High Performance VMM-Bypass I/0O in Virtual Machines

JIUXING L1U, WEI HUANG, BULENT ABALI, AND DHABALESWAR K. PANDA

Technical Report
OSU-CISRC-2/06-TR22

High Performance VMM-Bypass I/O in Virtual Machines *

Wei Huang'

IBM T. J. Watson Research Center
19 Skyline Drive
Hawthorne, NY 10532
{jl, abali} @us.ibm.com

Jiuxing Liu

Abstract

Currently, I/0O device virtualization models in virtual ma-
chine (VM) environments require involvement of a virtual
machine monitor (VMM) and/or a privileged VM for each
1/O operation, which may turn out to be a performance bot-
tleneck for systems with high 1/0 demands, especially those
equipped with modern high speed interconnects such as In-
finiBand.

In this paper, we propose a new device virtualization
model called VMM-bypass 1/0, which extends the idea of
OS-bypass originated from user-level communication. Es-
sentially, VMM-bypass allows time-critical I/0 operations
to be carried out directly in guest VMs without involve-
ment of the VMM and/or a privileged VM. By exploiting in-
telligence found in modern high speed network interfaces,
VMM-bypass can significantly improve 1/0 and communi-
cation performance for VMs without sacrificing safety or
isolation.

To demonstrate the idea of VMM-bypass, we have devel-
oped a prototype called Xen-1B, which offers InfiniBand vir-
tualization support in the Xen 3.0 VM environment. Xen-IB
runs with current InfiniBand hardware and does not require
modifications to existing user-level applications or kernel-
level drivers that uses InfiniBand. Our performance mea-
surements show that the Xen-IB is able to achieve nearly
the same raw performance as the original InfiniBand run-
ning in a non-virtualized environment.

1 Introduction

Virtual machine (VM) technologies were first introduced
in the 1960s [14]. Recently they are experiencing a resur-
gence and becoming more and more attractive to both the
industry and the research communities [35]. A key com-

*This research is supported in part by Department of Energy’s Grant
#DE-FC02-01ER25506 and and National Science Foundation grants
#CNS-0403342 and #CCR-0509452.

Bulent Abali

Dhabaleswar K. Panda'

t Computer Science and Engineering
The Ohio State University
Columbus, OH 43210
{huanwei, panda} @cse.ohio-state.edu

ponent in a VM environment is the virtual machine moni-
tor (VMM) (also called hypervisor), which is implemented
directly on top of hardware and provides virtualized hard-
ware interfaces to VMs. With the help of VMMs, VM tech-
nologies allow running many different virtual machines in
a single physical box, with each virtual machine possibly
running a different operating system. VMs can also provide
secure and portable environments to meet the demanding
requirements of computing resources in modern computing
systems [8].

In VM environments, device I/O access in guest oper-
ating systems is handled in different ways by various VM
technologies. For instance, in VMware Workstation, de-
vice I/O relies on switching back to the host operating sys-
tem and user-level emulation [37]. In VMware ESX Server,
guest VM I/O operations trap into the VMM, which makes
direct access to I/O devices [44]. In Xen [10], a high perfor-
mance virtual machine monitor originally developed at the
University of Cambridge, device 1/O follows a split-driver
model. Only an isolated device domain (IDD) has access
to the hardware using native device drivers. All other vir-
tual machines (guest VMs or domains) need to pass the I[/O
requests to the IDD to access those devices. This control
transfer between domains needs involvement of the VMM.

In recent years, network interconnects that provide very
low latency (less than 10us) and very high bandwidth
(multiple Gbps) are emerging. Some examples of these
high speed interconnects include Virtual Interface Archi-
tecture (VIA) [11], InfiniBand [19], Quadrics [34], and
Myrinet [25]. Due to their excellent performance, these
interconnects have become stronger players in areas such
as high performance computing. To achieve high perfor-
mance, these interconnects usually have intelligent network
interface cards (NICs) which can be used to offload a large
part of the host communication protocol processing. The
intelligence in the NICs also supports user-level communi-
cation, which enables safe direct I/O access from user-level
processes (OS-bypass 1/0) and contributes to reduced la-

tency and CPU overhead.

VM technologies can greatly benefit computing systems
built from the aforementioned high speed interconnects by
not only simplifying cluster management for these systems,
but also offering much cleaner solutions to tasks such as
check-pointing and fail-over. Recently, as these high speed
interconnects become more and more commoditized with
their cost going down, they are also used for remote I/O ac-
cess in high-end enterprise systems, which increasingly run
in virtualized environments. Therefore, it is very important
to provide VM support to high-end systems equipped with
these high speed interconnects. However, performance and
scalability requirements of these systems pose some chal-
lenges. In all the VM I/O access approaches mentioned
previously, VMMs have to be involved to make sure that
I/O accesses are safe and do not compromise integrity of
the system. Therefore, current device I/O access in virtual
machines requires context switches between the VMM and
guest VMSs. Thus, I/O access can suffer from longer latency
and higher CPU overhead compared to native I/O access
in non-virtualized environments. In some cases, the VMM
may also become a performance bottleneck which limits
I/O performance in guest VMs. In some of the aforemen-
tioned approaches (VM Workstation and Xen), a host oper-
ating system or another virtual machine is also involved in
the I/0 access path. Although these approaches can greatly
simplify VMM design by moving device drivers out of the
VMM, they may lead to even higher I/O access overhead
when requiring context switches between the host operat-
ing system and the guest VM or two different VMs, which
are fairly expensive.

In this paper, we present a VMM-bypass approach for
I/0 access in VM environments. Our approach takes ad-
vantages of features found in modern high speed intelligent
network interfaces to allow time-critical operations to be
carried out directly in guest VMs while still maintaining
system integrity and isolation. With this method, we can
remove the bottleneck of going through the VMM or a sep-
arate VM for many I/O operations and significantly improve
communication and I/O performance. The key idea of our
VMM-bypass approach is based on the OS-bypass design
of these high speed network interfaces, which allows user
processes to access I/0 devices directly in a safe way with-
out going through operating systems. OS-bypass was origi-
nally proposed by research communities [43, 42, 29, 5, 33]
and later adopted by many commercial interconnects such
as InfiniBand. Our idea can be regarded as an extension of
OS-bypass designs in the context of VM environments.

To demonstrate the idea of VMM-bypass, we have de-
signed and implemented a prototype called Xen-IB to pro-
vide virtualization support for InfiniBand in the Xen VM
environment. Basically, our implementation presents to
each guest VM a paravirtualized InfiniBand device. Our

design requires no modification to existing hardware. Also,
through a technique called high-level virtualization, we al-
low current user-level applications and kernel-level mod-
ules that utilize InfiniBand to run without modification. Our
performance results, which includes benchmarks at the ba-
sic InfiniBand level as well as evaluation of upper-layer In-
finiBand protocols such as IP over InfiniBand (IPoIB) [1]
and MPI [36], demonstrate that performance of our VMM-
bypass approach comes close to that in a native, non-
virtualized environment. Although our current implementa-
tion is for InfiniBand and Xen, the basic VMM-bypass idea
and many of our implementation techniques can be readily
applied to other high-speed interconnects and other VMMs.
In summary, the main contributions of our work are:

e We proposed the VMM-bypass approach for I/O ac-
cesses in VM environments for modern high speed in-
terconnects. Using this approach, many I/O operations
can be performed directly without involvement of a
VMM or another VM. Thus, I/O performance can be
greatly improved.

e Based on the idea of VMM-bypass, we implemented
a prototype, Xen-IB, to virtualize InfiniBand devices
in Xen guest VMs. Our prototype supports running
existing InfiniBand applications and kernel modules in
guest VMs without modification.

e We carried out extensive performance evaluation of
our prototype. Our results show that performance of
our virtualized InfiniBand device is very close to native
InfiniBand devices running in a non-virtualized envi-
ronment.

