
A Study of the Effectiveness of CPU Consolidation in a
Virtualized Multi-Core Server System*

Inkwon Hwang and Massoud Pedram
University of Southern California

Los Angeles CA 90089

{inkwonhw, pedram}@usc.edu

Timothy Kam
Intel Corporation

Hillsboro OR 97124

Timothy.kam@intel.com

ABSTRACT
The focus of this paper is on dynamic power management in
virtualized multi-core server systems. The paper starts by
analyzing the effect of virtualization and CPU consolidation on
power dissipation and performance (latency) of such systems, and
concludes by presenting two new CPU consolidation algorithms
for multi-core servers. The paper also reports an extensive set of
experimental results founded on a realistic multi-core server
system setup and well-developed benchmarks, i.e., SPEC2K and
SPECWeb2009 and obtained through hardware measurements.

Categories and Subject Descriptors
D.4.1 [Process Management]: Scheduling

Keywords
Energy efficiency, virtualization, consolidation, and scheduling

1. INTRODUCTION
Today’s servers consume large amounts of energy so there is a
growing need for energy-aware resource management in multi-
core server systems. Virtualization has emerged as a promising
solution for eliminating “computing waste” through physical
resource sharing in data centers. In this study, we focus on the
CPU (i.e., physical core), which is one of top energy consumers in
a virtualized system. A common power saving technique for CPUs
is Dynamic Voltage and Frequency Scaling (DVFS) [1-3].
However, the additional power savings possible through DVFS is
becoming smaller and smaller in part due to lower supply voltage
levels and a shared power and clock distribution network for the
cores. In addition, it is not easy to apply existing DVFS techniques
to cores in a virtualized multi-core server system. This is mainly
because the existing DVFS techniques require information about
running applications to make decisions about the voltage and clock
frequency setting, but a virtual machine manager (hypervisor),
which resides in a privileged domain, does not have information
about applications running on the guest domains because of
abstractions [4].

Another energy saving technique is Dynamic Power Shutdown
(DPS). In particular, some modern CPUs support Core-level Power
Gating (CPG), which allows individual core to be put into very
low power, but non-functional, state. Such CPUs have their own
Power Control Unit (PCU), which performs DPS; however, we
expect that more power savings are possible if there is software
level assistance for DPS. This is because the PCU in current

servers does not have enough information about the application
running on the system. Hence, there is a pressing need to
understand when and how the CPU consolidation works with
respect to power savings without violating performance constraints.

A common deployment model for high-end multi-core server
systems is in data centers, which forms the computational and
storage backbone of the digital information provided to end users
via the Internet. As shown in Figure 1 , there is a large variance in
workload intensity of commercial data centers [5]. To guarantee a
required service level agreement (SLA) under the worst-case
conditions, servers are typically designed to handle a peak
workload condition even if the servers are under-utilized at times.
There are very few hours that all servers in the data centers are
running at their peak utilization levels. Motivated by this
observation, many studies have suggested the use of virtual
machine migration (VMM) for energy saving [3, 4, 6-8]. In theory,
the VMM promises high energy saving, but it is difficult to apply
the technique to servers in a data center because of the high
overhead of the VMM, e.g., the large system boot time, network
traffic caused by the need to transfer the running application and
its local context to a new server, and so on. In general, the VMM
does not aggressively address the server under-utilization because
of its conservative nature (in order to avoid violating SLA.)

w
or

kl
oa

d
(%

)

Figure 1 Typical server workload in Facebook data centers [5]

After an investigation of the effect of consolidation on the power
dissipation and performance (latency) in virtualized multi-core
server systems, this paper presents a consolidation technique for
assisting DPS. There are a number of studies that have investigated
energy savings due to consolidation. In [9], the authors showed
that consolidation across cores in a single four-core-per-processor,
two-processor-per-server system offers very small energy savings.
However, their server system did not support CPG, so the energy
saving potential of core-level consolidation needs to be
investigated. In [10], Jacob et al. compared CPG and DVFS and
showed that CPG can result in 30% energy saving compared to
DVFS. However, the results were calculated from a combination
of real measurements and estimated leakage power (the adopted
leakage power model was quite simple.) In [5], the authors
presented a technique called Core Count Management (some
variant of the consolidation technique), and reported 35% energy
saving. However, they reported both power and performance
results based on simulations performed by using simple power and
performance models. In our study, we show energy savings and

*This work is sponsored by grants from the National Science Foundation and the Intel Corp.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
,6/3('¶��� July 30–August 1, 2012, Redondo Beach, California, USA.
Copyright 2012 ACM 978-1-4503-1249-3/12/07...$10.00.

