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Abstract
This paper explores the feasibility of and challenges in devel-
oping methods for black-box monitoring of the power usage
of a virtual machine (VM) at run-time, on shared virtualized
compute platforms, including those with complex memory hi-
erarchies. We demonstrate that VM-level power utilization can
be accurately estimated, or estimated with accuracy with bound
error margins. The use of bounds permits more lightweight on-
line monitoring of fewer events, while relaxing the fidelity of
the estimates in a controlled manner. Our methodology is eval-
uated on the Intel Core i7 and Core2 x86-64 platforms, running
synthetic and SPEC benchmarks.

1. Introduction
The continuing, unsustainable increases in datacenter power

consumption are causing researchers in academia and in in-
dustry to be heavily invested in addressing the issue [7, 1, 15,
13, 6]. Efforts to develop power-aware datacenter management
techniques range from multi-scale methods for managing IT
system power usage [10], to power capping to deal with in-
creased server densities [4, 5, 12], to integrating into the man-
agement processes information regarding the datacenter cool-
ing infrastructure, the latter aimed at improving facility-level
metrics like Power Usage Effectiveness (PUE) [14, 13, 6].
A common element of power-aware management is its ex-

ploitation of virtualization technology for server consolidation
and for dynamic load distribution and/or load balancing (i.e.,
VM migrations). This is true in private virtualized datacen-
ters as well as in emerging cloud computing systems. The in-
creased freedom virtualization presents to mapping IT loads to
machines, however, also implies the need for efficiency in the
management actions being taken, to achieve, for instance, some
desired power state using a limited number of reconfigurations
and VM migrations [9]. Consider, for example, the data pre-
sented in Table 1, which shows the power utilization for 3 VMs.
When load migration is needed, a random decision may result
in the migration of VM1, which may be insufficient for meeting
some lower target power cap. The quality of the decision being
made may be improved by estimating the power consumption
of a VM via its current average CPU utilization, as shown use-
ful in [7], but unfortunately, such estimates can be imprecise.
This is because CPU utilization includes the time spent waiting
for memory and thus, does not accurately reflect actual CPU

Table 1: Dynamic power for VMs on core2 platform.
CPU Utilization Power(W)

vm1 50% 6
vm2 100% 12
vm3 100% 42

usage and thus, CPU power consumption. For instance, VM2
and VM3 in Table 1 both show 100% CPU utilization, but VM3
is memory bound while VM2 is only CPU bound. As a result,
despite having the same CPU utilization, the power contribu-
tions of the two VMs are quite different.
The data in Table 1 illustrates limitations in using overly sim-

plistic models of per-VM power usage. Having such per-VM
information, however, can be of substantial value: (1) power-
aware management methods benefit in terms of minimizing the
number of VM migrations or other reconfiguration actions re-
quired to achieve some given power state; (2) datacenter admin-
istrators can use it to develop customer-facing billing or charge-
back policies; and (3) environmentally-responsible consumers
of datacenter and cloud resources can employ it to minimize
their workloads’ carbon footprints. Also evident from the data
in Table 1 should be that it is not trivial to accurately capture
per-VM power usage in modern datacenter systems. This is be-
cause today’s datacenters and emerging compute clouds host a
broad range of workloads with diverse resource utilization re-
quirements, which furthermore, often exhibit significant levels
of dynamism. In addition, VM-level information regarding the
applications it executes and their behavior is typically not avail-
able to the operators who are responsible for managing the dat-
acenter/cloud infrastructure. “No one will tell us what their ap-
plications are doing” is a common message we have heard from
the many datacenter operators with whom we have interacted.
What is needed, therefore, are black-box techniques for cap-
turing the power usage of a VM, using existing platform-level
monitoring methods and offering degrees of accuracy similar
to what past work has shown possible for statically developed
VM energy profiles in [7].
The goal of our research is to understand the feasibility of

and challenges in developing methods for black-box monitor-
ing of the power usage of a VM at run-time, on the shared
and virtualized compute platforms used in modern datacenter
and cloud computing infrastructures. To carry out this task and
similar to other ongoing work on VM power metering [1], we
construct power models by correlating a VM’s usage of spe-
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cific types of resources to system power consumption, so as to
later use these models to continually estimate the power con-
sumed by each VM. Unlike prior work, however, we also aim
to understand the challenges due to the complex memory hier-
archies present on current and next-generation hardware. This
is particularly important as memory is becoming a significant
component of the system memory usage on new hardware plat-
forms [2]. Finally, our goal is to understand the feasibility of
creating lightweight power metering mechanisms that do not
require full system instrumentation and monitoring, so that they
can be used efficiently with online management methods.
The resulting technical contributions of this paper are as fol-