The rest of the paper is organized as follows: In Sec-
tion 2, we present background information, including the
Xen VM environment and the InfiniBand architecture. In
Section 3, we present the basic idea of VMM-bypass I/O.
In Section 4, we discuss detailed design and implementation
of our Xen-IB prototype. In Section 5, we discuss several
related issues and limitations of our current implementation
and how they can be addressed in future. Performance eval-
uation results are given in Section 6. We discuss related
work in Section 7 and conclude the paper in Section 8.

2 Background

In this section, we provide background information for
our work. In Section 2.1, we describe how 1/O device ac-
cesses are handled in several popular VM environments. In
Section 2.3, we describe the OS-bypass feature in modern
high speed network interfaces. Since our prototype is based
on Xen and InfiniBand, we introduce them in Sections 2.2
and 2.4, respectively.

2.1 T1/O Device Access in Virtual Machines

In a VM environment, the VMM plays the central role of
virtualizing hardware resources such as CPUs, memory, and
I/0 devices. To maximize performance, the VMM needs
to let guest VMs access these resources directly whenever
possible. Take CPU virtualization as an example, a guest
VM can execute all non-privileged instructions natively in
hardware without intervention of the VMM. However, priv-
ileged instructions executed in guest VMs will generate a
trap into the VMM. The VMM will then take necessary
steps to make sure that the execution can continue without
compromising system integrity. Since many CPU intensive
workloads seldom use privileged instructions (This is espe-
cially true for applications in HPC area.), they can achieve
excellent performance even when executed in a VM.

I/0O device access in VMs, however, is a completely dif-
ferent story. Since I/O devices are usually shared among
all VMs in a physical machine, the VMM has to make
sure that accesses to them are legal. Currently, this re-
quires VMM intervention on every I/O access from guest
VMs. For example, in VMware ESX Server [44], all physi-
cal I/0 accesses are carried out within the VMM, which in-
cludes device drivers for popular server hardware. System
integrity is achieved with every I/O access going through
the VMM. Furthermore, the VMM can serve as an arbitra-
tor/multiplexer/demultiplexer to implement useful features
such as QoS control among VMs. However, VMM inter-
vention also leads to longer I/O latency and higher CPU
overhead due to the context switches between guest VMs
and the VMM. Since the VMM serves as a central control
point for all I/O accesses, it may also become a performance
bottleneck for I/0 intensive workloads.

Having device I/O access in the VMM also complicates
the design of the VMM itself. It significantly limits the
range of supported physical devices because new device
drivers have to be developed to work within the VMM.
To address this problem, VMware workstation [37] and
Xen [12] carry out I/O operations in a host operating sys-
tem or a special privileged VM called isolated device do-
main (IDD), which can run popular operating systems such
as Windows and Linux that have a large number of ex-
isting device drivers. Although this approach can greatly
simplify the VMM design and increase the range of sup-
ported hardware, it does not directly address performance
issues with the approach used in VMware ESX Server. In
fact, I/O accesses now may result in expensive operations
called a world switch (a switch between the host OS and
the VMs) or a domain switch (a switch between different
VMs), which can lead to even worse 1/0 performance.

2.2 Overview of the Xen Virtual Machine Monitor

Xen is a popular high performance VMM. It uses para-
virtualization [45], in which host operating systems need to

be explicitly ported to the Xen architecture. This architec-
ture is similar to native hardware such as the x86 architec-
ture, with only slight modifications to support efficient vir-
tualization. Since Xen does not require changes to the ap-
plication binary interface (ABI), existing user applications
can run without any modification.

VMO VM1 VM2
(Domain0) (Guest Domain) (Guest Domain)
Device Manager Unmodified Unmodified
and Control User User
Software Software Software
Guest OS Guest OS Guest OS
(XenoLinux) (XenoLinux) (XenoLinux)
Back—end driver
A
native ‘ front—end driver ‘ ‘ front—end driver
Device
Driyer

Xen Hypervisor

‘ Safe HW IF‘ ‘ Control IF ‘ ‘ Event Channel‘ ‘ Virtual CPU ‘ ‘ Virtual MMU ‘
vy vy 7y 7y 7y

v v v v v

‘ Hardware (SMP, MMU, Physical Memory, Ehternet, SCS/IDE) ‘

Figure 1. The structure of the Xen hypervisor,
hosting three xenoLinux operating systems
(courtesy [32])

Figure 1 illustrates the structure of a physical machine
running Xen. The Xen hypervisor is at the lowest level and
has direct access to the hardware. The hypervisor, instead
of the guest operating systems, is running in the most priv-
ileged processor-level. Xen provides basic control inter-
faces needed to perform complex policy decisions in Xen
architecture. Above the hypervisor are the Xen domains
(VMs). There can be many domains running simultane-
ously. Guest OSes are prevented from directly executing
privileged processor instructions. A special domain called
domain0, which is created at boot time, is allowed to ac-
cess the control interface provided by the hypervisor. The
guest OS in domainO hosts the application-level manage-
ment software and perform the tasks to create, terminate or
migrate other domains through the control interface.

There is no guarantee that a domain will get a continu-
ous stretch of physical memory to run a guest OS. So Xen
makes a distinction between machine memory and pseudo-
physical memory. Machine memory refers to the physical
memory installed in the machine, while pseudo-physical
memory is a per-domain abstraction, allowing a guest OS
to treat its memory as a contiguous range of physical pages.
Xen maintains the mapping between the machine and the
pseudo-physical memory. Only a certain parts of the op-
erating system needs to understand the difference between
these two abstractions. Guest OSes allocate and manage
their own hardware page tables, with minimal involvement
of the Xen hypervisor to ensure safety and isolation.

In Xen, domains communicate with each other through

shared pages and event channels. Event channels provide
an asynchronous notification mechanism between domains.
Each domain has a set of end-points (or ports) which may be
bounded to an event source [40]. When a pair of end-points
in two domains are bound together, a “send” operation on
one side will cause an event to be received by the destination
domain, which may in turn cause an interrupt. Event chan-
nels are only intended for sending notifications between do-
mains. So if a domain wants to send data to another, the
typical scheme is for a source domain to grant access to lo-
cal memory pages to the destination domain. Then, these
shared pages are used to transfer data.

Virtual machines in Xen usually do not have direct ac-
cess to hardware. Since most existing device drivers as-
sume they have complete control of the device, there cannot
be multiple instantiations of such drivers in different do-
mains for a single device. To ensure manageability and
safe access, device virtualization in Xen follows a split de-
vice driver model [13]. Each device driver is expected to
run in an isolated device domain (IDD), which also hosts
a backend driver, running as a daemon and serving the ac-
cess requests from guest domains. Each guest OS uses a
frontend driver to communicate with the backend. The split
driver organization provides security: misbehaving code in
a guest domain will not result in failure of other guest do-
mains. Since the split device driver model requires the de-
velopment of frontend and backend drivers for each indi-
vidual device, only a limited number devices are currently
supported in guest domains.

