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ABSTRACT 
The focus of this paper is on dynamic power management in 
virtualized multi-core server systems. The paper starts by 
analyzing the effect of virtualization and CPU consolidation on 
power dissipation and performance (latency) of such systems, and 
concludes by presenting two new CPU consolidation algorithms 
for multi-core servers. The paper also reports an extensive set of 
experimental results founded on a realistic multi-core server 
system setup and well-developed benchmarks, i.e., SPEC2K and 
SPECWeb2009 and obtained through hardware measurements.  

Categories and Subject Descriptors 
D.4.1 [Process Management]: Scheduling 

Keywords 
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1. INTRODUCTION 
Today’s servers consume large amounts of energy so there is a 
growing need for energy-aware resource management in multi-
core server systems. Virtualization has emerged as a promising 
solution for eliminating “computing waste” through physical 
resource sharing in data centers. In this study, we focus on the 
CPU (i.e., physical core), which is one of top energy consumers in 
a virtualized system. A common power saving technique for CPUs 
is Dynamic Voltage and Frequency Scaling (DVFS) [1-3]. 
However, the additional power savings possible through DVFS is 
becoming smaller and smaller in part due to lower supply voltage 
levels and a shared power and clock distribution network for the 
cores. In addition, it is not easy to apply existing DVFS techniques 
to cores in a virtualized multi-core server system. This is mainly 
because the existing DVFS techniques require information about 
running applications to make decisions about the voltage and clock 
frequency setting, but a virtual machine manager (hypervisor), 
which resides in a privileged domain, does not have information 
about applications running on the guest domains because of 
abstractions [4].  

Another energy saving technique is Dynamic Power Shutdown 
(DPS). In particular, some modern CPUs support Core-level Power 
Gating (CPG), which allows individual core to be put into very 
low power, but non-functional, state. Such CPUs have their own 
Power Control Unit (PCU), which performs DPS; however, we 
expect that more power savings are possible if there is software 
level assistance for DPS. This is because the PCU in current 

servers does not have enough information about the application 
running on the system. Hence, there is a pressing need to 
understand when and how the CPU consolidation works with 
respect to power savings without violating performance constraints.  

A common deployment model for high-end multi-core server 
systems is in data centers, which forms the computational and 
storage backbone of the digital information provided to end users 
via the Internet. As shown in Figure 1 , there is a large variance in 
workload intensity of commercial data centers [5]. To guarantee a 
required service level agreement (SLA) under the worst-case 
conditions, servers are typically designed to handle a peak 
workload condition even if the servers are under-utilized at times. 
There are very few hours that all servers in the data centers are 
running at their peak utilization levels. Motivated by this 
observation, many studies have suggested the use of virtual 
machine migration (VMM) for energy saving [3, 4, 6-8]. In theory, 
the VMM promises high energy saving, but it is difficult to apply 
the technique to servers in a data center because of the high 
overhead of the VMM, e.g., the large system boot time, network 
traffic caused by the need to transfer the running application and 
its local context to a new server, and so on. In general, the VMM 
does not aggressively address the server under-utilization because 
of its conservative nature (in order to avoid violating SLA.)  
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Figure 1  Typical server workload in Facebook data centers [5]  

After an investigation of the effect of consolidation on the power 
dissipation and performance (latency) in virtualized multi-core 
server systems, this paper presents a consolidation technique for 
assisting DPS. There are a number of studies that have investigated 
energy savings due to consolidation. In [9], the authors showed 
that consolidation across cores in a single four-core-per-processor, 
two-processor-per-server system offers very small energy savings. 
However, their server system did not support CPG, so the energy 
saving potential of core-level consolidation needs to be 
investigated.  In [10], Jacob et al. compared CPG and DVFS and 
showed that CPG can result in 30% energy saving compared to 
DVFS. However, the results were calculated from a combination 
of real measurements and estimated leakage power (the adopted 
leakage power model was quite simple.) In [5], the authors 
presented a technique called Core Count Management (some 
variant of the consolidation technique), and reported 35% energy 
saving. However, they reported both power and performance 
results based on simulations performed by using simple power and 
performance models. In our study, we show energy savings and 
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latency impacts of consolidation in a virtualized system based on 
realistic benchmarks and obtained through hardware. 