lows. Using a broad range of workloads exhibiting different
CPU and memory usage patterns, derived from a synthetic bench-
mark and from the SPEC benchmark suite, we demonstrate the
ability to accurately estimate an individual VM’s contributions
to platform power consumption. The data gathered during our
model construction and experimental analysis indicates that es-
timation is achievable by considering both the VM’s CPU and
memory resource utilization. Furthermore, the accuracy of the
estimates is strongly dependent on additional insights into the
VM’s usage of the memory system, such as their utilization
of different levels of the cache hierarchy or attained memory-
level parallelism. In the absence of such additional informa-
tion (due to increasing overheads of finer-grain monitoring of
low-level hardware counters or need for additional application
instrumentation), we demonstrate that it is still feasible to es-
tablish bounds on a VM’s power usage. This is in contrast
to observations made in [7] which claim that dynamic estima-
tions are not feasible. We hypothesize that this is mainly due
to the fact that they ignore memory hierarchy contributions to
power usage. In addition, we experimentally demonstrate that
using black box methods, it is possible to estimate the per VM
power usage, contrary to arguments made in [7, 8]. Finally, we
demonstrate that the model construction and the run-time mea-
surements gathered for online estimation must be performed
with consideration of detailed architectural features, including
the design of the platform’s cache architecture.

2. Power Metering Methodology
The basic idea behind the VM power metering approach ex-

plored in our research is (1) to first establish a power model
for the various system resources present on a given platform.
We do this by correlating the utilization level of the specific
resource to the overall system power, when other types of re-
sources are maintained at extremely low utilization levels. Next,
(2) at run-time, using lightweight monitoring tools, we mea-
sure the per-VM utilization of various resources. Our current
implementation targets platforms virtualized with the Xen hy-
pervisor, and relies on available hardware performance coun-
ters for online profiling. Finally, (3) the VM’s power usage is
estimated based on the power levels corresponding to the ap-
propriate resource utilization, as derived in the resource power
models, and few additional factors, such as number of active
cores or sockets, to include the often significant transition costs
from activating a system component.
The total system power consumed by the server can be writ-

ten as follows.
Pserver = Pidle + Pcpu + Pmem + Pio

We measure the idle power by keeping all cores and the mem-

ory subsystem idle. Disk has been modeled successfully in pre-
vious work [7, 1] and hence we do not focus on it in this paper.
In addition, for the target hardware and using benchmarks such
as iperf, we determine that the contribution of network I/O uti-
lization to the total system power is very low. Therefore, we
focus on the CPU and memory subsystems and show estima-
tions for benchmarks which are cpu-bound, memory-bound or
combinations of those.
Since our goal is to explore the feasibility of lightweight

VM power metering methods, we limit the amount of infor-
mation we monitor to only few type of events. Specifically, we
use hardware counter values for instructions retired per second
(inst ret/s) and last-level cache misses per second (llc miss/s).
As a result, a single type of event may represent more than
one resource utilization state. For instance, the same value
for inst ret/s may correspond to certain CPU utilization and its
accompanying power level, or, in the event of a cache-bound
workload, it may represent cache plus different CPU utilization
value, resulting in different power usage. Similarly, the same
llc miss/s value may correspond to different levels of memory
utilization depending on memory-level parallelism and mem-
ory overlap which exists on a cache miss.
In order to avoid the development of fine-grain models for

every single platform element, and the subsequent need for run-
time monitoring of all of the corresponding hardware events,
we explore the possibility of establishing bounded models. The
goal is to limit the required monitoring state and run-time over-
heads, while at the same time understanding the level of esti-
mation accuracy.
2.1 Modeling
We next apply the methodology described in the previous

section to establish the CPU and memory power models for
two different platforms, a dual-socket quad-core Nehalem Core
i7-based system, and a quad-core Core2-based system, termed
Corei7 and Core2 in the remainder of this paper, respectively.
The Corei7 has 12GB RAM and 8MB last-level (L3) cache.
The Core2 has a 6MB last-level (L2) cache.
2.1.1 CPU Model
The goal of the CPU model is to accurately model the power