339

latency impacts of consolidation in a virtualized system based on
realistic benchmarks and obtained through hardware.

Contributions of our work are as follows: 1) we perform extensive
experiments (using well-developed benchmark sets, SPEC2K and
SPECWeb2009) under various conditions in terms of workload
intensity, number of virtual CPUs (vCPUs), set of active CPUs (i.e.,
CPUs at an operational state), and so on. This information is useful
for developing consolidation algorithms. 2) We rely on real data to
evaluate the energy savings of consolidation, instead of using
simulators. Virtualized systems are more complex because of
abstraction, e.g. vCPU, so it is difficult for simulators to model the
system very accurately. Hence, real measurement is essential for
proving effectiveness of consolidation. 3) We introduce two
consolidation algorithms and assess their efficacies on the
SPECWeb benchmark suite. The results demonstrate that the
proposed consolidation algorithms can result in improvement on
energy efficiency under very realistic environments.

The remainder of this paper is organized as follows. In section II
we show analysis which shows how consolidation affects energy
and performance. The experimental system setup is explained in
section III. Following section IV shows experimental results.
Finally, we summarize the results and give guidelines in section V.

2. POWER AND LATENCY MODELS
In this section we show how consolidation affects the average
power dissipation and latency through mathematical analysis. As a
result we can derive insight about how consolidation affects the
power dissipation and latency of tasks. Our analytical predictions
about the power/latency tradeoffs in a multi-core server system
have been empirically shown to be valid for realistic cases. Note
that consolidation is reasonable only when the system is under-
utilized, thus the model does not consider thermal issue, e.g.
leakage power variation with respect to temperature.

2.1 Average power dissipation
In this section we show the relationship between consolidation and
power dissipation. Assume we have a system that has ‘N’ CPUs
with only ‘n’ of them being active (i.e., all workloads have been
consolidated to run on ‘n’ active CPUs and that the remaining ‘N-n’
CPUs are turned off or put in a deep sleep state.) The average
power dissipation of the ith CPU (Pi) is intrinsically related to the
average CPU utilization (Ui) and can be modeled as follows [6]:

 =  + ,									 > 0
																= 0,																		ℎ		

where		denotes		of	the		CPU, 0 ≤  ≤ 1.
(1)

Ui is a function of workload (ki), which can be defined as the
number of tasks served by the ith CPU (2). ‘K’ tasks are sent to the
system every second, and a CPU scheduler evenly distributes the
tasks to the ‘n’ active CPUs, so each active CPU takes ‘K/n’ tasks
per second. Ui is thus linearly proportional to the total system
workload and inversely proportional to the number of active CPUs.
However, this statement may not be valid when the workload is
very high. As an example, consider a scenario whereby the
utilization is ‘m’ for H=K/n memory-bound tasks per second sent
to the target CPU. If more tasks (say 2*H) are sent to the target
CPU per second, the cache miss rate on that CPU will increase
(more precisely, the working sets of the 2*H tasks will not fit on
the cache and hence every task will experience a higher cache miss
rate.) This means that execution time of the tasks increases, and
therefore, the CPU utilization will increase by more than a factor
of two. Coefficient ‘c’ captures this non-linear effect:

 =  + , where	 = / (2)

Total power dissipation is the sum of average power dissipations of
individual core (Pi.) Assuming all cores consume the same amount
of power, we have:

 = 



	=   + 





= / +  + 

(3)

Figure 2 depicts the relationship between the number of active
CPUs and total average power dissipation for different coefficients,
‘c’ and ‘b’, under the same overall workload. Note that lower
average power dissipation for the same workload means higher
energy efficiency. If ‘c’ is equal to zero, the total power dissipation
decreases monotonically as more CPUs become inactive, which
implies that, in this case, consolidation always reduces power
dissipation. However, for higher ‘c’, the total power dissipation
reaches a minimum, and subsequently, goes up with fewer active
CPUs. Hence, ‘c’ should be carefully considered when we
determine the number of active CPUs to consolidate workload. In
addition, higher ‘c decreases power saving (Figure 2 a.) The slope
of the graph is related to ‘b’. Larger ‘b’ results in steeper slope to
the right of the minimum power point and therefore, higher power
saving. Note that ‘c’ is application-dependent whereas ‘b’ is a
hardware-dependent parameter (with CPG, we expect bigger ‘b’.)