Contributions of our work are as follows: 1) we perform extensive 
experiments (using well-developed benchmark sets, SPEC2K and 
SPECWeb2009) under various conditions in terms of workload 
intensity, number of virtual CPUs (vCPUs), set of active CPUs (i.e., 
CPUs at an operational state), and so on. This information is useful 
for developing consolidation algorithms. 2) We rely on real data to 
evaluate the energy savings of consolidation, instead of using 
simulators. Virtualized systems are more complex because of 
abstraction, e.g. vCPU, so it is difficult for simulators to model the 
system very accurately. Hence, real measurement is essential for 
proving effectiveness of consolidation. 3) We introduce two 
consolidation algorithms and assess their efficacies on the 
SPECWeb benchmark suite. The results demonstrate that the 
proposed consolidation algorithms can result in improvement on 
energy efficiency under very realistic environments.  

The remainder of this paper is organized as follows. In section II 
we show analysis which shows how consolidation affects energy 
and performance. The experimental system setup is explained in 
section III. Following section IV shows experimental results. 
Finally, we summarize the results and give guidelines in section V. 

2. POWER AND LATENCY MODELS 
In this section we show how consolidation affects the average 
power dissipation and latency through mathematical analysis. As a 
result we can derive insight about how consolidation affects the 
power dissipation and latency of tasks. Our analytical predictions 
about the power/latency tradeoffs in a multi-core server system 
have been empirically shown to be valid for realistic cases. Note 
that consolidation is reasonable only when the system is under-
utilized, thus the model does not consider thermal issue, e.g. 
leakage power variation with respect to temperature. 

2.1 Average power dissipation 
In this section we show the relationship between consolidation and 
power dissipation. Assume we have a system that has ‘N’ CPUs 
with only ‘n’ of them being active (i.e., all workloads have been 
consolidated to run on ‘n’ active CPUs and that the remaining ‘N-n’ 
CPUs are turned off or put in a deep sleep state.) The average 
power dissipation of the ith CPU (Pi) is intrinsically related to the 
average CPU utilization (Ui) and can be modeled as follows [6]: 

 =  + ,									 > 0 
																= 0,																		ℎ		 

where		denotes		of	the		CPU, 0 ≤  ≤ 1. 
(1) 

Ui is a function of workload (ki), which can be defined as the 
number of tasks served by the ith CPU (2). ‘K’ tasks are sent to the 
system every second, and a CPU scheduler evenly distributes the 
tasks to the ‘n’ active CPUs, so each active CPU takes ‘K/n’ tasks 
per second. Ui is thus linearly proportional to the total system 
workload and inversely proportional to the number of active CPUs. 
However, this statement may not be valid when the workload is 
very high. As an example, consider a scenario whereby the 
utilization is ‘m’ for H=K/n memory-bound tasks per second sent 
to the target CPU. If more tasks (say 2*H) are sent to the target 
CPU per second, the cache miss rate on that CPU will increase 
(more precisely, the working sets of the 2*H tasks will not fit on 
the cache and hence every task will experience a higher cache miss 
rate.) This means that execution time of the tasks increases, and 
therefore, the CPU utilization will increase by more than a factor 
of two. Coefficient ‘c’ captures this non-linear effect: 

 =  + , where	 = / (2) 

Total power dissipation is the sum of average power dissipations of 
individual core (Pi.) Assuming all cores consume the same amount 
of power, we have: 

 = 



	=   + 




 

= / +  +  

(3) 

Figure 2 depicts the relationship between the number of active 
CPUs and total average power dissipation for different coefficients, 
‘c’ and ‘b’, under the same overall workload. Note that lower 
average power dissipation for the same workload means higher 
energy efficiency. If ‘c’ is equal to zero, the total power dissipation 
decreases monotonically as more CPUs become inactive, which 
implies that, in this case, consolidation always reduces power 
dissipation. However, for higher ‘c’, the total power dissipation 
reaches a minimum, and subsequently, goes up with fewer active 
CPUs. Hence, ‘c’ should be carefully considered when we 
determine the number of active CPUs to consolidate workload. In 
addition, higher ‘c decreases power saving (Figure 2 a.) The slope 
of the graph is related to ‘b’. Larger ‘b’ results in steeper slope to 
the right of the minimum power point and therefore, higher power 
saving. Note that ‘c’ is application-dependent whereas ‘b’ is a 
hardware-dependent parameter (with CPG, we expect bigger ‘b’.) 

