
p. H. Gum

System/370 Extended Architecture:
Facilities for Virtual Machines

This paper describes the evolution of facilities for virtual machines on IBM System/370 computers, and presents the elements
of a new architectural facility designed for the virtual-machine environment. Assists that have been added to various
System/370 models to support the use of virtual machines are summarized, and a general facility for this purpose which was
introduced with the System/370 Extended Architecture (370-XA) is described. A new instruction of the 370-XA architecture
places the machine in a specific mode in which several special capabilities are enabled. These allow the machine to provide
execution in the virtual-machine environment of most of the instructions (including many privileged instructions) and most of
the facilities (such as dynamic address translation) of both the System/370 and the 370-XA architectures. The major features
of this new facility are individually discussed and summarized.

Introduction
One of the noteworthy and unexpected developments asso-
ciated with System/360 and then System/370 was the
prominence attained in the use of virtual machines. The
concept lends itself to interactive use, provides a conceptually
simple and complete computing environment for each user, is
inherently secure, and allows efficient development of pro-
grams from simple ones to complex control programs. A
description of how the virtual-machine facilities provided by
the IBM Virtual Machine Facility/370 (VM/370) control
program are used at the IBM Thomas J. Watson Research
Center at Yorktown Heights, New York, may be found in
[1]. Considerable value lies in the utility of convenient access
to the functions provided in the virtual-machine environ-
ment, including the simple and effective file-management
and general editing facilities, the high-level languages, the
communications possibilities when these systems are linked
together in an extensive network [2], and an array of other
capabilities.

Virtual machines are the outgrowth of a combination of
leading-edge developments of several years ago, including
interactive access, dynamic address translation, text editing,
and the advent of complex control programs. A history of the

development of VM/370 is presented in [3]. A collection of
articles covering several facets of VM/370 may be found in
[4]. The architecture of System/370 is specified in [5]; a
history of the evolution of the machine architecture from
System/360 to System/370 is found in [6].

This paper discusses the continuing evolution in sophisti-
cation of virtual-machine functions that are incorporated in
IBM System/370 computers. The paper is organized into
two main parts: Part 1 (System/370 Virtual-Machine Sup-
port) provides an introductory overview of the virtual-
machine capability on System/370 machines, with emphasis
on the development of assists for virtual machines; Part 2
(370-XA Interpretive-Execution Architecture) describes the
extensions in the System/370 Extended Architecture (370-
XA) provided in support of virtual machines. Extended
functions are provided in the areas of multiprocessing, tim-
ing, the handling of guest storage and dynamic address
translation, the interface with host simulation programs, and
the ensuring of integrity between the guest and the host.

A discussion of all of the extensions, not just those for
virtual machines, incorporated in 370-XA may be found in

530

© Copyright 1983 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the
Editor.

IBM J. RES. DEVELOP. • VOL. 27 . NO. 6 • NOVEMBER 1983

[7]. The 370-XA channel subsystem architecture is
descriijed in [8]; both the 370-XA CPU architecture and the
channel subsystem architecture are specified in detail in [9].

Originally, all privileged instructions, the maintenance of
certain translation tables, and the presentation of interrup-
tions to a virtual machine, called the guest system, were
handled by a second control program, called the host system
(an example of which is the VM/370 control program). That
is, these functions were provided for the guest through
simulation by means of a host program. On the other hand,
the execution of problem-program instructions was provided
entirely by the machine. Reference [10] provides a more
complete introduction to the capabilities of the VM/370
control program. An introduction to the nature of the
virtual-machine environment is presented in the first section
of Part 1 of this paper {Virtual-machine concept).

The number of host instructions executed in simulation
routines, and the frequency with which the routines are used,
can result in the consumption of significant amounts of CPU
time. This has encouraged the design of machine functions
referred to as assists to be added to the CPU to perform some
of the functions that were previously simulated. Assists
reduce the number of instructions that must be executed for
these overhead activities; the effect is to shift the processing
resource back to the execution of guest instructions, often
dramatically improving both the number of virtual machines
supported and the responsiveness to them. The variables
affecting performance in a virtual machine are discussed in
the second section of Part 1 (Performance variables).

Over time, quite a number of assists have been created to
improve the operation of a VM/370 system [11]. Most of
these provide for the execution of guMt instructions which
otherwise would have been simulated. However, some assists
provide improvement by supplanting frequently executed
portions of the host control program [12]. Not all assists have
been made available on all systems; sometimes only a subset
of an assist is provided on a particular model. A summary of
the development of assists for VM/370 is given in the third
section of Part 1 of this paper (Evolution of assists).

A primary objective of the 370-XA interpretive-execution
architecture is the realization of benefits from a comprehen-
sive extension of the capabilities previously available only
through assists. The capability provided is thus a continua-
tion of the evolution of assists. Most previous assists are
subsumed in some form under a basic added function of the
machine, referred to as an interpretive-execution capability.
This is provided as a mode in the machine which causes it to
recognize the special handling of instructions, facifities, and
events that is necessary in a virtual-machine environment.
The 370-XA interpretive-execution capability is invoked by

means of an instruction, the operand of which is a control
block in storage. This block describes the "machine" to be
executed, including the values of some of the registers of the
virtual CPU and the storage available for use by the guest.
The capability is provided for the execution of virtual
machines in which either the System/370 or the 370-XA
architecture is used by the virtual machine.

Part I: System/370 virtual-machine support

• Virtual-machine concept
Suppose we envision an operating system, the CPU on which
it is running, the main storage it is using, and the existing
assemblage of I/O equipment as stopped at an instant in
time. Imagine moving the control and application programs
intact—main storage contents and the contents of the CPU
registers—to another computer-system environment, along
with copies of requisite files. Then, let execution resume at
the next sequential instruction. The programs have been
moved from execution in a native environment to execution
in a virtual-machine environment. The new environment is in
essence or in effect (i.e., virtually) the same as the old
environment: ideally the system that is moved cannot detect
a difference, though in fact the environments are different.
The system that is moved is referred to as the guest system.
The environment to which it is moved is provided by another
control program called the host system. While the change is
in practice not made so abruptly, this scenario conceptually
focuses on a major goal of a virtual machine of making real
circumstances transparent to a guest. The objective in fash-
ioning the environment in which the guest programs are
placed is to cause the same changes to occur for things to
which the programs have access—registers, files, and stor-
age—as would occur in any other environment. In VM/370,
this may be regarded as being achieved by techniques which
provide equivalents or imitations of the places where these
things originally resided. This often involves a translation of
a guest "address"—a storage address, device address, or
cylinder address—into a host address at which VM/370 (the
host) is maintaining the information for the guest (a means is
always provided to cause control to be given to the host when
an unaltered value is about to be used by the guest). For
example, usually a complete replacement is used for a guest
channel program, accommodating at once substitutions for
storage addresses, device address, and device characteristics.
There are, on the other hand, cases where substitution is
typically not used; storage keys and timing facilities, for
example, are used directly by the guest, though the use is
shared somewhat with the host.

The representation of guest main storage by a portion of a
host address space typifies the utility of substitution, in this
case using virtual storage as a replacement for real storage.
This tactic relies on the characteristic that most programs 531

IBM J. RES. DEVELOP. • VOL. 27 « NO. 6 « NOVEMBER 1983

Guest
address
spaces

Figure 1 VM/370 address translation.