Figure 2 Power dissipation vs. the number of active CPUs under

the same overall workload (K tasks/s)

2.2 Latency (delay)
As shown in (4), our task latency model has two terms. The first
term makes delay larger for higher CPU utilization [6]. This term
dramatically increases delay when the system is almost fully
utilized. For higher utilization, fewer power state transitions occur,
which in turn tends to decrease delay because of lower power state
switching overhead. The second term of (4) shows this effect.

 =  = , − , =  
1 − 

+  − 

=  
1 −  + 

+  −  + 
where		denotes	the		

(4)

As shown in the power dissipation analysis, higher ‘c’ results in a
decrease in potential power saving of consolidation. Figure 3 a.
shows the relationship between ‘c’ value and delay: higher ‘c’
results in larger delay. Note that overall workload of results in
Figure 3 is the same (K tasks/s.) This implies that consolidation
may incur potentially high delay penalty if ‘c’ is big.

Figure 3 b. depicts the effect of ‘g’. With a positive value of ‘g’,
delay decreases as the numbers of active CPUs decreases. This
suggests that it is possible to decrease both delay and power
dissipation by consolidation if ‘g’ is large enough. However, as
shown in Figure 3 b, delay increases rapidly when the number of
active CPUs becomes very small (since then the CPUs are almost
fully utilized), and delay penalty of consolidation becomes
significant. Thus, one must carefully choose the number of active
CPUs. Coefficient ‘g’ is also dependent on the application type.

number of active CPUs (n)

to
ta

l p
ow

er

(a) c1 = 0 < c2 < c3

number of active CPUs (n)

to
ta

l p
ow

er

(b) b1 < b2 < b3 , c > 0

c1

c2

c3

b1

b2

b3

340

Figure 3 Delay vs. the number of active CPUs under the same
overall workload (K tasks/s)

As seen from the above analysis, power saving and delay penalty
effects of the consolidation depend on a few coefficients. Some of
the coefficients are application-dependent, so there is a motivation
to investigate the effectiveness of consolidation under different
kinds of applications.

3. EXPERIMENTAL SETUP

3.1 Hardware Testbed
Hardware specification of our system under test is as follows. We
have two Intel Xeon E5620 processors; each has four cores, all of
which are running at the same clock frequency. Each core has its
own dedicated L1/L2 caches but shares an L3 cache with the other
cores. Each processor supports seven core frequency levels, from
1.6GHz to 2.4GHz. We cut the 12V CPU power lines and measure
the amount of power supplied using a power analyzer.

3.2 XEN – hypervisor-based virtualization product
We chose XEN version 4.0.1 for constructing the virtualized
system. XEN, which is an open source hypervisor-based
virtualization product, provides APIs for managing virtual
machines (VMs.) For this study, we run experiments under
different configurations in terms of the number of vCPUs, clock
frequencies, and the set of active CPUs.

3.3 Service model and Quality of Service
This paper targets a server/client service model where there are
many clients, which send tasks to a server and the server responses
when it completes the tasks. Turn-around time (from time when a
task is sent from a client to the time when a service completion
acknowledgement is received by the client) is considered as the
delay of the task. For determining the quality of service (QoS), we
use the 95th percentile delay (Figure 4 .) If the 95th percentile delay
is less than the maximum allowed limit, we have met our QoS
target. The limit itself is chosen as the 95th percentile delay of a
fully-loaded base system (with no consolidation.) The term ‘Fully
loaded’ means that the total CPU utilization is at 80% out of 100%.
This is a reasonable value because servers are designed to produce
high performance at around 80% utilization levels (performance
level drops rapidly as the CPU utilization approaches 100 %.)