 
Figure 2  Power dissipation vs. the number of active CPUs under 

the same overall workload (K tasks/s) 

2.2 Latency (delay) 
As shown in (4), our task latency model has two terms. The first 
term makes delay larger for higher CPU utilization [6]. This term 
dramatically increases delay when the system is almost fully 
utilized. For higher utilization, fewer power state transitions occur, 
which in turn tends to decrease delay because of lower power state 
switching overhead. The second term of (4) shows this effect. 

 =  = , − , =  
1 − 

+  −  

=  
1 −  + 

+  −  +  
where		denotes	the		 

(4) 

As shown in the power dissipation analysis, higher ‘c’ results in a 
decrease in potential power saving of consolidation. Figure 3 a. 
shows the relationship between ‘c’ value and delay: higher ‘c’ 
results in larger delay. Note that overall workload of results in 
Figure 3 is the same (K tasks/s.) This implies that consolidation 
may incur potentially high delay penalty if ‘c’ is big.   

Figure 3 b. depicts the effect of ‘g’. With a positive value of ‘g’, 
delay decreases as the numbers of active CPUs decreases. This 
suggests that it is possible to decrease both delay and power 
dissipation by consolidation if ‘g’ is large enough. However, as 
shown in Figure 3 b, delay increases rapidly when the number of 
active CPUs becomes very small (since then the CPUs are almost 
fully utilized), and delay penalty of consolidation becomes 
significant. Thus, one must carefully choose the number of active 
CPUs. Coefficient ‘g’ is also dependent on the application type. 
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Figure 3  Delay vs. the number of active CPUs under the same 
overall workload (K tasks/s) 

As seen from the above analysis, power saving and delay penalty 
effects of the consolidation depend on a few coefficients. Some of 
the coefficients are application-dependent, so there is a motivation 
to investigate the effectiveness of consolidation under different 
kinds of applications. 

3. EXPERIMENTAL SETUP 

3.1 Hardware Testbed 
Hardware specification of our system under test is as follows. We 
have two Intel Xeon E5620 processors; each has four cores, all of 
which are running at the same clock frequency. Each core has its 
own dedicated L1/L2 caches but shares an L3 cache with the other 
cores. Each processor supports seven core frequency levels, from 
1.6GHz to 2.4GHz. We cut the 12V CPU power lines and measure 
the amount of power supplied using a power analyzer. 

3.2 XEN – hypervisor-based virtualization product 
We chose XEN version 4.0.1 for constructing the virtualized 
system. XEN, which is an open source hypervisor-based 
virtualization product, provides APIs for managing virtual 
machines (VMs.) For this study, we run experiments under 
different configurations in terms of the number of vCPUs, clock 
frequencies, and the set of active CPUs. 

3.3 Service model and Quality of Service 
This paper targets a server/client service model where there are 
many clients, which send tasks to a server and the server responses 
when it completes the tasks. Turn-around time (from time when a 
task is sent from a client to the time when a service completion 
acknowledgement is received by the client) is considered as the 
delay of the task. For determining the quality of service (QoS), we 
use the 95th percentile delay (Figure 4 .) If the 95th percentile delay 
is less than the maximum allowed limit, we have met our QoS 
target. The limit itself is chosen as the 95th percentile delay of a 
fully-loaded base system (with no consolidation.) The term ‘Fully 
loaded’ means that the total CPU utilization is at 80% out of 100%. 
This is a reasonable value because servers are designed to produce 
high performance at around 80% utilization levels (performance 
level drops rapidly as the CPU utilization approaches 100 %.) 

3.4 Benchmarks – mcf, perl (SPEC2K), and SPECWeb 
As shown in Section II, the type of applications affects the 
effectiveness of consolidation. Hence, we do experiments for three 
common application types: CPU-bound, memory-bound, and I/O-
bound. For the CPU-bound and memory-bound applications we 
use perl and mcf benchmarks, respectively. A perl shows high 
Instruction per Cycle (IPC) and low Memory Access per Cycle 
(MPC), but mcf has opposite characteristics [3]. We develop the 
WorkloadGen benchmark to control workload level of perl/mcf 
and gather system performance. For I/O-bound application 
SPECWeb2009 benchmark is used. 

 
Figure 4  Delay cumulative distribution 

3.5 WorkloadGen benchmark 
We design and implement a benchmark program, WorkloadGen, to 
generate workload of desired characteristics and to measure 
performance of the system.  It generates tasks and reports 
throughput and average response time (latency.) Type of tasks and 
workload intensity (defined as the number of tasks generated per 
second) are controllable. 