Begin
execution

«, ^1 « 2 w, « 3 ... R.
t

Elapsed real time (T)

w.
1

...

Complete

W
n n+l

532

Figure 2 Run-time intervals. R^ = the ;th instruction-execution
interval, i = 1,2, • • •,/!. W, = the ith idle interval (waiting,
overhead, handling other work, etc.),; = 1, 2, • • •, n.

(with few exceptions that are dealt with in other ways) will in
fact execute correctly without change in either a real-address
or a virtual-address space. The machine provides a mecha-
nism for one level of translation—from a virtual address to a
real storage address. The use of dynamic address translation
(DAT) by the guest, which implies translation from a guest
virtual address to a host virtual address in the host address
space containing guest main storage, is not directly provided
by the machine. The basic machine mechanism uses real
translation-table-entry addresses, and thus cannot use guest
tables which reside in a host virtual-address space. The
technique employed by VM/370 is to use shadow translation
tables. These are tables which are usable by the machine in
the usual way, but their contents have been supplied by
VM/370 such that a translation of a guest virtual address
produces a corresponding real (host) storage address. A
VM/370 program (or the page-validation assist) accom-
plishes this by treating guest translation-table-entry
addresses as host virtual addresses. In this way, a guest
virtual address is first converted to a guest "real" address;
that address is equivalent to a host virtual address. The host
virtual address is then converted to a host real-storage
address, which is then placed in the shadow-page-table entry.
This procedure takes a minimum of eight storage references
to obtain the host real address corresponding to a guest
virtual address. Additional references are made to VM/370
control blocks to obtain the origins of the host-managed
translation tables, and to fill in the shadow-page-table entry.
Figure 1 illustrates the address spaces and translations
involved.

The host program maintains control over the use of the
real machine registers—program-status word (PSW), con-
trol registers, timing—by placing the machine in problem
state when the guest is given control. Thus, the privileged
operations used by the guest cause an exception to be
recognized, returning control to the host program before the
contents of a register are changed and providing the host
overall control of the real configuration. Registers which are
changeable by problem-program instructions—the general
registers and the floating-point registers—are given over
fully to the guest. The design of many assists relies on the
recognition of the exception for privileged operations. The
assist is given control after the exception is recognized but
before the host control program is given control. The assist
first examines the circumstances under which it has received
control and then either completes the original function on
behalf of the guest or allows control to revert to the host,
normally for the original exception.

• Performance variables
This section identifies some of the aspects of execution that
contribute to a difference in the performance of a program
executed in a virtual machine and the same program exe-
cuted natively. Figure 2 illustrates the salient features of
execution in a native environment: typically, run time con-
sists of a sequence of alternating intervals of execution and
waiting. The durations of both kinds of intervals are irregu-
lar. A typical way of measuring system performance is to
present a workload to the system and measure the real time
taken to complete the work. The CPU spends some time
executing the instructions comprising that workload, the R
intervals, and some time idling or executing other work, the
W intervals. The sum of both kinds of intervals taken
together is a measure of performance.

In a virtual-machine environment, both the rate at which
instructions are executed and the frequency and duration of
periods of execution and suspension change. Let the time
taken natively to execute a workload be represented by r„,
and let the time taken in a virtual machine for the same
workload be represented by T^. A commonly used measure of
execution performance in a virtual machine is relative batch
throughput (RBT), defined as the ratio of the native execu-
tion time to the virtual-machine execution time, or

RBT= TJT^.

A general objective is to achieve a value for this ratio
approaching 1, which would indicate a virtual-machine
execution time equal to native execution time. The effective-
ness of an assist can be expressed in terms of the improve-
ment in RBTlhaX is observed when the assist is utilized.

Other useful measures of the effectiveness of an assist are
its reduction of supervisor-state busy time or its reduction of

IBM J. RES. DEVELOP. • VOL. 27 • NO. 6 • NOVEMBER 1983

CPU busy time. That is, the effectiveness of an assist can also
be evaluated by its ability to reduce the number of machine
cycles required to perform the work, since in a time-sharing
system, efficient use can be made of additional available
CPU time to execute other work.

Figure 3 illustrates the factors that elongate the execution
time of a given workload in a virtual machine. The additional
factors are indicated by the symbols E, X, S, T, I, and M.
They characterize the intervals according to criteria perti-
nent to the virtual-machine environment. They are shown as
additional types of, or effects on, intervals and represent
additional work that must be accomplished in a virtual-
machine environment. The additional factors may be sum-
marized as follows:

E The added overhead to dispatch a guest, including setting
up the timing facilities, program-status word, and control
registers.

X The added overhead to store away guest status and
reestablish the host environment when execution of the
guest is discontinued.

S Simulation of guest instructions by a host program.
T Guest wait-state handling, usually involving establish-

ment and then deletion of real-time-interval monitoring
of the guest wait period.

/ Interruption handling, usually involving handling of the
interruption twice—once by the host and once by the
guest.

M Even instructions which are executed by the machine are
subject to apparent elongation of execution time. There
are two principal contributors: 1) for some instructions,
tables must be referenced in the virtual-machine environ-
ment that are not used natively, and 2) such things as
address translation, which occurs for multiple layers of
addressing in the virtual-machine environment, have the
statistical effect of making all instructions appear to take
longer on the average to execute.

A fundamental purpose of assists and the 370-XA interpre-
tive-execution capability is to diminish the effect of one or
more of these factors.

• Evolution of assists
The term assist is applied to a function which is to be
distinguished from the basic architecture. The principal
reason for this distinction is to call attention to a function
normally not considered usable outside the environment of a
specific control program. Often the function has a depen-
dency on a control-block structure that is normally estab-
lished only by a particular control program. That is, there is
an implied reliance on the structure being used by the
machine function in the same way the control program uses
the structure.

Begin
execution Complete

E]M\ X 5, E M

« 2

x | T

W,

E M

« 3

X /,

. ..

Elapsed real time (7)

Expansion effects: •

Figure 3 Virtual run-time intervals.

Many assists also have the characteristic that correct
execution of the control program does not depend on their
use, their value lying instead largely in their ability to
improve performance. This characteristic has allowed the
VM/370 control program to be run on a variety of models,
some with different assist capabilities and some with dif-
ferent levels of the same assist.

The following sections briefly review the assists provided
for use by VM/370. Different assists attack different factors
contributing to the expanded time for execution in a virtual
machine. Another comprehensive discussion of assists for
VM/370 may be found in [13].

Virtual-machine assist
The virtual-machine assist, commonly referred to as VMA
[11], was developed almost a decade ago. As much as
anything, the development of the assist was stimulated by the
need to maintain virtual-machine performance as guests
began to make use of DAT. The assist consists of 13
functions, 12 of which accomplish execution for the guest of
one problem-program and 11 privileged instructions which
otherwise would be simulated by the host program. The 13th
function takes over from the host program certain aspects of
the management of tables used by the host program in
support of the guest. The functions for which assists are
provided by VMA are shown in Table 1.