2.3 OS-bypass I/O

Traditionally, device I/O accesses are carried out inside
the OS kernel on behalf of application processes. How-
ever, this approach poses several problems such as over-
head caused by context switches between user processes
and OS kernels and extra data copies which degrade I/O per-
formance [4]. It can also result in QoS crosstalk [17] due to
lacking of proper accounting for costs of I/O accesses car-
ried out by the kernel on behalf of applications.

To address these problems, a concept called user-level
communication was introduced by the research community.
One of the notable features of user-level communication is
OS-bypass, with which I/O (communication) operations can
be achieved directly by user processes without involvement
of OS kernels. OS-bypass was later adopted by commercial
products, many of which have become popular in areas such
as high performance computing where low latency is vital
to applications. It should be noted that OS-bypass does not
mean all I/O operations bypass the OS kernel. Usually, de-
vices allow OS-bypass for frequent and time-critical opera-
tions while other operations, such as setup and management
operations, can go through OS kernels and are handled by a
privileged module, as illustrated in Figure 2.

Application | | Application |
1
|

Privilegded |

0S8 Module |
1

+ |

Y Y

Device

-

Privileged Access

77777777777 -

OS-Bypass Access

Figure 2. 0S-Bypass Communication and I/O

The key challenge to implement OS-bypass I/O is to en-
able safe accesses to a device shared by many different ap-
plications. To achieve this, OS-bypass capable devices usu-
ally require more intelligence in the hardware than tradi-
tional I/O devices. Typically, an OS-bypass capable device
is able to present virtual access points to different user appli-
cations. Hardware data structures for virtual access points
can be encapsulated into different I/O pages. With the help
of an OS kernel, the I/O pages can be mapped into the vir-
tual address spaces of different user processes. Thus, dif-
ferent processes can access their own virtual access points
safely, thanks to the protection provided by the virtual mem-
ory mechanism. Although the idea of user-level communi-
cation and OS-bypass was developed for traditional, non-
virtualized systems, the intelligence and self-virtualizing
characteristic of OS-bypass devices lend themselves nicely
to a virtualized environment, as we will see later.

24 InfiniBand Architecture

InfiniBand [19] is a high speed interconnect offering
high performance as well as features such as OS-bypass.
InfiniBand host channel adapters (HCAs) are the equivalent
of network interface cards (NICs) in traditional networks. A
queue-based model is used in the interface presented to the
consumers. A Queue Pair (QP) the InfiniBand Architecture
consists of a send queue and a receive queue. The send
queue holds instructions to transmit data and the receive
queue holds instructions that describe where received data
is to be placed. Communication operations are described in
Work Queue Requests (WQR), or descriptors, and submitted
to the queue pairs. The completion of the communication
is reported through Completion Queues (CQ) by Comple-
tion Queue Entries (CQEs). An application can subscribe
for notifications from HCA and register a callback handler
with CQ. Completion queue can also be accessed through
polling to reduce latency.

Initiating data transfer (posting work requests) and com-
pletion of work requests notification (polling for comple-
tion) are time-critical tasks which uses OS-bypass. In the
Mellanox [22] approach, which represents a typical imple-

mentation of InfiniBand specification, these operations are
done by ringing a doorbell. Doorbells are rung by writing to
the registers that form the User Access Region (UAR). Each
UAR is a 4k I/O page mapped into a process’s virtual ad-
dress space. It allows access to HCA resources from privi-
leged as well as unprivileged mode. Posting a work request
includes putting the descriptors (WQR) to QP buffer and
writing the doorbell to the UAR, which is completed with-
out the involvement of the operating system. CQ buffers,
where the CQEs are located, can also be directly accessed
from the process virtual address space. These OS-bypass
features make it possible for InfiniBand to provide very low
communication latency.

InfiniBand also provides a comprehensive management
scheme. Management communication is achieved by send-
ing management datagrams (MADs) to well-known QPs
(QPO and QP1).

InfiniBand requires all buffers involved in communica-
tion be registered before they can be used in data transfers.
In Mellanox HCAs, the purpose of registration is two-fold.
First, an HCA needs to keep an entry in the Translation
and Protection Table (TPT) so that it can perform virtual-
to-physical translation and protection checks during data
transfer. Second, the memory buffer needs to be pinned
in memory so that HCA can DMA directly into the target
buffer Upon the success of registration, a local key and a re-
mote key are returned. They will be used later for local and
remote (RDMA) accesses. QP and CQ buffers described
above are just normal buffers that are directly allocated from
process virtual memory space and registered with HCA.

‘ User-level Application ‘

User-space

Kernel

] OS-bypass

‘ HCA Driver | ‘
| InfiniBand HCA i |

Figure 3. Architectural overview of OpenIB
Gen2 stack

There are two popular stacks for InfiniBand drivers.
VAPI [23] is the Mellanox implementation and OpenlB
Gen?2 [28] recently have come out as a new generation of
IB stack provided by the OpenIB community. In this paper,
our prototype implement is based on OpenIB Gen2, whose
architecture is illustrated in Figure 3.

3 VMM-Bypass I/O

VMM-bypass I/O can be viewed as an extension to the
idea of OS-bypass I/O in the context of VM environments.
In this section, we describe the basic design of VMM-
bypass I/O. Two key ideas in our design are paravirtual-
ization and high-level virtualization.

In some VM environments, [/O devices are virtualized
at the hardware level [37]. Each I/O instruction to access a
device is virtualized by the the VMM. With this approach,
existing device drivers can be used in the guest VMs without
modification. However, the method significantly increases
the complexity of virtualizing devices. For example, one
popular InfiniBand card (MT23108 from Mellanox [24])
presents itself as a PCI-X device to the system. After con-
figuration, this device can be accessed by the OS using
memory mapped I/O. Virtualizing this device at the hard-
ware level would require us to not only understand all the
hardware commands issued through memory mapped 1/O,
but also implement a virtual PCI-X bus in the guest VM.
Another problem with this approach is performance. Since
existing physical devices are typically not designed to run
in a virtualized environment, the interfaces presented at the
hardware level may exhibit significant performance degra-
dation when they are virtualized.

Our VMM-bypass I/O virtualization design is based on
the idea of paravirtualization, similar to [10] and [46]. We
do not preserve hardware interfaces of existing devices. To
virtualize a device in a guest VM, we implement a device
driver called guest module in the OS of the guest VM. The
guest module is responsible for handling all the privileged
accesses to the device. In order to achieve VMM-bypass
device access, the guest module also needs to set things up
properly so that I/O operations can be carried out directly
in the guest VM. This means that the guest module must be
able to create virtual access points on behalf of the guest OS
and map them into the addresses of user processes. Since
the guest module does not have direct access to the device
hardware, we need to introduce another software compo-
nent called backend module, which provides device hard-
ware access for different guest modules. If devices are ac-
cessed inside the VMM, the backend module can be imple-
mented as part of the VMM. It is possible to let the backend
module talk to the device directly. However, we can greatly
simplify its design by reusing the original privilege module
of the OS-bypass device driver. In addition to serving as a
proxy for device hardware access, the backend module also
coordinates accesses among different VMs so that system
integrity can be maintained. The VMM-bypass I/O design
is illustrated in Figure 4.

If device accesses are provided by another VM (de-
vice driver VM), the backend module can be implemented
within the device driver VM. The communication between

VM ; VM
| Application | , | Application |
R

v

Y
| Backend Module |
Y

VMM

| PrivilegdedModule |
|
L

-« — = — — — — —
- - — - — o — — - — - — -

Y
| Device

Privileged Access
VMM-Bypass Access

Figure 4. VM-Bypass I/O (/0 Handled by VMM
Directly)

guest modules and the backend module can be achieved
through the inter-VM communication mechanism provided
by the VM environment. This approach is shown in Fig-
ure 5.