 
Figure 5  Block diagram of the WorkloadGen 

The benchmark consists of three modules (WGManager, 
WGClient, and WGServer) as depicted in Figure 5 . WGClients 
request tasks to a WGServer and report performance statistics to a 
WGManager. WGServer’s main role is to create workload by 
executing tasks requested by WGClients. When the WGServer 
completes a task, it sends an ACK packet to the WGClient. Based 
on the data in the ACK, WGClients can gather statistics of 
performance. There are a number of WGClients, so it is necessary 
to control them and gather statistics from them, and this is done by 
a WGManager. The WorkloadGen reports statistical performance 
data: average response time (turn-around time) per task, average 
waiting time in the queue, and average execution time per task, 
which are needed for analyzing the overall system performance. 

4. RESULTS AND ALGORITHMS 
In this section, we report experimental results of perl, mcf, and 
SPECWeb. Our purpose is to compute the energy saving of the 
consolidation technique, so all results correspond to an under-
utilized server system, i.e., the CPU utilization is around 30% out 
of 100%. For perl and mcf, we investigate the delay and energy 
efficiency of different configurations (i.e., combinations of the 
number of vCPUs and active CPUs, and clock frequency) 

We quantify the energy efficiency of a system as ‘number of tasks 
served per unit of energy.’ For SPECWeb, we can specify the 
overall workload level, but instantaneous workload level changes 
dynamically. Hence, for SPECWeb, we verify the energy 
efficiency of the consolidation through dynamic management. We 
propose two very practical algorithms for dynamic management, 
and show up to 15% improvement in system’s energy efficiency. 

4.1 perl & mcf benchmark results 
The number of vCPUs is an important parameter in a virtualized 
system: it determines how many CPUs can be utilized by a virtual 
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domain at any time, so the performance of the domain is closely 
related to this parameter. At the same time, more vCPUs in a 
system cause higher power and performance overheads, so it will 
be detrimental if there are too many vCPUs. Figure 6 depicts the 
overhead caused by unnecessarily managing too many vCPUs. 
Utilization and delay of perl benchmark rapidly increase when the 
ratio of the number of vCPUs to the number of CPUs becomes 
greater or equal to three. The mcf benchmark shows the same trend. 
Note that workload level of all cases in Figure 6 is the same to 
each other. This means that the overhead of managing vCPUs 
causes this phenomenon.  This result implies consolidation needs 
to be accompanied by dynamic vCPU count management. We 
maintain the ratio of vCPUs to CPUs to be around two for all test 
cases presented in this study through dynamic vCPU count control. 

 
Figure 6  Delay and total utilization vs. the number of vCPUs per CPU    

(there are 4 active CPUs)  

For consolidation, the choice about which set of CPUs is active can 
have an effect on performance and energy efficiency. Under multi-
processor systems, several different CPU selection schemes are 
possible. In this study, we have only two processors, so we simply 
investigate two CPU selection schemes: 1) we select half of the 
required CPUs from one processor and other half from the other 
processor; and 2) we select all required CPUs from one processor, 
and only if more CPUs are needed than one processor can provide, 
we turn on the other processor and select the remaining CPUs from 
the other processor. We call these schemes as ‘symmetric’ and 
‘asymmetric’ selection scheme. 

Figure 7 shows the energy efficiency and delay of schemes. There 
is only small difference in energy efficiency and delay, but 
‘asymmetric’ selection scheme is a little bit better for the perl in 
terms of energy efficiency. On the other hand, there is no 
noticeable difference in energy efficiency and delay for the mcf. 
Hence, we choose ‘asymmetric’ scheme for this study. 

Figure 7  Energy efficiency & delay vs. CPU selection schemes 

Figure 8 shows how much energy efficiency can be improved by 
consolidation without sacrificing QoS. Moreover, it shows that 
energy efficiency can increase even more if consolidation is 
accompanied by DVFS. The experimental setup is as follows: there 
are two guest domains. The ‘perl’ case runs perl on both guest 
domains. ‘mcf’ case runs mcf on both guest domains. ‘mixed’ case 
runs both perl and mcf, i.e., one domain serves the perl while the 
other domain serves the mcf. 