This collection of assists dramatically improved virtual-
machine performance for some types of guests. Of the factors
described in the preceding section '^Performance variables,"
for the assisted instructions the assists nearly eliminated
factors E, X, and S from the expanded virtual-execution
intervals. Improvements in RBT from a value of 0.35 to a
value of 0.70 or higher were not uncommon for certain types
of guest control programs [13]. VMA demonstrated value
not only in assisting specific guest instructions, but also in
subsuming frequently occurring host support operations,
exemplified by the page-validation function. This success set
the stage for extending the assist approach to fit more and
different kinds of guests, and for taking advantage of the 533

IBM J. RES. DEVELOP. • VOL. 27 • NO. 6 • NOVEMBER 1983 P. H. GUM

Table 1 Virtual-machine assist functions.

Assist collection Number of
functions

Virtual-machine assist (VMA)'
Extended control program support:

Control program assist
Expanded virtual-machine assist
Virtual interval-timer assist

Shadow-table-bypass assist
Preferred-machine assist
Dual-address-space assist
Extended-storage-key assist

13

22
12
1
8

22
20
3

Total: loT

The following functions caused changes to many of the above assists:

• Common-segment bit
• Segment protection
• Low-address protection

• 26-bit real addressing

Provision for use in a virtual machine was included in the base definition of the assists for MVS (14 functions).

The assists for the following functions comprise the virtual-machine assist:
INSERT PSW KEY (IPK)
INSERT STORAGE KEY (ISK)
LOAD PSW (LPSW)
LOAD REAL ADDRESS (LRA)
RESET REFERENCE BIT (RRB)
SUPERVISOR CALL (SVC)
SET STORAGE KEY (SSK)

SET SYSTEM MASK (SSM)
STORE CONTROL (STCTL)
STORE AND AND SYSTEM MASK (STNSM)
STORE THEN OR SYSTEM MASK (STOSM)
SET PSW KEY FROM ADDRESS (SPKA)
Shadow-page-table validation

534

characteristics of different classes of machines. This initial
effort demonstrated the enormous potential in the approach
of using assists.

In testimony to its usefulness, VMA is a rare instance of a
package of functions designed specifically for a particular
control program that was eventually used by another control
program, the specialized Airlines Control Program (ACP)
[14].

Extended Control Program Support
The next major collection of assist functions were developed
under the name Extended Control Program Support:VM/
370 (ECPS:VM/370). Thirty-five distinguishable functions
are provided in this collection. They represent a response to
identified opportunities, a focus on the kind of guest that is of
predominant interest to users of intermediate-scale System/
370 machines, and an effective utilization of the design
characteristics of this class of machines. In addition to
incorporating VMA, ECPS:VM/370 assists in the mainte-
nance of the interval timer, assists more guest instructions,
assists in more circumstances some of the same instructions
originally assisted by VMA, assists the handling of I /O, and
provides assists which are replacements for 22 sections of the
host program. A more complete description of these func-
tions appears in [12].

Specialized support
With the efficacy of a wide range of assists established,
attention then focused on special situations. Examples are
the so-called virtual-equals-real (V = R), or preferred, vir-
tual machine, and the use of shared segments under the
Conversational Monitor System (CMS) operating system. A
common mode of operation consists of supporting many
on-line terminals by means of individually dedicated virtual
machines, each normally under control of a CMS guest
operating system. In addition, a single virtual machine, often
heavily used, through which batch work is scheduled, is
usually provided. The batch system is usually run as a V = R
virtual machine.

The V = R guest is executed with the host address space
representing guest main storage mapped one-to-one onto real
main storage (from which the V = R designation comes),
except for usually one or a few pages. The primary benefit is
that most channel programs for a V = R guest can be
executed as is, eliminating the overhead of a host program
having to construct copies with valid real (host) addresses.
The usually tolerable exposure is that an errant guest chan-
nel program might read or write real storage outside the
range assigned to the guest. The CPU, however, continues to
process guest instruction and operand addresses through
translation tables whose validity is controlled by the host

IBM J. RES. DEVELOP. • VOL. 27 • NO. 6 • NOVEMBER 1983

program. This includes the use of shadow translation tables
when the guest enters DAT-on mode. Two classes of assists
have been provided for this environment.

Shadow-table-bypass assist: If there is sufficient trust in
the reliability of the guest, use of the shadow translation
tables can be dispensed with, relying instead mostly on the
translation tables provided by the guest. The guest tables are
not used wholly as is because the guest is not normally given
control of real page frame zero, which previously was "hid-
den" by a suitable adjustment of the shadow translation
tables. The shadow-table-bypass assist, described in [11],
accommodates the handling of special page frames, yet
generally allows use of guest page-translation tables as is,
with a consequent benefit to performance. Experience has
shown that generally satisfactory operation is achieved with
reliable guests.

Preferred-machine assist: More recently, this idea of rely-
ing on the well-behaved characteristic of some guests has led
to the preferred-machine assist (PMA). With this assist, not
only are host translation tables not used, but the guest is
allowed to run in the real supervisory state and is given access
to real page frame zero. Most uses of privileged instructions
are thus executed for the guest essentially as native instruc-
tions. This includes the execution of most I/O instructions,
such as START I/O FAST RELEASE (SIOF), for devices
attached to real channels considered "dedicated" to the
guest. Under PMA, only minimal checks are imposed on the
use of privileged instructions by the guest; most normal
operations by the guest, privileged or not, involve no inter-
vention by the host program. Violation of a check, or the
establishment of the pending state of an I/O interruption not
intended for the guest, cause control to revert automatically
to the host.

Segment protection: Another important special situation
arises from the extensive use of several concurrently on-line
virtual machines, each of which is under control of a CMS.
Advantage is taken of this to reduce paging traffic by sharing
segments of commonly used programs. Previously, special
tests were made, by programmed means at a performance
cost, to detect improper changes to areas that could other-
wise be shared. A performance improvement is achieved by
incorporating a protection mechanism at the segment level
that enables the host program to prevent storing into certain
segments of storage, eliminating the need for the special
testing. Segment protection is not considered to be an assist
but rather an extension of the base architecture.

Effects of functional enhancements
Over time, enhancements were also added to the System/370
architecture for purposes independent of VM/370. Invari-
ably, however, such developments must be considered in the
VM/370 context. Because of the ease with which the envi-
ronment of a virtual machine is controlled and examined, it

has become the primary vehicle for the development of
control programs, with the consequence that almost all new
architectural enhancements are immediately sought for use
in the appropriate virtual-machine environment. Depending
on the facility, VM/370 either a) ignores the facility because
it is unaffected by its presence, b) requires modifications of
various existing assists, or c) does not allow guests to use the
facility. Some examples of the variety of ways in which new
functions are accommodated in the virtual-machine environ-
ment are the following. For the assists for MVS, provision
for operating in a virtual machine is incorporated in the
native definition of the facility (MVS denotes the control
program for Multiple Virtual Storages). In the case of the
dual-address-space (DAS) facility, new assists were devised.
In the case of the introduction of 4K storage-protection keys,
old assists were modified to the unusual extent of providing
function not originally available natively for the assisted
instruction; in addition, new assists were added for new
instructions. Extended addressing, with addresses of either
25 of 26 bits, depending on the model, causes changes to
several assists. However, extended addressing is not made
available for use by the guest (except under PMA).