3.4 Benchmarks – mcf, perl (SPEC2K), and SPECWeb
As shown in Section II, the type of applications affects the
effectiveness of consolidation. Hence, we do experiments for three
common application types: CPU-bound, memory-bound, and I/O-
bound. For the CPU-bound and memory-bound applications we
use perl and mcf benchmarks, respectively. A perl shows high
Instruction per Cycle (IPC) and low Memory Access per Cycle
(MPC), but mcf has opposite characteristics [3]. We develop the
WorkloadGen benchmark to control workload level of perl/mcf
and gather system performance. For I/O-bound application
SPECWeb2009 benchmark is used.

Figure 4 Delay cumulative distribution

3.5 WorkloadGen benchmark
We design and implement a benchmark program, WorkloadGen, to
generate workload of desired characteristics and to measure
performance of the system. It generates tasks and reports
throughput and average response time (latency.) Type of tasks and
workload intensity (defined as the number of tasks generated per
second) are controllable.

Figure 5 Block diagram of the WorkloadGen

The benchmark consists of three modules (WGManager,
WGClient, and WGServer) as depicted in Figure 5 . WGClients
request tasks to a WGServer and report performance statistics to a
WGManager. WGServer’s main role is to create workload by
executing tasks requested by WGClients. When the WGServer
completes a task, it sends an ACK packet to the WGClient. Based
on the data in the ACK, WGClients can gather statistics of
performance. There are a number of WGClients, so it is necessary
to control them and gather statistics from them, and this is done by
a WGManager. The WorkloadGen reports statistical performance
data: average response time (turn-around time) per task, average
waiting time in the queue, and average execution time per task,
which are needed for analyzing the overall system performance.

4. RESULTS AND ALGORITHMS
In this section, we report experimental results of perl, mcf, and
SPECWeb. Our purpose is to compute the energy saving of the
consolidation technique, so all results correspond to an under-
utilized server system, i.e., the CPU utilization is around 30% out
of 100%. For perl and mcf, we investigate the delay and energy
efficiency of different configurations (i.e., combinations of the
number of vCPUs and active CPUs, and clock frequency)

We quantify the energy efficiency of a system as ‘number of tasks
served per unit of energy.’ For SPECWeb, we can specify the
overall workload level, but instantaneous workload level changes
dynamically. Hence, for SPECWeb, we verify the energy
efficiency of the consolidation through dynamic management. We
propose two very practical algorithms for dynamic management,
and show up to 15% improvement in system’s energy efficiency.

4.1 perl & mcf benchmark results
The number of vCPUs is an important parameter in a virtualized
system: it determines how many CPUs can be utilized by a virtual

number of active CPUs (n)

de
la

y
(a) c1 < c2 < c3

number of active CPUs (n)

de
la

y

(b) g1 = 0 < g2 < g3

c1

c2

c3

g1

g2

g3
0

100

delay

cu
m

ul
at

iv
e

di
st

ri
bu

tio
n

(%
)

↑ 95%

95th
percentile →
delay

341

domain at any time, so the performance of the domain is closely
related to this parameter. At the same time, more vCPUs in a
system cause higher power and performance overheads, so it will
be detrimental if there are too many vCPUs. Figure 6 depicts the
overhead caused by unnecessarily managing too many vCPUs.
Utilization and delay of perl benchmark rapidly increase when the
ratio of the number of vCPUs to the number of CPUs becomes
greater or equal to three. The mcf benchmark shows the same trend.
Note that workload level of all cases in Figure 6 is the same to
each other. This means that the overhead of managing vCPUs
causes this phenomenon. This result implies consolidation needs
to be accompanied by dynamic vCPU count management. We
maintain the ratio of vCPUs to CPUs to be around two for all test
cases presented in this study through dynamic vCPU count control.

Figure 6 Delay and total utilization vs. the number of vCPUs per CPU

(there are 4 active CPUs)

For consolidation, the choice about which set of CPUs is active can
have an effect on performance and energy efficiency. Under multi-
processor systems, several different CPU selection schemes are
possible. In this study, we have only two processors, so we simply
investigate two CPU selection schemes: 1) we select half of the
required CPUs from one processor and other half from the other
processor; and 2) we select all required CPUs from one processor,
and only if more CPUs are needed than one processor can provide,
we turn on the other processor and select the remaining CPUs from
the other processor. We call these schemes as ‘symmetric’ and
‘asymmetric’ selection scheme.