Energy efficiency of perl is dependent on both the number of 
active CPUs and clock frequency (Figure 8 a), i.e., fewer CPUs 
with slower frequency increases the energy efficiency. Delay of 
perl is more dependent on the clock frequency than the number of 
active CPUs (Figure 8 b), which means that consolidation can be 
done without performance degradation.  

One observation is that the delay of the case with fewer active 
CPUs is sometimes even smaller than that of the case with larger 
number of CPUs. For example, 4CPU running at 2.2GHz shows 
smaller delay than 8CPU at the same frequency. In our model, 
coefficient ‘g’ in (4) represents this effect, i.e., a consolidated CPU 
may end up changing its power states less frequently because of 
higher utilization level, and this can reduce the delay. The energy 
efficiency of mcf seems to be independent of the number of active 
CPUs as well as frequency (Figure 8 c.) For different combination 
of clock frequency and the number of CPUs, there is only less than 
3% difference in the energy efficiency. Delay of mcf is mainly 
affected by frequency, but again the difference in the delay is 
smaller than perl (Figure 8 d.) This result suggests DVFS and 
consolidation are not so effective for mcf because there is no 
noticeable improvement on energy efficiency. The mixed case 
exhibits similar trends to the perl case (Figure 8 e and f.) 

 
Figure 8  Energy efficiency and delay (Maximum allowed delay of 

perl mcf, and mixed is 73ms, 81ms, and 80ms respectively) 

TABLE I. shows improvement on energy efficiency of perl, mcf, 
and mixed cases. Energy efficiency improvement is largest when 
both consolidation and DVFS are conducted. The perl shows 
biggest improvement and mcf shows smallest improvement. This 
result gives another insight; For VMM, if we consider types of 
application running on the VMs, we can enhance energy efficiency 
more. It suggests deploying heterogeneous VMs in a server 
machine. For example, we may have four domains (two domains 
serve CPU-bound tasks and others serve memory-bound tasks) and 
need to deploy them into two server machines. If homogeneous 
domains are mapped to the same server, energy improvement is 8.1% 
on average (13.8% from CPU-bound domains and 2.4% from 
memory-bound domains.) On the other hand, if heterogeneous 
domains are mapped to a server machine, we achieve 9.7% 
improvement for both server machines. It is not big difference 
though in this study, but it implies energy efficiency can be 
improved through sophisticated VM deployment. It is our future 
plan to find optimal VM deployments for energy efficiency. 

TABLE II. shows coefficients of our model got from experimental 
results. Our model does not consider DVFS, so we fix frequency 
(2.4GHz) to find coefficients. R-square value represents how much 
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the model is accurate. Power and utilization equation are quite 
accurate for perl. Delay model of perl is acceptable. However, 
power and delay model of mcf is not accurate. The only utilization 
model is accurate. It is because both power and delay does not 
change a lot for different number of active CPUs: difference in 
energy efficiency and delay is less than 3% (Figure 8 c and d.) The 
difference may be caused by some other factors such as uncertainty 
of measurement and noise, and the model does not consider those 
factors. Hence, our model does not fit to mcf result. ‘c’ of both 
benchmarks is very small compared to ‘d’, which means we can 
ignore ‘c’. Bigger ‘c’ means larger consolidation overhead, but it is 
very small because we already reduce consolidation overhead by 
adjusting the number of vCPUs. ‘g’ of perl is positive, and it 
implies delay can be reduced by consolidation (Figure 8 b.) 