Summary of the development of assists
More than 100 individual assist functions have been defined
for use with virtual machines. This number does not include
12 of the instructions of the assists for MVS whose basic
design incorporates provision for operating in both the native
and a virtual-machine environment. Among the assisted
instructions are nine which are multiply assisted, some in as
many as three different ways. That is, depending on the
natures of the particular virtual machine and the instruction,
one of the two OT three assists available for that instruction is
invoked. There are three variations of page-exception han-
dling, in addition to the handling provided by one of the
assists for MVS. There are almost three dozen individual
changes to existing assists to accommodate subsequent devel-
opments, such as DAS, 4K-byte key blocks, 26-bit real
addressing, and protection and common bits in DAT seg-
ment-table entries.

At times, this diversity is a source of confusion. It some-
times costs extra machine resources (microcode space and
performance) because of the lack of a sharing of common
subfunctions. Each machine model usually offers a distinct
collection of assist functions. The effectiveness of the partic-
ular collection of assists on any one machine usually depends
on the particular guest control program, and sometimes even
on the particular release of that control program. Still, these
assists enable a variety of guests to be run on a variety of
IBM System/370 models, generally at quite acceptable
performance levels.

The achievements of the assists for VM/370, especially
the 22 functions added to support the host control program. 535

IBM J. RES. DEVELOP. • VOL. 27 . NO. 6 • NOVEMBER 1983

536

were instrumental in encouraging efforts to define assists for
other control programs, including Virtual Storage/1 (VS/1)
and MVS, some of which have been carried into 370-XA as
well.

This brief description of assists associated with VM/370
has not touched on other types of assists, such as, for
example, the assist provided on some models for A Program-
ming Language (APL). Nor is the Disk Operating System
(DOS) assist described, which is a functional forerunner of
the facility described in the next part of this paper. The DOS
assist allows a DOS system that does not use DAT to be
executed as a guest of the MVS control program in much the
same way a problem program is handled by MVS. A list of
such additions to certain models and references to more
complete documentation are contained in Appendix D of
[5].

Part 2: 370-XA interpretive-execution architec-
ture
A principal objective in the development of the 370-XA
interpretive-execution architecture was to provide compre-
hensive support of the virtual-machine environment. This
included providing, in the virtual-machine environment, the
facilities of both the new and precursor architectures. Inter-
pretive execution of System/370 provides a way of running
the machine in the new extended-architecture mode while
continuing to make major use of programs using the previous
System/370 architecture, thus adding a degree of flexibility
in migrating to the new architecture and mode. Interpretive
execution of 370-XA aids in the development, checkout, and
use of new or changed programs which use the new facilities
of the extended architecture.

A primary goal was to make the facilities of either
architecture usable at reasonable performance by a variety
of users employing the facilities in a variety of ways on a
range of machines. Providing full handling for more instruc-
tions and facilities and providing the same complement of
functions uniformly on all machines avoids uncertainties
regarding just which aspects of an instruction or facility are
most usefully assisted. Providing comprehensive capabilities
is a natural extension of the growth over time of the number
of assists and the completeness with which they were provid-
ing execution in the virtual-machine environment. This tends
to make virtual-machine support less specialized to particu-
lar guest systems, and it also makes machines more
interchangeable.

Additional objectives were to make the interpretive-execu-
tion capability, or at least parts of it, usable by more than one
host control program, thus broadening the usefulness of the
facility, and to provide a base into which it would be simpler
to incorporate future extensions to the architecture. Since the
design and development of new inter-component interfaces

within an established control program are always difficult
and time-consuming, an additional objective was to minimize
the number of new control-program interfaces implied in
supporting the architecture.

The following sections describe the significant functional
aspects of the 370-XA interpretive-execution architecture.
Emphasis is placed on those aspects of the architecture that
are a departure from capabilities previously provided. The
major features are the following:

% An instruction is provided that establishes a mode in the
machine in which instructions and facilities are interpreted
for the virtual-machine environment. This is called inter-
pretive-execution mode.

• Interpretive execution of two architectures is provided,
either the System/370 architecture or 370-XA.

• With the exception of the I /O instructions, most privileged
instructions are completely executed in the virtual environ-
ment. In most cases, an option is also provided for individ-
ual instructions which causes control to be returned to the
host when the instruction is encountered in the guest. In
addition, most program interruptions are handled entirely
within the guest.

% Guest main storage is represented either by the corre-
sponding real storage or by a portion of a host address
space, variable in amount in both cases and beginning at
an offset when a host address space is used. Shadow
translation tables arc not normally used. Prefixing is
provided as required for operation of a guest multiprocess-
ing system. As appropriate, 24-bit, 26-bit, and 31-bit
addressing are provided to the guest. Depending on the
model, under certain circumstances address translation is
accomplished at native performance. Guest programs are
prevented from accessing storage outside storage assigned
for use by the guest.

% A full complement of guest timing facilities is provided.
Interval timing is provided for System/370-mode guests
(even though there is no interval timer natively in the
370-XA mode). The value of the guest TOD clock can be
set separately from that of the host TOD clock. Host
timing is unaffected by the commencement of timing for a
guest.

% Most facilities of the architecture, including, for example,
DAS and program event recording (PER), are provided
for the guest, generally without affecting the use of the
same facilities by the host.

%A11 forms of protection provided in the architecture are
provided on behalf of the guest. In addition, in pageable-
storage mode, host page protection is in effect for guest
store accesses to guest main storage.

• Information is provided on exit from interpretive-execu-
tion mode concerning the reason for the exit, to improve
the efficiency with which the subsequent host program

p. H, GUM IBM J. RES. DEVELOP. ".VOL, 27 . .NO. « ".NOVEMBER 1983

handles the condition which caused the exit.
• Capabilities are provided for both host and guest multi-

processing. Means are provided for the host to provide
asynchronous indications of events of interest to the guest.
Interlocks are provided to control access to shared
resources among the guest CPUs, and between the guest
and host programs.

• In a preferred-storage mode in which guest channel pro-
grams are used as is, a capability is provided whereby the
machine monitors the addresses used by guest channel
programs: an optional control may be set, on a per-
subchannel basis, to prevent guest channel programs from
accessing storage outside the storage limits assigned for
use by the guest.

Most of these topics are covered in more detail in the
following sections.

• START INTERPRETIVE EXECUTION (SIE) instruc-
tion
Interpretive-execution mode, that is, the mode in which the
instructions of a virtual machine are directly executed by the
machine, is entered by means of the privileged START
INTERPRETIVE EXECUTION (SIE) instruction. The
operand of this instruction, called a state description, defines
the environment of the guest system. The environmental
information falls into four general categories. One category
consists of the contents of various registers of the guest CPU.
The second defines how the guest is to fit into the host
system, mainly specifying how much and what kind (real or
virtual) of host storage is to be used for guest main storage.
Also in this category are designations of additional satellite
control tables. The third category includes controls over the
use of various facilities and instructions of the architecture
by the guest. The fourth category consists of the specialized
information developed on exit from interpretive-execution
mode for use by the subsequent host program. The contents
of the state description are summarized in Table 2.