Figure 7 shows the energy efficiency and delay of schemes. There
is only small difference in energy efficiency and delay, but
‘asymmetric’ selection scheme is a little bit better for the perl in
terms of energy efficiency. On the other hand, there is no
noticeable difference in energy efficiency and delay for the mcf.
Hence, we choose ‘asymmetric’ scheme for this study.

Figure 7 Energy efficiency & delay vs. CPU selection schemes

Figure 8 shows how much energy efficiency can be improved by
consolidation without sacrificing QoS. Moreover, it shows that
energy efficiency can increase even more if consolidation is
accompanied by DVFS. The experimental setup is as follows: there
are two guest domains. The ‘perl’ case runs perl on both guest
domains. ‘mcf’ case runs mcf on both guest domains. ‘mixed’ case
runs both perl and mcf, i.e., one domain serves the perl while the
other domain serves the mcf.

Energy efficiency of perl is dependent on both the number of
active CPUs and clock frequency (Figure 8 a), i.e., fewer CPUs
with slower frequency increases the energy efficiency. Delay of
perl is more dependent on the clock frequency than the number of
active CPUs (Figure 8 b), which means that consolidation can be
done without performance degradation.

One observation is that the delay of the case with fewer active
CPUs is sometimes even smaller than that of the case with larger
number of CPUs. For example, 4CPU running at 2.2GHz shows
smaller delay than 8CPU at the same frequency. In our model,
coefficient ‘g’ in (4) represents this effect, i.e., a consolidated CPU
may end up changing its power states less frequently because of
higher utilization level, and this can reduce the delay. The energy
efficiency of mcf seems to be independent of the number of active
CPUs as well as frequency (Figure 8 c.) For different combination
of clock frequency and the number of CPUs, there is only less than
3% difference in the energy efficiency. Delay of mcf is mainly
affected by frequency, but again the difference in the delay is
smaller than perl (Figure 8 d.) This result suggests DVFS and
consolidation are not so effective for mcf because there is no
noticeable improvement on energy efficiency. The mixed case
exhibits similar trends to the perl case (Figure 8 e and f.)

Figure 8 Energy efficiency and delay (Maximum allowed delay of

perl mcf, and mixed is 73ms, 81ms, and 80ms respectively)

TABLE I. shows improvement on energy efficiency of perl, mcf,
and mixed cases. Energy efficiency improvement is largest when
both consolidation and DVFS are conducted. The perl shows
biggest improvement and mcf shows smallest improvement. This
result gives another insight; For VMM, if we consider types of
application running on the VMs, we can enhance energy efficiency
more. It suggests deploying heterogeneous VMs in a server
machine. For example, we may have four domains (two domains
serve CPU-bound tasks and others serve memory-bound tasks) and
need to deploy them into two server machines. If homogeneous
domains are mapped to the same server, energy improvement is 8.1%
on average (13.8% from CPU-bound domains and 2.4% from
memory-bound domains.) On the other hand, if heterogeneous
domains are mapped to a server machine, we achieve 9.7%
improvement for both server machines. It is not big difference
though in this study, but it implies energy efficiency can be
improved through sophisticated VM deployment. It is our future
plan to find optimal VM deployments for energy efficiency.

TABLE II. shows coefficients of our model got from experimental
results. Our model does not consider DVFS, so we fix frequency
(2.4GHz) to find coefficients. R-square value represents how much

0 2 4 6
0

5

10

15

no. of vCPU per CPU

de
la

y
(s

)

0 2 4 6
0

100

200

300

to
ta

l u
til

iz
at

io
n

(%
)

no. of vCPU per CPU

perl

mcf

perl mcf

0.6

0.8

1

Ta
sk

s
/

E
(1

 /
 W

s)

asymmetric
symmetric

perl mcf0

20

40

60

D
el

ay
 (m

s)