TABLE I.  IMPROVEMENT ON ENERGY EFFICIENCY 

 Improvement on energy efficiency (%) 
 perl mcf mixed 

DVFS 7.4 0 6.2 

Consolidation 10.7 1.9 8.8 

DVFS +consolidation 13.8 2.4 9.7 

TABLE II.  COEFFICIENTS OF THE POWER AND DELAY MODELS 

 coefficients perl mcf 
value R2 value R2 

power 
ac 1.2E-05 

0.977 
-0.001 

0.402 ad 0.066 0.099 

b 0.041 -0.022 

utilization 
c - 0.237 

0.996 
-0.046 

0.999 
d 6.339 4.266 

delay 
e -143.938 

0.913 
-26.758 

0.766 f 45.796 35.419 

g 0.071 -0.178 

4.2 SPECWeb2009 benchmark result 
SPECWeb2009 is a well-developed benchmark suite for evaluating 
web servers which are I/O-bound, so its results can show how 
consolidation affects delay and energy efficiency of I/O-bound 
applications. SPECWeb requires Simultaneous User Sessions (SUS 
= 600 in this study) as input. We can specify level of workload by 
SUS count, but it is only overall workload. Instantaneous workload 
changes dynamically, so a dynamic management scheme is needed 
for consolidation. In this section, we start from understanding 
characteristics of SPECWeb. Next, we propose two algorithms for 
consolidation. Finally, we show experimental results for the 
proposed algorithms and compare them with the case without 
consolidation. The ‘asymmetric’ scheme is used because it saves 
more energy than the other. Moreover, consolidation is 
accompanied by dynamic vCPU count management and DVFS. 

4.2.1 Characteristics of the SPECWeb Suite 
Web applications are typically not compute intensive [11]; hence, 
the performance (i.e., the response time per task) is less dependent 
on the clock frequency of CPUs (Figure 9 a.) One observation is 
that the number of active CPUs will not be an important factor in 
setting the web server performance if a sufficient number of CPUs 
is available. This is because the performance of web servers is 
highly sensitive to I/O, such as network and disk access. This 
result also implies that consolidation saves energy without 
noticeable performance loss for such applications. 

Figure 9 b. depicts power dissipation, which is measured for 
different combinations of the number of active CPUs and clock 

frequency. One observation is that the power difference between 
4CPU case and 5CPU case is biggest. This is because only one 
processor chip is active for the 4CPU case (asymmetric scheme.) 

Figure 9  Response time and power dissipation  

The relationship between frequency and utilization is needed for 
designing an effective consolidation controller. Our controller 
assumes that the workload level observed in the previous decision 
epoch persists into the current epoch (more sophisticated workload 
prediction schemes may be employed, but it falls outside the scope 
of present paper.) CPU utilization under the same workload, 
however, can be changed if the frequency changes.  Hence, the 
controller must prevent an undesirable situation whereby the active 
CPUs are overloaded because the chosen frequency is too low. We 
assume the relationship between utilization and frequency is linear 
(5), and it is very accurate (Figure 10 .) β is relatively small and 
can be ignored, so we use a simpler approximated equation (6). 

 −  ∙  = 		, ℎ	 = 150.4,  = 29.9	
																																	0 ≤  ≤ 800	8	 (5) 

 =  =  (6) 

 
Figure 10  Frequency vs. total utilization 

4.2.2 CPU Consolidation Controller 
As shown in the previous section, clock frequency and the number 
of active CPUs are important factors. Hence, we have to carefully 
select these parameters. In this study, we propose two algorithms, 
which perform both DVFS and consolidation. They monitor CPU 
utilization every second, and change frequency and/or the number 
of active CPUs when desirable. Main idea of the algorithms is to 
utilize fewer CPUs at slower frequency as possible. It is reasonable 
for I/O bound applications because performance degradation is not 
significant unless CPU is almost fully utilized [9]. In addition, our 
main goal is not to maximize energy efficiency but to show 
potential of power saving by consolidation. Hence the simple 
algorithms are enough for this study.  To reduce performance 
degradation, the algorithms change the system configuration 
conservatively: If a system is overloaded, they promptly increase 
frequency and/or the number of active CPUs. If, however, the 
system is under-utilized, they reduce frequency and/or turn off 
some CPUs when the situation persists for five seconds. 

We present two algorithms and main idea of them is quite similar 
to each other: If the average utilization (un) of a CPU is greater 
than an upper threshold (Th), they will assign more resource by 
increasing the clock frequency and/or the number of active CPUs. 
If the average utilization is less than a lower threshold (Tl), they 
will decrease frequency and/or the number of active CPUs.  
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Algorithm I favors using lower frequencies.  If more CPU resource 
is required, it increases the number of active CPUs at the beginning 
(line 4 through 6.) Only when all CPUs are active and still more 
CPU resource is needed, it increases the frequency. In case of 
overbooking, it decreases the frequency first (line 12 through 14.) 
If the system is still overbooked at the lowest frequency, it will 
decrease the number of active CPUs (line 16 through 18.) 

Algorithm II is similar to Algorithm I, which is not shown here, 
except that it favors using fewer active CPUs. If the average 
utilization of CPU is greater than Th, the highest frequency will be 
selected. If still more CPUs are needed, it will increase the number 
of active CPUs.  If the CPU is overbooked, it will keep the current 
frequency and decrease the number of active CPUs. 