consumed by the CPU subsystem. This includes the proces-
sor power and the cache power. As explained previously, we
monitor the instructions retired per second (inst ret/s) to under-
stand the CPU usage of a VM. We build the model by correlat-
ing inst ret/s and the dynamic server power. The mapping from
instructions retired per second to CPU power is complicated
by the fact that memory references that hit in different levels
of the cache hierarchy consume different amounts of power.
Therefore, an observation of x instructions retired per second
will consume much less power if each of those instructions ex-
ecutes on the CPU or hits in L1 as compared to the case where
each of the references hits only in the last level cache (LLC).
This is shown in Figure 1. In [7] the authors also present exper-
imental evidence that variable power usage is observed for the
same processor utilization levels, without providing rationale
for these observations. We hypothesize that the variability they
observe is due to the same cache-related argument as above.
In order to limit the need for fine-grain monitoring of the uti-
lization for each level cache, we explore the utility of building
a CPU power model using the inst ret counter only. Our ap-
proach is to provide bounds on CPU power for any executing
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Figure 1: Cpu Model for L1 and LLC

workload by considering the extreme cases. To build the base-
line model, we build a custom benchmark, which allows us to
vary the CPU utilization on a core and the level of memory
hierarchy being accessed (cache or memory). It achieves a de-
sired CPU utilization by performing strided access to an array
for x% of time and sleeping for the rest of the time in a given
time interval. By varying the size of the array, we can vary its
working set size and make it L1-bound vs. L2-bound and so
on, up to the system’s last level cache (LLC). We use oprofile
to read the hardware counter values and obtain the inst ret/s.
Figure 1 shows the results of the benchmark execution with

an L1- vs. LLC-bound (L3-bound) workload on the Corei7 plat-
form. As expected, the L1- and LLC-bound workload exhibit
linear relationship between inst ret/s and power, with the LLC
graph having greater slope due to the more power-hungry na-
ture of last level caches. We observe that 100% cpu utilization
for a LLC-bound process results in 22% fewer inst ret/s than
a 100% cpu utilization for L1 bound process. In addition, for
the same value of inst ret/s, we observe different power val-
ues. Therefore, using the single inst ret/s counter, we build
two models, one for the first level of cache and another for the
last level of cache. Any program would lie between these two
extremes, thus they represent the bounds for the CPU power
contribution of a VM with the given inst ret/s value. At run-
time, through use of lightweight heuristics, it may be possible
to further determine which bound the VM power is closer to.
We also observe that since the machine we are using has

deep low power states (up to C6) [16] the power it consumes
to wake up from deep sleep state to active state is significant.
The models shown above include that cost. We measure the
power consumed by a core at 100% L1 utilization to be 51W
but 41W of this is attributed to the wakeup cost of the pack-
age. If we activate another core on the same socket and run
it at 100% CPU utilization with all accesses hitting L1 cache,
the power increases by 11W. Instead, if we activate a core on
another socket, the resulting increment is 11+2W. The same
applies to LLC model also. This information is used to make
the aforementioned adjustments to the VM power estimation
process.

2.1.2 Memory Model
The goal of the baseline memory model is to accurately model

the power consumed by the memory subsystem. As with the
CPU model, we limit the amount of monitoring information
used. We look only at the last level cache misses per second
(llc misses/s) to understand the memory usage of a VM, and
build the memory power model by correlating llc misses/s and
the dynamic server power.
Similarly to the CPU case, the use of this one event only does

Figure 2: Memory Model for MAXMLP and NO MLP.
not accurately represent the exact memory usage of a work-
load. The memory subsystem, consisting of the front-side bus
(FSB) in some architectures, the memory controllers and the
DRAM modules, typically supports a fixed maximum number
of outstanding memory accesses at any given time. Therefore,
depending on the nature of the application, this value may be
reached in practice. But the memory access pattern in some
applications may be such that a memory access depends on the
value returned by the previous memory access in which case
the parallelism offered by the memory subsystem cannot be
exploited. While this is rare, we observe this pattern in the
471.omnetpp SPEC benchmark which uses the OMNet++ dis-
crete event simulator to model a large Ethernet campus net-
work. This complicates the mapping from the rate of LLC
misses to memory power as shown in Figure 2. For example, at
2.3∗10