• Interception
Exit from interpretive-execution mode occurs in two general
ways. One is by interruption, with control going to the host
interruption handlers. The SIE instruction is designed
according to the criteria of interruptible instructions for this
purpose; the instruction address that is recorded in the host
interruption old program-status word designates the location
of the SIE instruction.

The second method of exit is to return control to the host
program at the instruction following SIE, which may be
considered to have been completed in this case. Exit in this
form is normally induced by a condition encountered in the
guest which requires treatment by a host program. This
process of leaving interpretive-execution mode is termed

Table 2 Contents of the state description.

Architecture mode selection:
System/370 or 370-XA

Storage definition:
preferred or pageable mode
prefix
offset (origin within host address space)
extent (amount of guest main storage)

Program-status word (PSW)
General registers 14 and 15
Control registers
Timing:

residue (interval-timer accumulator)
CPU timer
clock comparator
TOD epoch offset
interval-timing-enablement control
interval timer pending interruption indicator

Intervention controls (which can be set asynchronously):
pending I/O interruption
pending external interruption
pending stop (operator control interpretation)

Instruction and facility interception controls
Interception information:

bytes 1 and 2 of the instruction
operand address information
interception reasons:

• instruction • program interruption
• instruction and program • external intervention

interruption • external interruption
• I/O intervention • wait state
• validity • stop
• operation exception

interception status indicators:
I-fetch PER applies
interception applies to target of EXECUTE instruction

Satellite table origins
Parameters of a guest interruption:

program interruption
external interruption (mandatory interception)

interception. The three main functions of interception are the
following:

a. Storing into the state description the status of the guest
that will be needed for resuming the guest.

b. Storing information that will be convenient to the host
program that deals with the particular reason for the
interception.

c. Restoring the host program.

The general flow of entry to and exit from interpretive-
execution mode is shown in Fig. 4.

Among the causes for interception are the following:

• Instructions which are not executed (for which "execu-
tion" is usually provided through simulation by a host
program). Interception is mandatory.

• An exception condition for which control is always given to
the host. Interception is mandatory.

• An instruction or interruption whose execution depends
on whether a control bit is set; i.e., interception is condi- 537

IBM J. RES. DEVELOP. • VOL. 27 • NO. 6 • NOVEMBER 1983

State description

Host
support program

r - - ^ S I E

Simulation

Status for resuming
the guest

Interception information

Entry to
interpretive-
execution mode

Guest status
information

Exit for
interception

Interpretive-
execution
mode

Exit for
host interruption

Host interruption
old PSW

Host
interruption
handler

Figure 4 Interpretive-execution entry and exit.

538

tional. Depending on the instruction, execution may be
either suppressed or completed at interception. In some
cases, interception is recognized only for certain aspects of
execution, normally selected by a mask, or only when
certain results are obtained during execution.

• An externally set intervention condition is detected (these
conditions are more fully discussed in a subsequent section
on intervention requests).

• A special case is recognized, such as recognizing that the
guest has entered the wait state.

The efficiency of the process of simulating an instruction is
improved by providing several pieces of information about
the instruction, including the following:

• Whether the instruction is the target of an EXECUTE
instruction.

• Whether an I-fetch PER event is applicable.
• At least the first two bytes of the instruction.
• Either the complete instruction, the effective-operand-

address value or values, or the values designating the
general registers containing operand information. In some
cases, such as in the case of the DIAGNOSE instruction,
special handling is provided.

A summary of the handling of guest instructions is given in
Table 3.

• Timing
The machine maintains both a host set and a guest set of
timing facilities while in interpretive-execution mode. The
timing facilities for an individual guest are, however, main-
tained only while the machine is in interpretive-execution
mode for that guest. Separate time-of-day (TOD) clock
values are provided for the host and the guest, and each
control program can use, respectively, a CPU timer and
clock comparator. An interruption, when due, is appropri-
ately generated for either the host or the guest, depending on
whether the request arises from a guest or a host timing-
facility condition. A constant kept in the state description,
which represents the difference in the epochs of the guest and
the host, is used to generate a TOD-clock value for the guest
that is independent of the value of the host TOD clock.

The interval timer, in location 80 in storage, is optionally
maintained for a System/370 guest. The interval-timer
stepping is sufficiently infrequent that it is possible to enter
interpretive-execution mode, do useful work, and then exit
from interpretive-execution mode without consuming
enough elapsed time to cause a decrementing of the timer.
Work could appear to be accomplished "for free" since no
time was charged. This is avoided by the use of an additional
time-accumulation mechanism that has an accuracy compa-
rable to that of the TOD clock. When sufficient time
accumulates, it is posted to the interval timer as an additional
decrement. The precision with which the interval timer is
maintained is, however, model dependent; that is, decre-
menting may occur only in multiples of the minimum inter-
val of the timer. Although the time between updates varies
by model, it is constrained to be roughly related to processor
performance.

• I/O support aids
The following items constitute the facilities provided in
support of the handling of guest I/O:

• Except for the TEST CHANNEL (TCH) instruction for
System/370-mode guests, guest I /O instructions cause
interception. The information provided at interception
contributes to the efficient handling of the functions by the
host.

• A bit pattern with a correspondence to System/370 chan-
nels is used by the TCH instruction for recognizing
interception or for completing execution by setting a
condition code.

• Intervention-request bits, asynchronously settable by other
host CPUs, are interrogated regularly to normally cause
interception only when the guest is enabled (see the
subsequent section on intervention requests).

• Three functions are incorporated in the new 370-XA
channel subsystem specifically for support of virtual
machines:

p. H. GUM IBM J. RES. DEVELOP. • VOL. 27 • NO. 6 • NOVEMBER 1983

Table 3 Guest instruction handling.

Privileged instructions;
Mandatory interception:

I/O related
Others'

Conditional interception:
I/O related
Others^

Always executed'

Problem-program instructions:
Conditional interception
Always executed (all others)

Notes:

'instructions that are not executed (other than I/O):

DIAGNOSE
SET CLOCK (SCK)
SIGNAL PROCESSOR (SIGP)
SET PREFIX (SPX)
START INTERPRETIVE EXECUTION (SIE)**

^Conditionally executed instructions:

a. Privileged instructions:

INSERT STORAGE KEY (ISK)*
INSERT STORAGE KEY EXTENDED (ISKE)
INVALIDATE PAGE TABLE ENTRY (IPTE)
LOAD CONTROL (LCTL)
LOAD ADDRESS SPACE PARAMETERS (LASP)
LOAD PSW (LPSW)
PROGRAM CALL (PC)
PROGRAM TRANSFER (PT)
PURGE TLB (PTLB)
RESET REFERENCE BIT (RRB)*
RESET REFERENCE BIT EXTENDED (RRBE)

b. Problem-program instructions:

COMPARE DOUBLE AND SWAP (CDS)
COMPARE AND SWAP (CS)
STORE CLOCK (STCK)

'Privileged instructions that are always executed:

EXTRACT PRIMARY ASN (EPAR)
EXTRACT SECONDARY ASN (ESAR)
INSERT ADDRESS SPACE CONTROL (lAC)
INSERT PSW KEY (IPK)
INSERT VIRTUAL STORAGE KEY (IVSK)
LOAD REAL ADDRESS (LRA)
MOVE TO PRIMARY (MVCP)