CPU Consolidation Algorithm  I 
Inputs: N (total number of CPUs), fn (frequency), cn (the number of 

active CPUs), Tl/Th (low/high threshold), and un (average utilization) 
Outputs: fn+1 (frequency), cn+1 (the number of active CPUs) 
1: if un > Th then                      // more CPU resource is required  
2: 







 persist = 0 

3: fn+1 = fn                           // keep the same frequency 
4: for cn+1 in [cn+1 , cn+2 , … , N] do// increase # of active CPUs 
5:  if un+1 < Th then // un+1 = un( fn cn) / (fn+1 cn+1) : new util.(6)   
6:  break            // stop here. enough CPU resource 
7: if un+1 > Th then      // still need more CPU resource (cn+1=N) 
8:  fn+1 = fmax                 // increase frequency to the maximum 
9: else if un < Tl then               // CPU resource is overbooked 
10:









 if ++persist >= 5 then   // under-utilized for 5 decision period 

11:








 persist = 0, cn+1 =cn // start from the same # of active CPUs 

12: for fn+1 in all frequencies (ascending order) do 
13:  if un+1 > Tl then 
14:  break           // found the smallest frequency. stop  
15: if un+1 < Tl then       // still overbooked 
16:


for cn+1 in [cn -1 , cn -2 , … , 1] do  

17:  if un+1 > Tl then   
18:  break  // found minimum # of active CPUs. stop 

Figure 11  consolidation algorithm I  

TABLE III. shows the energy efficiency and QoS, which is defined 
as the percentage of packets that meet the performance 
specification. As defined before, we consider that there is no 
performance violation if QoS is greater than 95%. The first row 
shows results of the base system without consolidation and DVFS. 
The second test set uses Linux ondemand (DVFS) governor [12], 
which is a default governor of Linux, and it does not support 
consolidation in general. The last two rows show results from the 
proposed algorithms. Results are measured through measurements 
performed on our test bed hardware, so they also include the 
energy consumption and delay overheads of running the proposed 
consolidation algorithms. Algorithm I is the best one in terms of 
energy efficiency—it consumes around 15% less energy compared 
to the base case, which is better than ‘Linux DVFS’ case. QoS of 
Algorithm I is 96.9% which still meets performance requirement. 
Note that Algorithm I is better than ‘Linux DVFS’ in terms of 
performance as well as energy efficiency. Nevertheless additional 
overhead from turning on/off cores, Algorithm I shows better 
performance than ‘Linux DVFS’ because of its conservative nature: 
the algorithm infrequently changes frequency and active CPU 
count. Algorithm II improves energy efficiency by around 12% 
which is also greater than ‘Linux DVFS’, but it does not meet 
performance requirement. Algorithm I is outperforms II, and it 
shows that consolidation with DVFS improves energy efficiency of 
web servers. 

5. CONCLUSION 
DVFS has been a promising method for dynamic power 
management technique, but the energy saving leverage of DVFS 
decreases as the supply voltage level decreases with CMOS scaling. 
With HW support, such as Core-level Power Gating, consolidation 
becomes a promising power management technique. However, 
consolidation needs to be investigated by a more realistic scenario. 
In this study, we investigate effectiveness of consolidation for 
different configurations: types of applications, the number of 
active CPUs/vCPUs, and selection schemes. Through experiments, 
we presented suggestions for consolidation: 1) Control the number 
of vCPUs: we recommend that the ratio of the number of vCPUs to 
the number of CPUs to be less than 3. 2) Avoid aggressive 
consolidation for memory-bound applications: there is very small 
energy benefit. 3) Deploy heterogeneous VM domains in a single 
system: this saves more energy without violating performance. To 
summarize, this study shows energy saving of consolidation in 
virtualized systems. The proposed consolidation algorithm 
achieves about 15% of energy saving for I/O-bound application 
(SPECWeb.) Moreover, it increases the energy efficiency of CPU-
bound application by 13.8%. Least improvement (2.4%) was 
achieved from Memory-bound applications.  

TABLE III.  SPECWEB BENCHMARK RESULT 

 Tasks / E QoS (%) Improvement 

Base 1.098 98.0 n/a 

Linux DVFS 1.212 93.4 10.4 

Algorithm I 1.264 96.9 15.2 

Algorithm II 1.228 90.3 11.9 
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