Device Driver VM 5 VM
| Back?nd Module | : : | . Application |
P e : i
Privilegded Module E é Guest Modul% (0N

VMM

U

Y

Device

Privileged Access

,,,,,,,,,,, = VMM-Bypass Access

Figure 5. VM-Bypass /O (/O Handled by An-
other VM)

Paravirtualization can lead to compatibility problems be-
cause a paravirtualized device does not conform to any ex-
isting hardware interfaces. However, in our design, these
problems can be addressed by maintaining existing inter-
faces which are at a higher level than the hardware interface
(a technique we dubbed high-level virtualization). Modern
interconnects such as InfiniBand and VIA have their own
standardized access interfaces. For example, InfiniBand
specification defines a VERBS interface for a host to talk to
an InfiniBand device. The VERBS interface is usually im-
plemented in the form of an API set through a combination
of software and hardware. Our high-level virtualization ap-
proach maintains the same VERBS interface within a guest
VM. Therefore, existing kernel drivers and applications that

use InfiniBand will be able to run without modification. Al-
though in theory a driver or an application can bypass the
VERBS interface and talk to InfiniBand devices directly,
this seldom happens because it leads to poor portability due
to the fact that different InfiniBand devices may have differ-
ent hardware interfaces.

4 Prototype Design and Implementation

In this section, we present the design and implementation
of Xen-IB, our InfiniBand virtualization driver for Xen. We
describe details of the design, which follows the Xen split
device driver model, and how we enable accessing the HCA
from guest domains directly for time-critical tasks.

4.1 Overview

Like many other device drivers, InfiniBand drivers can-
not have multiple instantiations for a single HCA. Thus a
split driver model approach is required to share a single
HCA among multiple Xen domains.

Figure 6 illustrates a basic design of our Xen-IB driver.
The backend runs as a kernel daemon on top of the na-
tive InfiniBand driver in the isolated device domain (IDD),
which is domain0 is our current implementation. It waits
for incoming requests from the frontend drivers in the guest
domains. The frontend driver, which corresponds to the
guest module mentioned in Section 3, replaces the kernel
HCA driver in OpenlB Gen2 stack. Once the frontend is
loaded, it establishes two event channels with the backend
daemon. The first channel, together with shared memory
pages, forms a device channel [13] which is used to process
the requests initiated from the guest domain. The second
channel is used for sending InfiniBand CQ and QP events
to the guest domain and will be discussed in detail later.

IDD Guest Domain

l User—level Application]

l User—level Application l

User—
space

! Kernel

g | Core
--+= Infiniband |
| Modules

Native HCA Driver

Device Channel l

Event Channel

’ ' : Xen Hypervisor ‘

| Mellanox HCA |

Figure 6. The Xen-IB driver structure with the
split driver model

The Xen-IB frontend driver provides the same set of in-
terfaces as normal Gen2 stack for kernel modules. It is a

relatively thin layer whose tasks include packing the com-
mand together with necessary parameters and sending it to
the backend through the device channel. The backend driver
reconstructs the commands, performs the operations with
the native kernel HCA driver on behalf of the guest domain,
and returns the result to the frontend driver. The backend
manages InfiniBand resources on behalf of guest domains.
Only handles to those resources are passed back to the fron-
tend driver for later references.

The split device driver model in Xen poses difficulties
for user-level direct HCA access in Xen guest domains. To
enable VMM-bypass, we need to let guest domains have
direct access to certain HCA resources such as the UARs
and the QP/CQ buffers.

4.2 InfiniBand Privileged Accesses

In the following, we discuss in general how we sup-
port all privileged InfiniBand operations, including initial-
ization, InfiniBand resource management, memory registra-
tion and event handling.

Initialization and resource management: Before ap-
plications can send messages using InfiniBand, it must fin-
ish several preparation steps including opening HCA, creat-
ing CQ, creating QP, and modifying QP status, etc. Those
operations are usually not in the time critical path of the
applications and can be implemented in a straightforward
way. Basically, the guest domains forward these commands
to the device domain (IDD) and wait for the acknowledg-
ments after the operations are completed in IDD. All the re-
sources are managed in IDD and the frontends refer to these
resources by handles. Validation checks must be conducted
in IDD to ensure that all references are legal.

Memory Registration: The InfiniBand specification re-
quires all the memory regions involved in data transfers
be registered with HCA. With Xen’s para-virtualization ap-
proach, all domains see the same DMA address as the real
machine address (assuming that no IOMMU is used). So
there is no extra need for address translation. The informa-
tion needed by memory registration is a list of DMA ad-
dresses that describes the physical locations of the buffers,
access flags and the virtual address that the application will
use when accessing the buffers. Again, the registration hap-
pens at the device domain. The frontend driver sends above
information to the backend driver and get back the local and
remote keys. Note that since the Translation and Protection
Table (TPT) on HCA is indexed by keys, multiple guest do-
mains are allowed to register with the same virtual address.

For security reasons, the backend driver can verify if the
frontend driver offers valid DMA addresses belonging to the
specific domain that it is running in. This check will make
sure that all later communication activities of guest domains
are within the valid address spaces.

Event Handling: InfiniBand supports several kinds of
CQ and QP events. The most commonly used is the com-
pletion event, which is introduced in section 2.4. Event han-
dlers are associated with CQs or QPs when they are created.
An application can subscribe for event notification by writ-
ing the appropriate command to the UAR page. When those
subscribed events happen, the HCA driver will first get noti-
fied from HCA and then dispatch the event to different CQs
or QPs according to the event type. Then the application
that owns the CQ/QP will get a callback on their event han-
dlers.

For Xen-IB, events are generated for the device domain,
where all QPs and CQs are actually created. But the device
domain cannot directly give a callback to the event handlers
in the guest domains. To address this issue, we create a
dedicated event channel between a frontend and the back-
end driver. The backend driver associates a special event
handler to each CQ/QP created due to requests from guest
domains. Each time the HCA generates an event to these
CQs/QPs, this special event handler gets executed and for-
wards the information such as the event type and the CQ/QP
identifier to the guest domain through the event channel.
The frontend driver binds an event dispatcher as a callback
handler to one end of the event channel after the channel
is created. The event handlers given by the applications
are associated to the CQs or QPs after they are success-
fully created. Frontend driver also maintains a translation
table between the CQ/QP identifiers and the actual CQ/QPs.
Once the event dispatcher gets an event notification from the
backend driver, it checks the identifier and gives the corre-
sponding CQ/QP a callback on the associated handler.

4.3 VMM-Bypass Accesses

In InfiniBand, QP accesses (posting descriptors) include
writing WQEs to the QP buffer and ringing the doorbell
to notify the HCA. Then the HCA can use DMA to trans-
fer the WQEs to internal HCA memory and perform the
send/receive or RDMA operations. Once a work request is
completed, HCA will put a completion entry (CQE) in the
CQ buffer. In InfiniBand, QP access functions are used for
initiating communication. To detect completion of commu-
nication, CQ polling can be used. QP access and CQ polling
functions are typically found in the critical path of commu-
nication. Therefore, it is very important to optimize their
performance by using VMM-bypass. The basic architecture
of the VMM-bypass design is shown in Figure 7.

Supporting VMM-bypass for QP access and CQ polling
poses two requirements on our design of Xen-IB driver:
first, the UAR page must be accessible from a guest do-
main; second, both QP and CQ buffers should be directly
visible in the guest domain.