9 LLCmisses/sec the memory power can be either 45W
or 15W for the cases of no parallelism vs. maximum memory-
level parallelism (MLP) respectively. Therefore, we provide
bounds on the memory power for a workload by considering
the two extreme cases. We use the same custom benchmark as
for the CPUmodel, but allocate a large memory array and make
strided access beyond the cache-line boundary to ensure that
every access misses the LLC.We also turn hardware prefetch-
ing off.
Figure 2 shows the two models for the memory baseline for

the Corei7 platform – one for maximum MLP and another for
no MLP. For any real program, the MLP would lie between
these extremes and thus we can use these two models to esti-
mate bounds for the power consumption. We observe that both
models exhibit linear behavior, with drastically different slopes,
since for a given llc miss/s value, the Max MLP model results
in higher memory utilization compared to the No MLP model.
To address this, we can rely on the use of a staging server [7,
11] to run the VM standalone and learn which bound is it closer
to. Techniques such as those described in [3] can also be used
to determine the MLP of a given workload and to further nar-
row down the bounds. As in the case of the cpu model, the
above graph includes the cost for waking up the package.
For brevity, we do not include in the paper the CPU and

memory models for the Core2 platform.

2.1.3 Validation
Next, we validate the models by conducting a set of simple

experiments. We refer to a core running a CPU-bound work-
load with 100% cpu utilization – 1cpu, and a memory-bound
workload with 100% memory utilization – 1mem.In the first
experiment, we increase the number of cores at 1cpu from 1 to
8. The goal of this experiment is to show that CPU power is
additive as we keep increasing the number of workloads. Note
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Figure 3: NCPU + 1MEM for Core i7.

Figure 4: NCPU + 1MEM for Core2.
that we measure the performance of the workloads, and deter-
mine that there is no change in their execution time and perfor-
mance. We run the second experiment on two cores one with
1cpu and another with 1mem load. Then, we keep increasing
the number of cores at 1cpu from 1 to 7 in addition to the core
running the memory-bound 1mem VM. The goal of this exper-
iment is to show that the CPU and memory power is additive as
we keep increasing the workload.
Figure 3 shows the ncpu + 1mem data for the Corei7 plat-

form. We observe that 1cpu + 1mem gives a power value which
is equal to the addition of running them individually. Simi-
larly, each additional core running 1cpu increases the power by
11W (except when we activate the other socket as previously
explained).
We repeat the validation for the Core2 platform, using the

corresponding CPU and memory models. The first experiment
shows the expected results with each additional core running
1cpu increasing the total power by 9w. The second exper-
iment however yields unexpected results.We observe that the
ncpu + 1mem power does not equal the addition of dynamic
power values of running them individually, in spite of the fact
that the benchmarks’ execution times and performance remain
unchanged. Furthermore, with each additional core running
1cpu, the increase in total power is reduced, which leaves an
impression of diminished contribution of the memory VM (see
Figure 4).
To understand the cause of this behavior, we consider the

architectural differences between the two platforms, particu-
larly with respect to the cache design. The Core2 has exclu-
sive caches, where running a single memory intensive bench-
mark causes large amounts of snooping in the L1 caches of the
other cores. This means that the L1 caches of cores that do not
run any load are still ‘turned on’ when another core is running
a memory-intensive benchmark, which consumes a surprising
amount of power. This makes an accurate estimation of the
power consumption of the individual VMs difficult. In contrast,
the Corei7 has an inclusive cache.
To further verify that the design of system caches has impli-

cations on the system power, we measure the snooping traffic
for Core2. We use the EXT SNOOP hardware counter, which
measures the responses to external snoop requests (at the LLC
level). Every LLC miss is snooped by the other cores and a re-
sponse is sent to the requesting core. Figure 5 shows the values
for EXT SNOOP when we run first 1mem, then 1cpu on a sin-

Figure 5: Snoop traffic for 1mem and 1cpu.
gle socket quad-core Core2 platform with two 3MB L2 caches,
each shared by two cores. As we can see, the snoop traffic gen-
erated by the 1mem is substantial. This traffic represents the
snoop responses sent by core2 and core3 (which share a LLC)
to the LLC misses in the other cache. This means that due to
the high number of snoops in the exclusive caches of core2 and
core3, those cores are not idling even when the memory in-
tensive process is running on core1. This leads to a problem,
since the memory power baseline includes this additional cost.
Therefore, when another process is run on core2 or core3, the
expected increase in power does not occur because the caches
are already on and performing lookups due to snooping.

