs tends to be dispersed
even when each proxy PMA adds burstiness to its own path.
For example, Currentcy [16] allows multiple consumers,
pooling their currentcy, to satisfy the entry price of disk spin-
up, if a single consumer can’t afford enough currentcy.
Similarly, multiple proxy PMAs can pool their currentcy
together and then burst their I/O requests at the same pace.

- The proxy PMA coordination can also take SLA and QoS
into consideration, which is especially useful in the public
cloud. A master-slave relationship can be created among
multiple proxy PMAs. The proxy PMA with the strictest
SLA is the master, having, at its disposal, maximum freedom
to issue I/O requests. On the other hand, the proxy PMA,
with relaxed SLA, simply regulates I/O dispatch in
piggyback mode, such as holding its I/O request until the
master does so. Amazon now allows customer to bid on
unused EC2 capability, called spot instances [19]. However,
spot instances can be terminated at any time, once the bid is
below the latest spot prices. This is one perfect example to
use slave mode, since the customer won’t expect strict SLA
with it.

- The proxy PMA also needs to handle urgent conditions, such
as overheating circumstances. When an urgent condition
occurs, the host PM framework notifies all relevant entities
to reduce its activity in cooling the system down. The proxy
PMA could throttle the virtual I/O dispatch aggressively,
since thermal is now the first concern. When the VM has
direct access to physical I/O subsystem, the proxy PMA may
ask the VMM to throttle virtual interrupts injected into that
VM, if the VMM provides such interface. This has the
indirect effect of reducing guest I/O activities.

Above are some early ideas in this area. Future exploration is
necessary to determined wider policies.

5. EXPERIMENTS
Our research is still in the early phases. We chose a typical
virtualization scenario for portable devices, in which both the host
and VM are idle. Virtualization on portable devices has gained
increasing interest quickly and is actually necessary for them [18].

An Intel® Atom™ processor1 based netbook is used, running in
1.8 GHz, with 1 G memory and 80 G disk. Moblin™ v.2 [13] is
installed on the host, and a Windows XP VM is created with 1
vcpu, 128 M memory, and 4 G disk, using KVM [14]. Seamless
RDP [11] is used to launch an XP application in host Moblin v.2,
without showing the XP desktop. We measured the battery life
when the system was idle, which is the typical scenario of a
portable device, and then compared the battery life and power
consumption, with and without virtualization, as shown in Figure
4. “Native” is the environment without virtualization. “Base” is
the case after XP is launched with one IE6.0 launched in seamless
RDP channel, without PAIOV. Comparing “Base” to “Native”,
power consumption increases by 19%, while battery life decreases
by 15%.

battery life pow er

Native Base PAIOV

Analysis of our preliminary experiment shows that I/O
virtualization is the major cause of shortened battery life, lacking
virtual PSA in device emulation and effective proxy PMA. The
device model (Qemu) is always placed in a busy mode, preparing
to service peak requests, though the system is actually idle. In
such a mode, several high frequency timers are always armed,
such as a 4 ms timer in audio emulation and a 33 ms timer in
VGA card emulation. Besides that, Qemu also places the
underlying host stack into a similar busy mode, which adds more
overhead. For example, the audio server of the host Moblin v.2
also stays in a state equipped with hot timers. Similar power
unawareness exists in various I/O emulations.

1 Copyright © 2010, Intel Corporation. All rights reserved. Atom

and Moblin are trademarks of Intel Corporation in the U.S. and
other countries.

We implement a simple PAIOV prototype, by introducing a
virtual PSA and a proxy PMA to virtual devices with hot activities,
observed in the paragraph above. Take the virtual sound card
(ES1370) for example. Guest PMA in the XP sound card driver
requests to disable the channel when there’s no sound stream in
VM. The virtual PSA intercepts the request, and then puts the
virtual device into a low power mode, in which all hot timers are
stopped. Then the virtual PSA sends a request to the proxy PMA,
which is connected to the power management framework of
Moblin v.2. Finally, the proxy PMA notifies the audio PMA of
Moblin v.2 to enter low power mode. The result is promising, as
shown by the “PAIOV” bar. The battery life gap reduces from
15% to 4%, and power consumption shows a similar effect,
reducing from 19% to the current 6%.