370

I
22
12

370-XA

13
9

0
19
13

STORE CPU ADDRESS (STAP)
STORE CPU ID (STIDP)
STORE PREFIX (STPX)
TEST BLOCK (TB)

SET CLOCK COMPARATOR (SCKC)
SET CPU TIMER (SPT)
SET STORAGE KEY (SSK)*
SET STORAGE KEY EXTENDED (SSKE)
SET SYSTEM MASK (SSM)
STORE CLOCK COMPARATOR (STCKC)
STORE CONTROL (STCTL)
STORE CPU TIMER (STPT)
STORE THEN AND SYSTEM MASK (STNSM)
STORE THEN OR SYSTEM MASK (STOSM)
TEST PROTECTION (TPROT)

*System/370only

TEST AND SET (TS)
SUPERVISOR CALL (SVC)

MOVE TO SECONDARY (MVCS)
MOVE WITH KEY (MVCK)
SET ADDRESS SPACE CONTROL (SAC)
SET PSW KEY FROM ADDRESS (SPKA)
SET SECONDARY ASN (SSAR)
TRACE (TRACE)**

**370-XA only

• A checking mode can be enabled on an individual
subchannel basis that prevents execution of a channel-

command word (C C W) that refers to storage beyond a
specified limit. Normally this is the limit of storage
assigned to a preferred guest.

• For supervisory uses by the host, primarily to retrieve
status for some control-unit malfunctions, a control
allowing an override of the limit check in an individual
instance is provided.

• To permit the condition code to be set correctly and in a
timely fashion for a S T A R T I / O (SIO) instruction, an
interruption can be requested from designated subchan-
nels when an I / O operation is initiated.

Additionally there is the preferred mode, which eliminates
the need for the host control program to construct copies of
guest channel programs. In pageable mode, copies of guest
channel programs are constructed in the host in which guest 5 3 9

IBM J. RES. DEVELOP. • VOL. 27 • NO. 6 • NOVEMBER 1983 P. H. GUM

(juesl
address
spaces
(GV)

Figure 5 Pageable-mode address translation.

TLB Shadow
tables

Guest
tables

Real
tables

(a)

TLB Guest
tables

Real
tables

D'
(b)

540

Figure 6 Translation-mechanism differences: (a) Syst6m/370
(shadow-table maintenance); (b) 370-XA (SIE).

addresses are replaced with real storage addresses, also
simultaneously verifying that the designated storage has
been assigned to the guest. The absence of overhead in the
preferred mode to perform the conversion improves perfor-
mance, and the use of dynamically modified channel pro-
grams is allowed.

% Storage
One of the most distinctive aspects of virtual machines is the
ways in which guest "main storage" is represented. Two
distinctly different techniques are used. One technique rep-
resents guest main storage by a portion of a host address
space. A constant is added to each guest absolute address to
form a host virtual address which is then translated in turn to
a host main (real) storage address. Guest real page frame
zero must be "fixed"; i.e., a host page-translation exception
on access to this particular frame of guest storage is treated
as an error. This is called the pageable-storage mode. With
the second technique, guest absolute addresses are consid-
ered to be the corresponding host absolute addresses. The
machine makes no use of host DAT with this method.

referred to as the preferred-storage mode. With both tech-
niques, the use of guest DAT is allowed. Further, guest
prefixing is always applied.

Figure 5 illustrates the address-translation mechanism
provided by the SIE instruction. In the most general case, a
guest virtual address (GV), when pageable mode is specified,
is translated (/) by use of guest translation tables residing in
guest main storage. After the application of guest prefixing,
a guest absolute (GA) main-storage address is obtained.
That address is verified to lie within the allowed extent,
shown as L, and is then converted to a host virtual (HV)
address by the addition of an offset, shown as N. The host
virtual address is translated, indicated by //, by using host
translation tables, into a host absolute (HA) address. A
guest-type translation lookaside buffer (TLB) entry is
made, consisting of the guest virtual address and the corre-
sponding host absolute address.

Figure 6 illustrates the differences in the translation of
guest virtual addresses under VM/370 and under 370-XA.
The symbols (A), (B), • • • refertopartsof the figure. Under
VM/370, a "miss" in the translation lookaside buffer (A)
causes a reference to be made to the current translation
tables (C). With some probability, the address is translated
by using these tables, with the result returned (B) to (A). If a
"page fault" is recognized, reference is then made to guest
translation tables (E), such references involving additional
subsequent references to the host tables (F) which provide
translation of the addresses of the host space containing
guest main storage. If the translation is successful, a real
address from the host table (F) is placed (D) in the current
tables (C), and the whole translation process is retried. When
the translation is not successful because of the contents of the
(F) tables, a "page fault" is recognized in the host. When
translation is not successful because of the (E) tables, a
"page fault" is simulated for the guest. When VMA is
installed, the accesses to tables (E) and (F), and the updating
(D) of the page tables of (C) are handled by the page-
validation function.

The performance of this mechanism is highly dependent
on the probability of a successful translation on the first
access to tables (C). Performance is also a function of the
efficiency of use of tables (E) and (F), and the probability of
obtaining a successful translation from them.

The contents of tables (C) are sensitive to the characteris-
tics of the guest. Changes to the contents of guest tables (E)
must be reflected in the current tables (C). Such guest
operations as LOAD CONTROL (LCTL), PURGE TLB
(PTLB), and INVALIDATE PAGE TABLE ENTRY
(IPTE) must also result in changes to the current tables,
which sometimes cause deletion and reconstruction of the

p. H. GUM IBM J. RES. DEVELOP. *VOL. 27 %N0. 6 % NOVEMBER 1983

tables. To reduce the performance impact of handling guest
IPTE instructions, a special additional table structure must
be maintained if shadow-table entries are also to be selec-
tively invalidated. Yet another table can be maintained to
improve the handling of LCTL.

The above mechanism contrasts with the 370-XA mecha-
nism in that there are no intermediate tables in 370-XA
interpretive-execution mode. The frequency of references to
tables (E) and (F), at a higher cost in machine cycles than for
successful references to the intermediate tables (C),
increases, but this is counterbalanced by the absence of
overhead to maintain the intermediate tables. With a shad-
ow-table approach, the cost in maintenance processing time
and table space could have increased remarkably for guests
using 31-bit real and/or virtual addresses. The eifects would
be compounded as more guest applications made more use of
multiple address spaces through the use of the dual-address-
space (DAS) facility. An additional table structure is not
required for the efficient handling of IPTE.

A perspective on the significance of this mechanism (and
on shadow tables in the case of VM/370) may be gained by
observing that the mechanism is not used for high-per-
formance preferred guests. Since CMS does not use (guest)
DAT, neither is the mechanism employed in support of this,
the most frequently used on-line environment. On the other
hand, for supporting pageable guests that use DAT, the
370-XA mechanism for translating guest virtual addresses
not only simplifies and reduces support programming, but is
also amenable to implementation using high-performance
mechanisms provided in the machine.