342

the model is accurate. Power and utilization equation are quite
accurate for perl. Delay model of perl is acceptable. However,
power and delay model of mcf is not accurate. The only utilization
model is accurate. It is because both power and delay does not
change a lot for different number of active CPUs: difference in
energy efficiency and delay is less than 3% (Figure 8 c and d.) The
difference may be caused by some other factors such as uncertainty
of measurement and noise, and the model does not consider those
factors. Hence, our model does not fit to mcf result. ‘c’ of both
benchmarks is very small compared to ‘d’, which means we can
ignore ‘c’. Bigger ‘c’ means larger consolidation overhead, but it is
very small because we already reduce consolidation overhead by
adjusting the number of vCPUs. ‘g’ of perl is positive, and it
implies delay can be reduced by consolidation (Figure 8 b.)

TABLE I. IMPROVEMENT ON ENERGY EFFICIENCY

 Improvement on energy efficiency (%)
 perl mcf mixed

DVFS 7.4 0 6.2

Consolidation 10.7 1.9 8.8

DVFS +consolidation 13.8 2.4 9.7

TABLE II. COEFFICIENTS OF THE POWER AND DELAY MODELS

 coefficients perl mcf
value R2 value R2

power
ac 1.2E-05

0.977
-0.001

0.402 ad 0.066 0.099

b 0.041 -0.022

utilization
c - 0.237

0.996
-0.046

0.999
d 6.339 4.266

delay
e -143.938

0.913
-26.758

0.766 f 45.796 35.419

g 0.071 -0.178

4.2 SPECWeb2009 benchmark result
SPECWeb2009 is a well-developed benchmark suite for evaluating
web servers which are I/O-bound, so its results can show how
consolidation affects delay and energy efficiency of I/O-bound
applications. SPECWeb requires Simultaneous User Sessions (SUS
= 600 in this study) as input. We can specify level of workload by
SUS count, but it is only overall workload. Instantaneous workload
changes dynamically, so a dynamic management scheme is needed
for consolidation. In this section, we start from understanding
characteristics of SPECWeb. Next, we propose two algorithms for
consolidation. Finally, we show experimental results for the
proposed algorithms and compare them with the case without
consolidation. The ‘asymmetric’ scheme is used because it saves
more energy than the other. Moreover, consolidation is
accompanied by dynamic vCPU count management and DVFS.

4.2.1 Characteristics of the SPECWeb Suite
Web applications are typically not compute intensive [11]; hence,
the performance (i.e., the response time per task) is less dependent
on the clock frequency of CPUs (Figure 9 a.) One observation is
that the number of active CPUs will not be an important factor in
setting the web server performance if a sufficient number of CPUs
is available. This is because the performance of web servers is
highly sensitive to I/O, such as network and disk access. This
result also implies that consolidation saves energy without
noticeable performance loss for such applications.

Figure 9 b. depicts power dissipation, which is measured for
different combinations of the number of active CPUs and clock

frequency. One observation is that the power difference between
4CPU case and 5CPU case is biggest. This is because only one
processor chip is active for the 4CPU case (asymmetric scheme.)

Figure 9 Response time and power dissipation

The relationship between frequency and utilization is needed for
designing an effective consolidation controller. Our controller
assumes that the workload level observed in the previous decision
epoch persists into the current epoch (more sophisticated workload
prediction schemes may be employed, but it falls outside the scope
of present paper.) CPU utilization under the same workload,
however, can be changed if the frequency changes. Hence, the
controller must prevent an undesirable situation whereby the active
CPUs are overloaded because the chosen frequency is too low. We
assume the relationship between utilization and frequency is linear
(5), and it is very accurate (Figure 10 .) β is relatively small and
can be ignored, so we use a simpler approximated equation (6).