When a frontend driver is loaded, the backend driver
allocates a UAR page and returns its page frame number

IDD Guest Domain

User —level
Infiniband Service

User—level HCA Driver 1

,,,,, - ' | Resource
Core ! |, Management
i Infiniband: [[*Validataion
1 Checkmg

' Modules

Event Handling

Event Dispatching

777777777777 UAR Allocation UAR Mapping

l Native HCA Drider |
[

Device Channel

Event Channel | |

‘ ; ; Xen Hypervisor ; ; ‘

| Mellanox HCA |

Figure 7. VMM-Bypass design of Xen-IB driver

(machine address) to the frontend. The frontend driver then
remaps this page to its own address space so that it can di-
rectly access the UAR in the guest domain to serve requests
from the kernel applications'. In the same way, when a user
application starts, the frontend driver also applies for a UAR
page from the backend and remaps the page to the appli-
cation’s virtual memory address space, which can be later
accessed directly from the user space. Since all UARs are
managed in a centralized manner in the IDD, there will be
no conflicts between UARSs in different guest domains.

To make QP and CQ buffers accessible to guest domains,
creating CQs/QPs has to go through two stages. In the first
stage, QP or CQ buffers are allocated in the guest domains
and registered through the IDD. During the second stage,
the frontend sends the CQ/QP creation commands to the
IDD along with the keys returned from the registration stage
to complete the creation process. Address translations are
indexed by keys, so in later operations the HCA can directly
read WQRs from and write the CQEs back to the buffers
located in the guest domains.

Since we also allocate UARs to user space applications
in guest domains, the user level InfiniBand library now
keeps its OS-bypass feature. The VMM-bypass IB-Xen
workflow is illustrated in Figure 8.

4.4 Virtualizing InfiniBand Management Opera-
tions

In an InfiniBand network, management and adminis-
trative tasks are achieved through the use of Management
Datagrams (MADs). MADs are sent and received just like
normal InfiniBand communication, except that they must
use two well-known queue-pairs: QPO and QP1. Since there
is only one set of such queue pairs in every HCA, their ac-
cess must be virtualized for accessing from many different

'We have applied a small patch to Xen to enable access to I/O pages in
guest domains.

HCA kernel kernel user—space

0 | : ' Create QP

e '
: ———
' ' /]
\ Priviledged | | i '
1 Operations .,/"’: ' |
! * ° I'\\ j 0 Ack ! Application
' P -
| | Device! ' : ']
doorbell 0 7 e]
‘Channel |
0 0 | | i :.A/kﬂ’
' L\ Post request i~
Pooymm P
0 Bypass | | 0 | Meabured
' ' ' i Latency
| ' ' L
' '] 1 T T
! COE ' [
: - Poll CQ
0 0 0 | COE
1 1 1 1 |
v i v 1
Back-end/ Front—end User—level
Native HCA driver HCA driver

Figure 8. Working flow of the VMM-bypass
Xen-IB driver

VMs, which means we must treat them differently than nor-
mal queue-pairs. However, since queue-pair accesses are
done directly in guest VMs in our VMM-bypass approach,
it would be very difficult to track each queue-pair access and
take different actions based on whether it is a management
queue-pair or a normal one.

To address this difficulty, we use the idea of high-level
virtualization. This is based on the fact that although MAD
is the basic mechanism for InfiniBand management, ap-
plications and kernel drivers seldom use it directly. In-
stead, different management tasks are achieved through
more user-friendly and standard API sets which are imple-
mented on top of MADs. For example, the kernel IPoIB
protocol makes use of the subnet administration (SA) ser-
vices, which are offered through a high-level, standardized
SA API Therefore, instead of tracking each queue-pair ac-
cess, we virtualize management functions at the API level
by providing our own implementation for guest VMs. Most
functions can be implemented in a similar manner as privi-
leged InfiniBand operations, which typically includes send-
ing a request to the backend driver, executing the request
(backend), and getting a reply. Since management functions
are rarely in time-critical paths, the implementation will not
bring any significant performance degradation. However,
it does require us to implement every function provided by
all the different management interfaces. Fortunately, there
are only a couple of such interfaces and the implementation
effort is not significant.

5 Discussions

In this section, we discuss issues related to our pro-
totype implementation such as how safe device access
is ensured, how performance isolation between different
VMs can be achieved, and challenges in implementing VM
check-pointing and migration with VMM-bypass. We also
point out several limitations of our current prototype and

how we can address them in future.

5.1 Safe Device Access

To ensure that accesses to virtual InfiniBand devices by
different VMs will not compromise system integrity, we
need to make sure that both privileged accesses and VMM-
bypass accesses are safe. Since all privileged accesses need
to go through the backend module, access checks are imple-
mented there to guarantee safety. VMM-bypass operations
are achieved through accessing the memory-mapped UAR
pages which contain virtual access points. Setting-up these
mappings is privileged and can be checked. InfiniBand al-
lows using both virtual and physical addresses for sending
and receiving messages or carrying out RDMA operations,
as long as a valid memory key is presented. Since the key is
obtained through InfiniBand memory registration, which is
also a privileged operation, we implement necessary safety
checks in the backend module to ensure that a VM can only
carry out valid memory registration operations. It should be
noted that once a memory buffer is registered, its physical
memory pages cannot be reclaimed by the VMM. There-
fore, we should limit the total size of buffers that can be
registered by a single VM. This limit check can also be im-
plemented in the backend module.

Memory registration is an expensive operation in Infini-
Band. In our virtual InfiniBand implementation, memory
registration cost is even higher due to inter-domain commu-
nication. This may lead to performance degradation in cases
where buffers cannot be registered in advance. Techniques
such as pin-down cache can be applied when buffers are
reused frequently, but it is not always effective. To address
this issue, some existing InfiniBand kernel drivers creates
and uses an DMA key through which all physical pages can
be accessed. Currently, our prototype supports DMA keys.
However, this leaves a security hole because all physical
memory pages (including those belonging to other VMs)
can be accessed. In future, we plan to address this problem
by let DMA keys only authorize access to physical pages in
the current VM. However, this also means that we need to
update the keys whenever the VMM changes the physical
pages allocated to a VM.

5.2 Performance Isolation

Although our current prototype does not yet implement
performance isolation or QoS among different VMs, this
issue can be addressed by taking advantage of QoS mecha-
nisms which are present in the current hardware. For exam-
ple, Mellanox InfiniBand HCAs support a QoS scheme in
which a weighted round-robin algorithm is used to schedule
different queue-pairs. In this scheme, QoS policy parame-
ters are assigned when queue-pairs are created and initial-
ized. After that, the HCA hardware is responsible for taking
necessary steps to ensure QoS policies. Since queue-pair

creations are privileged, we can create desired QoS policies
in the backend when queue-pairs are created. These QoS
policies will later be enforced by device hardware. We plan
to explore more along this direction in future.

5.3 VM Check-pointing and Migration

VMM-bypass I/0O poses new challenges for implement-
ing VM check-pointing and migration. This is due to two
reasons. First, the VMM does not have complete knowledge
of VMs with respect to device accesses. This is in contrast
to traditional device virtualization in which the VMM is in-
volved in every I/O operation and it can easily suspend and
buffer these operations when check-pointing or migration
starts. The second problem is that VMM-bypass I/O ex-
ploits intelligent devices which can store a large part of the
VM system states. For example, an InfiniBand HCA has
onboard memory which stores information such as regis-
tered buffers, queue-pair data structures, and so on. Some
of the state information on an HCA can only be changed
as side effects of VERBS functions calls. It does not al-
low changing it in an arbitrary way. This makes it diffi-
cult for check-pointing and migrations because when a VM
is restored from a previous checkpoint or migrated to an-
other node, the corresponding state information on the HCA
needs to be restored also.