• Multiprocessing
In significant distinction to previous virtual-machine sup-
port, 370-XA interpretive-execution mode provides for full
use of both host and guest multiprocessing. The following
benefits are realized:

• A high-performance multiprocessing preferred guest can
be provided.

• The ability is provided to more thoroughly check out a new
or changed multiprocessing operating system when it is
executed as a guest system, even using pageable mode.

• Full, effective use is made of multiple host processors. Both
overall performance and availability benefit by having
such flexibility.

Key capabilities that contribute to the effective use of
multiprocessing are the following:

• Prefixing (discussed in the preceding section on storage).
• Interception control of the COMPARE AND SWAP

(CS) and COMPARE DOUBLE AND SWAP (CDS)
instructions.

1
H H
R C

G fi
R r

Figure 7 RCP table byte. I = interlock control; HR = saved host
reference indicator; HC = saved host change indicator; GR = saved
guest reference indicator; GC = saved guest change indicator.

• Interlock control of access to the additional tables used by
the key-handling operations (a special handling required
in pageable mode only).

• Interlock control of the IPTE instruction.
• Asynchronously settable intervention controls.

The last four items are discussed further in the following
sections.

Spin locks
The compare-and-swap instructions are typically used to
implement operating-system locks. A lock is used to control
serial access to resources. The compare-and-swap instruc-
tions resolve any potential race conditions for ownership of
the lock and deposit an identifier associated with the reques-
ter, task or CPU, on behalf of which the lock is set closed.

One type of lock, called a spin lock, poses special problems
when used by a guest. By definition, a requester of a closed
spin lock loops, waiting for the lock to open. The critical
consideration in the original design is that the lock, once
closed, is almost never held for a "long" time; i.e., the
possible alternatives to spinning would take as much time as
the expected remaining hold time. Ordinarily, except for
machine checks, the owning CPU is not interruptible until
the lock is cleared. However, in a virtual-machine environ-
ment, the guest has no control over when one of the real
processors is interrupted. Thus, a second processor could be
left spinning indefinitely, though this is not likely when ready
guests are being regularly redispatched. However, host pro-
grams can, if experience in an individual instance indicates
excessive time is being lost, gain control to analyze the
circumstances by intercepting on the condition code typically
set for the closed-lock condition (alternatively, a guest sys-
tem can be modified to explicitly indicate this condition to
the host program).

Key handling
The reference-and-change-preservation (RCP) table, one of
the satellite tables designated by the state description, serves
a purpose similar to the swap tables provided by VM/370
(see [10]). One byte is provided in the RCP table for each 4K
bytes of guest real storage. In each byte there are two change
and two reference bits, one each for guest and for host use,
and an interlock bit. This is illustrated in Fig. 7. When either
the host or the guest modifies the change and reference
indicators in the real key associated with an assigned page 541

IBM J. RES. DEVELOP. . VOL. 27 • NO. 6 • NOVEMBER 1983 P. H. GUM

542

frame of host real storage, the old values of these indicators
are saved in the RCP byte for the other system, guest or host.
For each system, the logically correct status of a page frame
is the OR of the current value of the real indicators and RCP
byte indicators for that system. The use of RCP information
is implicit in the execution of guest key-handling instruc-
tions, but must be developed by programmed means in the
host. Two of the six key-handling instructions are success-
fully executed by using only RCP information, instead of
causing interception, when a host translation exception pre-
vents access to the real key. This is a significant difference
from System/370, where execution of the remaining instruc-
tions is also provided, through assists, under this condition.
There, execution uses the key in the swap table, which is not
provided in the RCP table.

Because two separate locations are referenced (the real
key and the corresponding RCP byte) and must be kept
consistent, and because separate accesses could be attempted
by two different CPUs nearly concurrently in a multiprocess-
ing system, all accesses are normally required to set the
interlock control. When execution of a key-handling opera-
tion for the guest is attempted, exit from interpretive-
execution mode by interception takes place if an interlock is
already set. The interlock bit in each byte of the RCP table
facilitates two activities.

First, it allows the machine to execute guest key-handling
instructions in a guest multiprocessing environment.
Natively sequential access is enforced for references to the
real storage key, to either ensure consistent updating or (for
the RESET REFERENCE BIT [RRB] instruction) to
provide a read access followed by a write access without an
intervening access, thus ensuring that accurate information
is maintained. The existence of the RCP table in interpre-
tive-execution mode introduces the need for additional con-
trols. For example, since a guest SET STORAGE KEY
(SSK) instruction must initially obtain the information with
which to update the associated RCP byte for the host, it must
employ the same interlock on access to the real key as was
employed natively by the RRB instruction. The additional
RCP interlock bit is used to prevent an intervening access for
key information before the RCP byte is updated; it is also
used by the INSERT STORAGE KEY (ISK) instruction to
ensure use of consistent information. The RCP interlock does
not inhibit the channel from concurrently updating the real
changes and reference indicators, as must the interlock on
the real key.

Second, in a host multiprocessing system, the RCP inter-
lock control allows use of key-handling instructions by the
host program on blocks assigned to the guest without
suspending execution of that guest on another CPU. Thus
the host can "steal" a page from a guest without otherwise

disturbing an ongoing execution of that guest. By using the
interlock, each system, host and guest, can independently
conduct paging activity that affects the same real host page
frame. This mechanism is not used in preferred mode since
the host makes no attempt to dynamically reassign real host
storage assigned to a preferred guest.

The comments in this section apply as well to the
extended-key-handling instructions.

INVALIDATE PAGE TABLE ENTRY (IPTE) instruction
handling
Besides setting the invalid bit in the designated guest page
table entry to one, the IPTE instruction deletes an associated
entry in a TLB. Under interpretive execution, however, the
TLB may manifest itself in several distinct places. If the
guest has been dispatched on several host CPUs, residual
guest entries may or may not reside in the TLB of several real
CPUs. If guest multiprocessing is being used, a relevant TLB
entry may exist in one or more real CPUs for other guest
CPUs. In addition, one or more of the guest CPUs may be
suspended, awaiting simulation of a function by a host
program. The host program may be using the result of
translating a guest address, an address possibly affected by
the IPTE on another guest CPU.

There are two fundamental problems to be dealt with: a)
how the residual entries in TLBs on other CPUs are to be
removed, and b) how the interaction with a host program is
to be handled. These problems are dealt with differently
depending on whether the guest is being treated as a uni-
processor machine or as a multiprocessor machine. Residual
TLB entries for a uniprocessor guest are handled as follow:

1. If the real processors are implemented so that guest
entries are not retained in the real TLB after leaving
interpretive-execution mode, IPTE purges only the TLB
of the issuing processor.

2. If the real processors retain residual guest entries after
exiting from interpretive-execution mode, then, in addi-
tion to purging the TLB of the issuing processor, the real
CPU address is stored in the current state description on
exit from interpretive-execution mode. When interpre-
tive-execution mode is subsequently entered on any other
processor, a mismatch of the stored CPU address and the
address of the real CPU causes the TLB to be purged of
all guest TLB entries associated with the current state
description. As a programming technique, a mismatching
value can be deliberately inserted to effectively accom-
plish a guest PTLB operation, or to induce the equivalent
of a guest PTLB instruction when the host has changed
guest translation parameters or tables.