3. Evaluation
Experimental Testbed. We run our experiments on the Corei7
architecture described in the previous section. We measure
the power by directing the power supply through a WattsUp
power meter. We then used the provided Linux utilities to get
the power dump. VM Profiling was done using oprofile v0.9.3
which includes support for passive profiling of VMs. We use
the SPEC2006 benchmarks for evaluating the baseline models
described in the previous section. For each benchmark we es-
timate four power values based on: the L1 cpu baseline model
(PL1), the LLC cpu baseline model (PLLC), the MLP mem-
ory baseline model (PMLP), and the NO MLP memory base-
line model (PNO MLP). Then we compute the following four
bounds.

B1 = PL1 + PMLP B2 = PLLC + PMLP
B3 = PL1 + PNO MLP B4 = PLLC + PNO MLP
We observe that most benchmarks are close to one of these

bounds. The following subsections discuss the results for vari-
ous SPEC2006 benchmarks.
CPU-bound benchmarks. 401.bzip2, 444.namd, and 464.h264-
ref are CPU intensive benchmarks with high L1 hit rate. The
measured power is expected to be close to the estimated B1 (PL1
+ PMLP) or B3 (PL1 + PNO MLP) bounds. Figure 6 shows
that using the L1 model the VM power can be estimated within
6% of measured value. 445.gobmk, 458.sjeng, and 453.povray
are CPU intensive benchmarks which hit in LLC. The mea-
sured power is expected to be close to the estimated B2 (PLLC
+ PMLP) or B4 (PLLC + PNO MLP) bounds. Figure 6 shows
that the LLC estimations are within 10% of the measured power
whereas the L1 model results in 20% underestimated values for
these benchmarks. The memory power contribution for these
VMs is insignificant.
Memory-bound benchmarks. 462.libquantum, 433.milc, and
470.lbm are memory bound benchmarks with high MLP. The
measured power is expected to be close to the estimated B1 (PL1
+ PMLP) or B2 (PLLC + PMLP) bounds. Figure 7 shows that
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Figure 6: Estimations for CPU bound SPEC2006 bench-
marks.

Figure 7: Estimations for SPEC2006 benchmarks with
MLP.
we can estimate the VM Power within 7% of measured value.
471.omnetpp is a memory bound benchmark which shows

no MLP. The measured power is expected to be close to the
estimated B3 (PL1 + PNO MLP) or B4 (PLLC + PNO MLP)
bounds. The NO MLP estimations are within 1% of the mea-
sured power whereas the max MLP model results in 38% un-
derestimated values for this benchmark.
Multiple VMs. Next, we run combinations of CPU inten-
sive and memory intensive benchmarks and estimate the power.
Figure 8 shows the measured vs. estimated power for several
workload mixes. EXPT1 consists of 444.namd + 470.lbm, EXPT2
of 453.povray + 471.omnetpp, and EXPT3 includes 4 VMs run-
ning 453.povray + 444.namd + 464.h264ref + 470.lbm. We find
that we are able to estimate the power contribution of each VM
within 5% accuracy in each of the described experiments.
Monitoring Overheads. Finally, we also compare the over-
head imposed by the continuous access to the inst ret/s and
llc miss/s hardware counters, necessary to perform online pro-
filing. We establish that the use of online monitoring results in
only slight degradation (up to 3%).

4. Conclusion
The measurements presented in this paper demonstrate that

our power metering methodology can result in accurate esti-
mates, or in estimates with bound fidelity, if no additional in-
formation is available regarding the VMs’ utilization of differ-
ent levels of cache hierarchy or attained MLP. This shows that
black-box power metering is feasible and its accuracy can be
established. In addition, our approach can be supplemented
with techniques which use heuristics to classify a workload, or
which dynamically ‘zoom in’ and turn on fine grain event mon-
itoring, when interesting trends are detected or when the fidelity

Figure 8: Estimations for mixed experiments.
of the estimation drops below target accuracy levels. Our future
work will continue to explore the trade-offs associated with dy-
namic power-metering methods for virtualized platforms.
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