There are two directions to address the above prob-
lems. The first one is to involve VMs in the process of
check-pointing and migration. For example, the VMs can
bring themselves to some determined states which simplify
check-pointing and migration. Another way is to introduce
some hardware/firmware changes. We are currently work-
ing on both directions.

6 Performance Evaluation

In this section, we first evaluate the performance of our
Xen-IB prototype using a set of micro-benchmarks at the
InfiniBand layer. Then, we present performance results for
the IPoIB protocol. We also provide performance numbers
for MPI at both micro-benchmark and application levels.

6.1 Experimental Setup

Our experimental testbed is an InfiniBand cluster . Each
system in the cluster is equipped with dual Intel Xeon
3.0GHz CPUs, 2 GB memory and a Mellanox MT23108
PCI-X InfiniBand HCA. The PCI-X bus on these systems
were 64 bit and ran at 133 MHz. The systems are connected
with an InfiniScale InfiniBand switch. The operating sys-
tems we used are RedHat AS4 with kernel 2.6.12. We used
Xen 3.0 for all our experiments. All Xen guest domains run
with a single virtual CPU and 512 MB memory.

6.2 InfiniBand Latency and Bandwidth

In this subsection, we compared user-level latency and
bandwidth performance between Xen-IB and native Infini-

Band. Xen-IB results were obtained from two guest do-
mains running in two different physical machines. Polling
was used for detecting completion of communication.

The latency tests were carried out in a ping-pong fashion.
The tests were repeated for many times and the average half
round-trip time was reported as one-way latency. Figures 9
and 10 show the results for InfiniBand RDMA write and
send/receive operations, respectively. We can see that there
is very little performance difference between Xen-IB and
native InfiniBand. This is because in the tests, all InfiniBand
communication operations were carried out by directly ac-
cessing the HCA from guest domains with VMM-bypass.
The lowest latency achieved by both was around 4.2 us for
RDMA write and 6.6 us for send/receive.

In the bandwidth tests, a sender sent a number of mes-
sages to a receiver and then waited for an acknowledg-
ment. The bandwidth was obtained by dividing the number
of bytes transferred from the sender to the receiver by the
elapsed time of the test. From Figures 11 and 12, we again
see virtually no difference between Xen-IB and native In-
finiBand. Both of them were able to achieve bandwidths up
to 880 MByte/s, which was limited by the bandwidth of the
PCI-X bus.

20

XeniB —+—
Native -~

Latency (us)

1 4 16 64 256 1k 4k
Message Size (Bytes)

Figure 9. InfiniBand RDMA Write Latency

20 o
XenlB —+—
Native —x—
15
m
2
g 10
[9]
©
-
5,
0 L L L L L L L L L L L L
1 4 16 64 256 1k 4k

Message Size (Bytes)

Figure 10. InfiniBand Send/Receive Latency

10

YenB T T S
Native -~

900
@ 800 r
8 700 |
@

D 600 t

S

= 500

b=

= 400

32

£ 300

D

3 200+

.C

= 100 |-

0 L

p

Figure 11. InfiniBand RDMA Write Bandwidth

4

16 64 256 1k 4k 16k 64K256k 1M
Message Size (Bytes)

900
@ 800 f
12
3 700 |
&
Qoo |
S
= 500
s
T 400 |
>
£ 300}
2
3 200
c
F 100 |
O L
]

Figure 12. InfiniBand Send/Receive Band-

width

30

4

16 64 256 1k 4k 16k 64K256k 1M
Message Size (Bytes)

Latency (us)

Inter-domain latency —+—

Figure 13. Inter-domain Communication One

Way Latency

16 64 256 1k 4k
Message Size (Bytes)

6.3 Event/Interrupt Handling Overhead

The latency numbers we showed in the previous sub-
section were based on polling schemes. In this section,
we characterize the overhead of event/interrupt handling in
Xen-IB by showing send/receive latency results with block-
ing InfiniBand user-level VERBS functions.

Compared with native InfiniBand event/interrupt pro-
cessing, Xen-IB introduces extra overhead because it re-
quires forwarding an event from domain0O to a guest do-
main, which involves Xen inter-domain communication. In
Figure 13, we show performance of Xen inter-domain com-
munication. We can see that the overhead increases with the
amount of data transferred. However, even with very small
messages, there is an overhead of about 10 ps.

Fig. 14 shows the send/receive one-way latency us-
ing blocking VERBS. The test is almost the same as the
send/receive latency test using polling. The difference is
that a process will block and wait for a completion event
instead of busy polling on the completion queue. From
the figure, we see that Xen-IB has higher latency due to
overhead caused by inter-domain communication. For each
message, Xen-IB needs to use inter-domain communication
twice, one for send completion and one for receive comple-
tion. For large messages, we observe that the difference
between Xen-IB and native InfiniBand is around 18-20 ps,
which is roughly twice the inter-domain communication la-
tency. However, for small messages, the difference is much
less. For example, native InfiniBand latency is only 3 us
better for 1 byte messages. This difference gradually in-
creases with message sizes until it reaches around 20 us.
Our profiling reveals that this is due to “event batching”. For
small messages, the inter-domain latency is much higher
than InfiniBand latency. Thus, when a send completion
event is delivered to a guest domain, a reply may have al-
ready come back from the other side. Therefore, the guest
domain can process two completions with a single inter-
domain communication operation, which results in reduced
latency. For small messages, event batching happens very
often. As message size increases, it becomes less and less
frequent and the difference between Xen-IB and native 1B
increases.

6.4 Memory Registration

Memory registration is generally a costly operation in In-
finiBand. Figure 15 shows the registration time of Xen-IB
and native InfiniBand. The benchmark registers and unreg-
isters a trunk of user buffers multiple times and measures
the average time for each registration.

As we can see from the graph, Xen-IB adds consistently
around 25%-35% overhead to the registration cost. The
overhead increases with the number of pages involved in
registration. This is because Xen-IB needs to use inter-
domain communication to send a message which contains

100

XenlB ——
Native -

Latency (us)

| 1‘6‘ é4 | 2"56‘ 1‘k | 4‘k ‘1(‘5k
Message Size (Bytes)

Figure 14. Send/Receive Latency Using

Blocking VERBS Functions

600 Xen-1B ——
gen2-native —x—

500

400

300

200

Registration Time (us)

¥4 x

100

400 600 800 1000
Number of pages

0 200

Figure 15. Memory Registration Time

1600
1400
1200 |
1000 P
800 /
600 |
400 |
200 |

0

" XenlB'Native ——
Native - PRV

Throughput (Mbits/sec)

16 64 256 1k 4k 16k 64k
Message Size (Bytes)

1 4

Figure 16. IPoIB Netperf Throughput

11

machine addresses of all the pages. The more pages we
register, the bigger the size of message we need to send to
the device domain through the inter-domain device channel.
This observation indicates that if the registration is a time
critical operation of an application, we need to use tech-
niques such as an efficient implementation of registration
cache [39] to reduce costs.

6.5 IPolIB Performance

[PoIB allows one to run TCP/IP protocol suites over In-
finiBand. In this subsection, we compared IPoIB perfor-
mance between Xen-IB and native InfiniBand using Net-
perf [2]. In all the Netperf tests, we used a guest domain
with IB-Xen as the server. The client was running with na-
tive InfiniBand.