The interaction with the host for a uniprocessor guest is
relatively simple: since simulation is synchronous for a

p. H. GUM IBM J. RES. DEVELOP. • VOL. 27 . NO. 6 • NOVEMBER 1983

uniprocessor guest, residual products of translating guest
addresses normally do not exist in tlie host program domain
while that guest is being executed. The host program
normally does not need to use the interlock control.

For a multiprocessing guest, two additional capabilities
are provided to help handle the additional considerations.
Broadcasting can be enabled for guest IPTE instructions,
and an interlock control is provided for coordinating the use
of translations of guest addresses by host simulation pro-
grams on other CPUs; interception is recognized for IPTE
when the interlock is set.

Finally, regardless of whether or not multiprocessor guests
in addition to uniprocessor guests are being supported, a host
IPTE purges not only the designated host entry but also all
existing guest entries which have a dependency on the host
entry being removed (normally accomplished by deleting all
guest entries from the real TLB). Whether or not additional
interlocks within the host control program are needed
depends on the particular host control program; in general,
the usual considerations apply.

Intervention requests
Interruption requests arising from conditions external to the
guest program are kept pending in the form of bits in the
state description. They are used to signal the availability of
guest I/O-interruption information, which may have been
received from the host channel on another host CPU, to
signal an external interruption condition, and to signal an
operator request to STOP the guest CPU. Collectively, they
are called the intervention controls. In contrast with most
other controls, these bits may be set asynchronously by one
CPU while interpretive execution is in progress on another
CPU using the associated state description, with the assur-
ance that the new setting will be observed on behalf of the
running guest. As a consequence, host-to-host CPU signaling
to obtain the attention of the appropriate real CPU that is
handling the affected guest is not usually needed. This avoids
disrupting the ongoing execution of a guest when the guest is
disabled for the corresponding interruption. It also avoids
using interception to monitor guest events for changes to the
enabled state.

Conclusions
The 370-XA interpretive-execution architecture makes
available for use by guest systems most of the facilities of
both the System/370 and the 370-XA architectures.
Machine resources are used relatively efficiently, migration
of applications to the new architecture and use of the new
mode of the machine is facilitated, performance is generally
improved, complexity is reduced in both the machine and the
supporting control program, less time and fewer resources
are needed in making new machine functions also available
in a virtual machine, and performance disparities among a
variety of guests are diminished. Engineers have greater
latitude in adapting the characteristics of different machine
designs to meet the architecture. Where more than one
control program is expected to act as a host, an additional
reduction is realized in what might otherwise be essentially
redundant support programming. Thus, efficiencies are
achieved at the same time a more generally usable capability
is provided. These characteristics are expected to encourage
an expansion in the use of virtual-machine capabilities,
including in particular the further development of applica-
tions as virtual machines (i.e., subsystems) intended to run
only in the guest-host environment.

Acknowledgments
The author participated in the design of the preferred-
machine assist, but the other System/370 assists, the VM/
370 control program, and the measures of performance, all of
which are summarized in the first part of the papier, are the
work of others (see the references). Work on 370-XA was
initiated and completed under the direction of A. Padegs. He
provided crucial guidance, insights, and encouragement over
several years. P. H. Tallman was instrumental in the devel-
opment of VMA originally, and subsequently made signifi-
cant technical contributions to the 370-XA interpretive-
execution architecture, in addition to providing counsel, as
did T. O. Curlee, throughout the development process. R. M.
Smith contributed invaluable technical advice on several
occasions. It is fitting and a privilege to recognize the
indebtedness to these colleagues, as well as many not named
here, for their valuable contributions.

The intervention controls are necessarily examined under
two conditions: a) when a guest opjeration is executed that
enables the guest for the corresponding interruption, or b)
periodically, at least for request types for which the guest is
enabled. Since the time elapsing between periodic inspec-
tions is model dependent, responsiveness to the condition that
a request for an interruption has been made pending differs
from native execution. However, since this period is chosen
with reasonable timing variations in I/O activities for a
model taken into consideration, any discrepancy with native
execution should have no significant effect.

References and note
1. D. Rosen, "The Works," Think 21,1, 32-36 (1982).
2. IBM Virtual Machine Fadlity/370: Remote Spooling Commu-

nications Subsystems (RSCS) User's Guide, Order No. GC20-
1816, available through IBM branch offlcK.

3. R. J. Creasy, "The Origin of the VM/370 Time-Sharing
System," IBM J. Res. Develop. 25, 5,483-490 (1981).

4. IBM Syst. J. 18, 1 (1979). This issue is devoted to articles
concerning Virtual Machine Facility/370. Extensive additional
bibliographic information is included.

5. IBM System/370 Principles of Operation, Order No. GA22-
7000, available through IBM branch offices.

6. A. Padegs, "System/360 and Beyond," IBM J. Res. Develop.
25,5,377-390(1981). 543

IBM J. RES. DEVELOP. • VOL. 27 • NO. 6 • NOVEMBER 1983

544

10.

11,

12.

13.

14.

A. Padegs, "System/370 Extended Architecture: Design Con-
siderations," IBM J. Res. Develop. 27, 3, 198-205 (1983).
R. L. Cormier, R. J. Dugan, and R. R. Guyette, "System/370
Extended Architecture: The Channel Subsystem," IBM J. Res.
Develop. 27, 3, 206-218 (1983).
IBM 370-XA Principles of Operation, Order No. GA22-7085,
available through IBM branch offices.
IBM Virtual Machine Facility/370 Introduction, Order No.
GC20-1800, available through IBM branch offices.
IBM Virtual-Machine Assist and Shadow-Table-Bypass
Assist, Order No. GA22-7074, available through IBM branch
offices.
IBM Virtual Machine/System Product: System Logic and
Problem Determination Guide, Volume I, Appendix A, Order
No. Ly20-0892, available through IBM branch offices.
R. A. MacKinnon, "The Changing Virtual Machine Environ-
ment: Interfaces to Real Hardware, Virtual Hardware, and
Other Virtual Machines," IBMSyst. J. 18,1, 18-46 (1979).
IBM Airline Control Program/Transaction Processing Facility
ACP/TPF. Hypervisor Program Reference, Order No. OH20-
2311, available through IBM branch offices.

Received July 30,1982; revised June 10, 1983

Pater H. Gum IBM Information Systems and Technology
Group, P.O. Box 390, Poughkeepsie, New York 12602. Mr. Gum is
a senior programmer in the Central Systems Architecture Depart-
ment at Poughkeepsie. He joined IBM in 1964 in Poughkeepsie as a
system programmer working on the operating system for the IBM
SystBm/360, and subsequently participated in the design of several
versions of the control program. In 1973 he joined Central Systems
Architecture, where he participated in the design of extensions to the
architecture of the IBM System/370. He received a B.A. from
Oberlin College, Oberlin, Ohio, in 1958 and an M.A, from the
American University, Washington, D.C., in 1962, both in mathe-
matics. He received an IBM Outstanding Contribution Award for
his work on system control programs and an IBM Division Award
for his work on the architecture of System/370. Mr. Gum is a
member of the Association for Computing Machinery.

IBM J. RES. DEVELOP. %VOL. 27 %N0. 6 ^NOVEMBER 1983