6. RELATED WORK
Various coordinated power management frameworks have been
proposed. In such a coordinated environment, the energy budget
can be enforced in a multi-layer OS environment with energy-
aware resource allocation [10]. VirtualPower [6] introduces a
coordination framework in data center virtualization. VMs are
allowed to manage a set of virtual frequency scaling points. The
VMM intercepts these points and takes them as hints to manage
the physical scaling points, which is conducted following local
and global configuration policies. Though it shares a similar
philosophy, it doesn’t touch energy efficiency issues in the I/O
virtualization area. ClientVisor [8] coordinates power
management roles between VMM and a primary VM, in a specific
desktop virtualization model, and thus cannot be applied to
generic I/O virtualization.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we analyze I/O virtualization challenges regarding
to I/O energy efficiency. Consequently, a novel power aware I/O
virtualization architecture (PAIOV) is proposed, adapting to
various I/O virtualization methods and diverse virtualization
usages. Several techniques are proposed to efficiently integrate
PAIOV with the existing host PM framework efficiently. In our
experiment of a PAIOV prototype, we reduced battery life
overhead in the idle scenario from the original 15% to current 4%.
However, our work is still in the early stages, for example only the
idle standby scenario is measured. Next, we’ll extend PAIOV to
various working modes (video playback, mp3 playback, web
browsing, etc.) with various I/O virtualization approaches. The
integration between proxy PMA and host coordination framework
would be among our top interests, too.

8. REFERENCES
[1] PCI Special Interest Group, http://www.pcisig.com/home

[2] A. Menon, A. L. Cox, W. Zwaenepoel, Optimizing Network
Virtualization in Xen. Proceedings of the USENIX Annual
Technical Conference, Boston, MA, 2006, 15-28.

[3] G. Liao, D. Guo, L. Bhuyan, S. R King, Software techniques
to improve virtualized I/O performance on multi-core
systems. Proceedings of the 4th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems,
San Jose, CA, 2008, 161-170

Figure 4: Battery Life and Power Consumption in a
Virtualized Portable Device.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, Xen and the art of
virtualization, In proceedings of the 19th ACM symposium
on Operating Systems Principles, Bolton Landing, NY, 2003,
164-177

[5] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir and H.
Franke. DRPM: Dynamic Speed Control for Power
Management in Server Class Disks. In Proceedings of the
30th annual international symposium on Computer
architecture (ISCA), 2003.

[6] R. Nathuji and K. Schwan. VirtualPower: Coordinated
Power Management in Virtualized Enterprise Systems. In
Proceedings of International Symposium on Operating
System Principles (SOSP), 2007.

[7] A. Mahesri and V. Vardhan. Power Consumption
Breakdown on a Modern Laptop. In 4th International
Workshop of Power-Aware Computer System (PACS), 2004.

[8] H. Chen, K. Yu, H. Jin, K. Tian, Z. Shao, and K. Hu.
ClientVisor: leverage COTS OS functionalities for power
management in virtualized desktop environment. In
Proceedings of ACM SIGPLAN/SIGOPS international
conference On Virtual Execution Environments (VEE), 2009.

[9] X. Fan, W.-D.Weber and L. A. Barroso. Power Provisioning
for a Warehouse-sized Computer. In Proceedings of the 34th
Intertional Symposium on Computer Architecuture (ISCA).
2007.

[10] J. Stoess, C. Lang, and F. Bellosa. Energy management for
hypervisor-based virtual machines. In Proceedings of the
USENIX Annual Technical Conference, June 2007.

[11] Seamless RDP. http://www.cendio.com/seamlessrdp/

[12] Virtio. http://www.linux-kvm.org/page/Virtio

[13] Moblin 2.0. http://moblin.org

[14] KVM. http://www.linux-kvm.org/

[15] Windows power management framework.
http://msdn.microsoft.com/en-us/library/aa923906.aspx

[16] H. Zeng, C.S.Ellis, A.R.Lebeck, A.Vahadat. Currentcy: a
unifying abstraction for expressing energy management
policies. In proceedings of the USENIX Annual Technical
Conference, June 2003

[17] A. Weissel, B. Beutel, F. Bellosa. Cooerative I/O: a novel
I/O semantics for energy-aware applications. In proceedings
of the 5yh symposium on Operating System Design and
Implementation (OSDI), Dec 2002

[18] VMware Mobile Virtualization Platform (MVP).
http://www.vmware.com/products/mobile/

[19] Amazon EC2 spot instances.
http://aws.amazon.com/ec2/spot-instances/