Figure 16 shows the results for TCP throughput tests in
Netperf. Due to increased cost of interrupt/event process-
ing, Xen-IB does not perform as well as native InfiniBand.
However, it is able to reach more than 90% the throughput
achieved by native InfiniBand for large messages.

We notice that IPoIB achieved much less bandwidth
compared with raw InfiniBand. This is because of two rea-
sons. First, [PoIB uses InfiniBand unreliable datagram ser-
vice, which has significantly lower bandwidth than the more
frequently used reliable connection service due to the cur-
rent implementation of Mellanox HCAs. Second, in IPoIB,
due to the limit of MTU, large messages are divided into
small packets, which can cause a large number of interrupts
and degrade performance.

Figure 17 shows the results of Netperf transaction test.
Again, Xen-IB performs worse than native InfiniBand, es-
pecially for small messages where interrupt/event cost plays
a dominant role for performance. Xen-IB performs more
comparable to native InfiniBand for large messages.

20000

-7 77777 XenlB-Native ——
Native -~

15000 -

10000 r

Transactions/sec

5000

16 64 256 1k 4k 16k 64k
Message Size (Bytes)

Figure 17. Netperf Transaction Test

6.6 MPI Performance

MPI is a communication protocol used in high perfor-
mance computing. For tests in this subsection, we have

12

Latency (us)

Figure 18. MPI Latency

used MVAPICH [27, 21], which is a popular MPI imple-
mentation over InfiniBand.

Figures 18 and 19 compare Xen-IB and native Infini-
Band in terms of MPI one-way latency and bandwidth. The
tests were run between two physical machines in the cluster.
Since MVAPICH uses polling for all underlying InfiniBand
communication, Xen-IB was able achieve the same perfor-
mance as native InfiniBand by using VMM-bypass. The
smallest latency achieved by MPI with Xen-IB was 5.4 us.
The peak bandwidth was 870 MBytes/s.

900
@ 800 f
12
3 700 |
&
Qoo |
S
= 500
s
T 400 |
>
£ 300 |
2
3 200
_C
F 100 |
0 *x
1 4 16 64 256 1k 4k 16k 64K256k 1M

Message Size (Bytes)
Figure 19. MPI Bandwidth

Figure 20 shows performance of IS, FT, SP and BT ap-
plications from the NAS Parallel Benchmarks suite [26]
(class A), which is frequently used by researchers in the
area of high performance computing. We show normalized
execution time based on native InfiniBand. In these tests,
two physical nodes were used with two guest domains per
node for Xen-IB. For native InfiniBand, two MPI processes
were launched for each node. We can see that Xen-IB per-
forms comparably with native InfiniBand, even for commu-
nication intensive applications such as IS. IB-Xen performs
about 4% worse for FT and around 2-3% better for SP and
BT. We believe the difference is due to the fact that MVA-
PICH uses shared memory communication for processes in
a single node. Although MVAPICH with Xen-IB currently

1.4

1.2 74‘ HDomU

O Native }7

0.8
0.6
0.4 -
0.2

Normalized Execution Time

IS FT CG SP

Figure 20. MPI NAS Benchmarks

does not have this feature, it can be easily added by taking
advantage of the page sharing mechanism provided by Xen.

7 Related Work

In Section 2.1, we have discussed current I/O device vir-
tualization approaches such as those in VMware Worksta-
tion [37], VMware ESX Server [44], and Xen [12]. All of
them require the involvement of the VMM or a privileged
VM to handle every I/O operation. In our VMM-bypass ap-
proach, many time-critical I/O operations can be executed
directly by guest VMs. Since this method makes use of
intelligence in modern high speed network interfaces, it is
limited to a relatively small range of devices which are used
mostly in high-end systems. The traditional approaches can
be applied to a much wider ranges of devices.

OS-bypass is a feature found in user-level communica-
tion protocols such as active messages [43], U-Net [42],
FM [29], VMMC [5], and Arsenic [33]. Later, it was
adopted by the industry [11, 19] and found its way into com-
mercial products [25, 34]. Our work extends the idea of
OS-bypass to VM environments. With VMM-bypass, I/O
and communication operations can be initiated directly by
user space applications, bypassing the guest OS, the VMM,
and the device driver VM. VMM-bypass also allows an OS
in a guest VM to carry out many I/O operations directly, al-
though virtualizing interrupts still needs the involvement of
the VMM.

The idea of direct device access from a VM has been
proposed earlier. For example, [6] describes a method to
implement direct I/O access from a VM for IBM main-
frames. However, it requires an I/O device to be dedicated
to a specific VM. The VMM-bypass approach not only en-
ables direct device access, but allows for safe device shar-
ing among many different VMs. Recently, the industry has
started working on standardization of I/O virtualization by
extending the PCI Express standard [30] to allow a physi-
cal device to present itself as multiple virtual devices to the

13

system [31]. This approach can potentially allow a VM to
directly interact with a virtual device. However, it requires
building new hardware support into PCI devices while our
VMM-bypass approach is based on existing hardware. At
about the same time when we were working on our virtu-
alization support for InfiniBand in Xen, others in the In-
finiBand community proposed similar ideas [41, 38]. How-
ever, details regarding their implementations are currently
not available.

Our InfiniBand virtualization support for Xen uses a
paravirtualization approach. As a technique to improve
VM performance by introducing small changes in guest
OSes, paravirtualization has been used in many VM en-
vironments [7, 16, 46, 10]. Essentially, paravirtualization
presents a different abstraction to the guest OSes than native
hardware, which lends itself to easier and faster virtualiza-
tion. The same idea can be applied to the virtualization of
both CPU and I/O devices. Paravirtualization usually trades
compatibility for enhanced performance. However, our In-
finiBand virtualization support achieves both high perfor-
mance and good compatibility by maintaining the same in-
terface as native InfiniBand drivers at a higher level than
hardware. As a result, our implementation is able to sup-
port existing kernel drivers and user applications. Virtu-
alization at higher levels than native hardware is used in a
number of other systems. For example, novel operating sys-
tems such as Mach [15], K42 [3], and L4 [18] use OS level
API or ABI emulation to support traditional OSes such as
Unix and Linux. Several popular VM projects also used this
approach [20, 9].

8 Conclusions and Future Work

In this paper, we presented the idea of VMM-bypass,
which allows time-critical I/O commands to be processed
directly in guest VMs without involvement of a VMM or a
privileged VM. VMM-bypass can significantly improve I/O
performance in VMs by eliminating context switching over-
head between a VM and the VMM or two different VMs
caused by current I/O virtualization approaches. To demon-
strate the idea of VMM-bypass, we described the design and
implementation of Xen-IB, an VMM-bypass capable Infini-
Band driver for the Xen VM environment. Xen-IB runs with
current InfiniBand hardware and does not require modifica-
tion to applications or kernel drivers which use InfiniBand.
Our performance evaluations showed that Xen-IB can pro-
vide performance close to native hardware under most cir-
cumstances, with expected degradation on event/interrupt
handling and memory registration.

Currently, we are working on providing check-pointing
and migration support for our Xen-IB prototype. We are
also investigating how to provide performance isolation by
implementing QoS support in Xen-IB. In future, we plan

to study the possibility to introduce VMs into high perfor-
mance computing area. We will explore how to take advan-
tages of Xen to provide better support of check-pointing,
QoS and cluster management with minimum loss of com-
puting power.

Acknowledgments

We would like to thank Charles Schulz, Dan Poff, Mo-
hammad Banikazemi, and Scott Guthridge of IBM Re-
search for valuable discussions and their support.

References

[1]

[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

(11]

[12]

[13]

[14]

[15]

[16]

IP over InfiniBand Working Group.
html.charters/ipoib-charter.html.

http://www.ietf.org/-

Netperf. http://www.netperf.org.

Jonathan Appavoo, Marc Auslander, Maria Burtico, Dilma Da Silva,
Orran Krieger, Mark Mergen, Michal Ostrowski, Bryan Rosen-
burg, Robert W. Wisniewski, and Jimi Xenidis. K42: an Open-
Source Linux-Compatible Scalable Operating System Kernel. IBM
Sysmtems Journal, 44(2):427-440, 2005.

R. A. F. Bhoedjang, T. Ruhl, and H. E. Bal. User-Level Network
Interface Protocols. IEEE Computer, pages 53—60, November 1998.

M. Blumrich, C. Dubnicki, E. W. Felten, K. Li, and M. R. Mesarina.
Virtual-Memory-Mapped Network Interfaces. In IEEE Micro, pages
21-28, Feb. 1995.

T. L. Borden, J. P. Hennessy, and J. W. Rymarczyk. Multiple Op-
erating Systems on One Processor Complex. IBM System Journal,
28(1):104-123, 1989.

Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel Rosen-
blum. Disco: Running commodity operating systems on scal-
able multiprocessors. ACM Transactions on Computer Systems,
15(4):412-447, 1997.

P. M. Chen and B. D. Noble. When virtual is better than real. Hot
Topics in Operating Systems, pages 133—138, 2001.

Dan Aloni. Cooperative Linux. http://www.colinux.org.

B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and the Art of
Virtualization. In Proceedings of the ACM Symposium on Operating
Systems Principles, pages 164—177, October 2003.

D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert,
F. Berry, A.M. Merritt, E. Gronke, and C. Dodd. The Virtual In-
terface Architecture. /EEE Micro, pages 66—76, March/April 1998.

K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield and
M. Williamson. Safe hardware access with the xen virtual machine
monitor. In Proceedings of OASIS ASPLOS Workshop, 2004.

K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M.
Williamson. Reconstructing 1/0. Technical Report UCAM-CL-TR-
596, University of Cambridge, UK, August 2004.

R. P. Goldberg. Survey of Virtual Machine Research. Computer,
pages 34-45, June 1974.

David B. Golub, Randall W. Dean, Alessandro Forin, and Richard F.
Rashid. UNIX as an application program. In USENIX Summer, pages
87-95, 1990.

Kingshuk Govil, Dan Teodosiu, Yongqiang Huang, and Mendel
Rosenblum. Cellular disco: resource management using virtual clus-
ters on shared-memory multiprocessors. ACM Transactions on Com-
puter Systems, 18(3):229-262, 2000.

14

[17]

[18]

[19]

[20]
[21]

[22]
[23]
[24]

[25]
[26]

[27]

(28]
[29]

[30]
[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]

[39]

[40]
[41]

Steven M. Hand. Self-paging in the nemesis operating system. In
Operating Systems Design and Implementation, USENIX, pages 73—
86, 1999.

H. Hartig, M. Hohmuth, J. Liedtke, and S. Schonberg. The perfor-
mance of micro-kernel-based systems. In Proceedings of the ACM
Symposium on Operating Systems Principles, pages 6677, Decem-
ber 1997.

InfiniBand Trade Association. InfiniBand Architecture Specification,
Release 1.2.

Jeff Dike. User Mode Linux. http://user-mode-linux.sourceforge.net.

Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Pete Wyckoff, and
Dhabaleswar K. Panda. High Performance RDMA-Based MPI Im-
plementation over InfiniBand. In Proceedings of 17th Annual ACM
International Conference on Supercomputing (ICS ’03), June 2003.

Mellanox Technologies. http://www.mellanox.com.
Mellanox Technologies. Mellanox IB-Verbs API (VAPI), Rev. 1.00.

Mellanox Technologies. Mellanox InfiniBand InfiniHost MT23108
Adapters. http://www.mellanox.com, July 2002.

Myricom, Inc. Myrinet. http://www.myri.com.

NASA. NAS Parallel
http://www.nas.nasa.gov/Software/NPB/.

Network-Based Computing Laboratory. MVAPICH: MPI for Infini-
Band on VAPI Layer. http://nowlab.cis.ohio-state.edu/projects/mpi-
iba/index.html.

Benchmarks.

Open InfiniBand Alliance. http://www.openib.org.

S. Pakin, M. Lauria, and A. Chien. High Performance Messaging on
Workstations: Illinois Fast Messages (FM). In Proceedings of the
Supercomputing, 1995.

PCI-SIG. PCI Express Architecture. http://www.pcisig.com.

PCI-SIG. PCI 1/0 Virtualization.
http://www.pcisig.com/news_room/news/press_releases/2005_-06_06.

I. Pratt. Xen Virtualization. Linux World 2005 Virtualization BOF
Presentation.

Ian Pratt and Keir Fraser. Arsenic: A User-Accessible Gigabit Eth-
ernet Interface. In INFOCOM, pages 67-76, 2001.

Quadrics, Ltd. QsNet. http://www.quadrics.com.

M. Rosenblum and T. Garfinkel. Virtual Machine Monitors: Current
Technology and Future Trends. IEEE Computer, pages 39-47, May
2005.

Marc Snir, Steve Otto, Steve Huss-Lederman, David Walker, and
Jack Dongarra. MPI-The Complete Reference. Volume I - The MPI-1
Core, 2nd edition. The MIT Press, 1998.

J. Sugerman, G. Venkitachalam, and B. H. Lim. Virtualizing I/O
Devices on VMware Workstation’s Hosted Virtual Machine Monitor.
In Proceedings of USENIX, 2001.

Mellanox Technologies. I/O Virtualization with Infini-
Band. http://www.xensource.com/company/xensummit.html-
/Xen_Virtualization_InfiniBand _Mellanox -MKagan.pdf.

H. Tezuka, F. O’Carroll, A. Hori, and Y. Ishikawa. Pin-down cache:
A virtual memory management technique for zero-copy communi-
cation. In Proceedings of the 12th International Parallel Processing
Symposium, 1998.

University of Cambridge. Xen Interface Manual.

Voltaire. Fast I/0O for Xen using RDMA Technolo-
gies. http://www.xensource.com/company/xensummit.html-
/Xen_RDMA _Voltaire_YHaviv.pdf.

[42]

[43]

[44]

[45]

[46]

T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A User-
level Network Interface for Parallel and Distributed Computing. In
ACM Symposium on Operating Systems Principles, 1995.

T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser.
Active Messages: A Mechanism for Integrated Communication and
Computation. In International Symposium on Computer Architec-
ture, pages 256-266, 1992.

C. Waldspurger. Memory resource management in vmware esx
server. In Proceedings of the Fifth Symposium on Operating Systems
Design and Implementation, 2002.

A. Whitaker, M. Shaw, and S. D. Gribble. Denali: Lightweight Vir-
tual Machines for Distributed and Networked Applications. Techni-
cal report, University of Washington, February 2002.

A. Whitaker, M. Shaw, and S. D. Gribble. Scale and Performance in
the Denali Isolation Kernel. In Proceedings of 5th USENIX OSDI,
Boston, MA, Dec 2002.

15