 −  ∙  = 		, ℎ	 = 150.4,  = 29.9	
																																	0 ≤  ≤ 800	8	 (5)

 =  =  (6)

Figure 10 Frequency vs. total utilization

4.2.2 CPU Consolidation Controller
As shown in the previous section, clock frequency and the number
of active CPUs are important factors. Hence, we have to carefully
select these parameters. In this study, we propose two algorithms,
which perform both DVFS and consolidation. They monitor CPU
utilization every second, and change frequency and/or the number
of active CPUs when desirable. Main idea of the algorithms is to
utilize fewer CPUs at slower frequency as possible. It is reasonable
for I/O bound applications because performance degradation is not
significant unless CPU is almost fully utilized [9]. In addition, our
main goal is not to maximize energy efficiency but to show
potential of power saving by consolidation. Hence the simple
algorithms are enough for this study. To reduce performance
degradation, the algorithms change the system configuration
conservatively: If a system is overloaded, they promptly increase
frequency and/or the number of active CPUs. If, however, the
system is under-utilized, they reduce frequency and/or turn off
some CPUs when the situation persists for five seconds.

We present two algorithms and main idea of them is quite similar
to each other: If the average utilization (un) of a CPU is greater
than an upper threshold (Th), they will assign more resource by
increasing the clock frequency and/or the number of active CPUs.
If the average utilization is less than a lower threshold (Tl), they
will decrease frequency and/or the number of active CPUs.

1.5 2 2.5
1

1.2

1.4

1.6

1.8

frequency (GHz)

re
sp

on
se

 ti
m

e
(s

)

(a)

1.5 2 2.5
45

50

55

60

65

frequency (GHz)

po
w

er
di

ss
ip

at
io

n
(W

)

(b)

3CPU

4CPU

5CPU

6CPU

0.4 0.45 0.5 0.55 0.6 0.65
90

100

110

120

130

To
ta

l u
til

iz
at

io
n

(%
)

1/Frequency (1/GHz)

Util = α / freq + β
α = 150.422, β = 29.854
R2 = 0.999

343

Algorithm I favors using lower frequencies. If more CPU resource
is required, it increases the number of active CPUs at the beginning
(line 4 through 6.) Only when all CPUs are active and still more
CPU resource is needed, it increases the frequency. In case of
overbooking, it decreases the frequency first (line 12 through 14.)
If the system is still overbooked at the lowest frequency, it will
decrease the number of active CPUs (line 16 through 18.)

Algorithm II is similar to Algorithm I, which is not shown here,
except that it favors using fewer active CPUs. If the average
utilization of CPU is greater than Th, the highest frequency will be
selected. If still more CPUs are needed, it will increase the number
of active CPUs. If the CPU is overbooked, it will keep the current
frequency and decrease the number of active CPUs.

CPU Consolidation Algorithm I
Inputs: N (total number of CPUs), fn (frequency), cn (the number of

active CPUs), Tl/Th (low/high threshold), and un (average utilization)
Outputs: fn+1 (frequency), cn+1 (the number of active CPUs)
1: if un > Th then // more CPU resource is required
2:







 persist = 0

3: fn+1 = fn // keep the same frequency
4: for cn+1 in [cn+1 , cn+2 , … , N] do// increase # of active CPUs
5:  if un+1 < Th then // un+1 = un(fn cn) / (fn+1 cn+1) : new util.(6)
6:  break // stop here. enough CPU resource
7: if un+1 > Th then // still need more CPU resource (cn+1=N)
8:  fn+1 = fmax // increase frequency to the maximum
9: else if un < Tl then // CPU resource is overbooked
10:









 if ++persist >= 5 then // under-utilized for 5 decision period

11:








 persist = 0, cn+1 =cn // start from the same # of active CPUs

12: for fn+1 in all frequencies (ascending order) do
13:  if un+1 > Tl then
14:  break // found the smallest frequency. stop
15: if un+1 < Tl then // still overbooked
16:


for cn+1 in [cn -1 , cn -2 , … , 1] do

17:  if un+1 > Tl then
18:  break // found minimum # of active CPUs. stop

Figure 11 consolidation algorithm I

TABLE III. shows the energy efficiency and QoS, which is defined
as the percentage of packets that meet the performance
specification. As defined before, we consider that there is no
performance violation if QoS is greater than 95%. The first row
shows results of the base system without consolidation and DVFS.
The second test set uses Linux ondemand (DVFS) governor [12],
which is a default governor of Linux, and it does not support
consolidation in general. The last two rows show results from the
proposed algorithms. Results are measured through measurements
performed on our test bed hardware, so they also include the
energy consumption and delay overheads of running the proposed
consolidation algorithms. Algorithm I is the best one in terms of
energy efficiency—it consumes around 15% less energy compared
to the base case, which is better than ‘Linux DVFS’ case. QoS of
Algorithm I is 96.9% which still meets performance requirement.
Note that Algorithm I is better than ‘Linux DVFS’ in terms of
performance as well as energy efficiency. Nevertheless additional
overhead from turning on/off cores, Algorithm I shows better
performance than ‘Linux DVFS’ because of its conservative nature:
the algorithm infrequently changes frequency and active CPU
count. Algorithm II improves energy efficiency by around 12%
which is also greater than ‘Linux DVFS’, but it does not meet
performance requirement. Algorithm I is outperforms II, and it
shows that consolidation with DVFS improves energy efficiency of
web servers.

5. CONCLUSION
DVFS has been a promising method for dynamic power
management technique, but the energy saving leverage of DVFS
decreases as the supply voltage level decreases with CMOS scaling.
With HW support, such as Core-level Power Gating, consolidation
becomes a promising power management technique. However,
consolidation needs to be investigated by a more realistic scenario.
In this study, we investigate effectiveness of consolidation for
different configurations: types of applications, the number of
active CPUs/vCPUs, and selection schemes. Through experiments,
we presented suggestions for consolidation: 1) Control the number
of vCPUs: we recommend that the ratio of the number of vCPUs to
the number of CPUs to be less than 3. 2) Avoid aggressive
consolidation for memory-bound applications: there is very small
energy benefit. 3) Deploy heterogeneous VM domains in a single
system: this saves more energy without violating performance. To
summarize, this study shows energy saving of consolidation in
virtualized systems. The proposed consolidation algorithm
achieves about 15% of energy saving for I/O-bound application
(SPECWeb.) Moreover, it increases the energy efficiency of CPU-
bound application by 13.8%. Least improvement (2.4%) was
achieved from Memory-bound applications.

TABLE III. SPECWEB BENCHMARK RESULT

 Tasks / E QoS (%) Improvement

Base 1.098 98.0 n/a

Linux DVFS 1.212 93.4 10.4

Algorithm I 1.264 96.9 15.2

Algorithm II 1.228 90.3 11.9

6. REFERENCES
[1] G. von Laszewski, et al. Power-aware scheduling of virtual machines

in DVFS-enabled clusters. in Cluster Computing and Workshops, 2009.
CLUSTER '09. IEEE International Conference on.

[2] P. Pillai and K.G. Shin. Real-time dynamic voltage scaling for low-
power embedded operating systems. in Proceedings of the eighteenth
ACM symposium on Operating systems principles.

[3] G. Dhiman, et al. vGreen: a system for energy efficient computing in
virtualized environments. in Proceedings of the 14th ACM/IEEE
international symposium on Low power electronics and design.

[4] R. Nathuji and K. Schwan. VirtualPower: coordinated power
management in virtualized enterprise systems. in Proceedings of twenty-
first ACM SIGOPS symposium on Operating systems principles.

[5] O. Bilgir, et al., Exploring the Potential of CMP Core Count
Management on Data Center Energy Savings, in 3rd Workshop on
Energy Efficient Design.

[6] N. Bobroff, et al. Dynamic Placement of Virtual Machines for
Managing SLA Violations. in Integrated Network Management, 2007.
IM '07. 10th IFIP/IEEE International Symposium on.

[7] H.N. Van, et al. Autonomic virtual resource management for service
hosting platforms. in Proceedings of the 2009 ICSE Workshop on
Software Engineering Challenges of Cloud Computing.

[8] C. Clark, et al. Live migration of virtual machines. in Proceedings of
the 2nd conference on Symposium on Networked Systems Design \&
Implementation - Volume 2.

[9] M. Pedram and I. Hwang. Power and Performance Modeling in a
Virtualized Server System. in Parallel Processing Workshops (ICPPW),
2010 39th International Conference on.

[10] J. Leverich, et al. Power Management of Datacenter Workloads Using
Per-Core Power Gating. in Computer Architecture Letters.

[11] D. Meisner, et al. Power management of online data-intensive
services. in Proceedings of the 38th annual international symposium on
Computer architecture.

[12] V. Pallipadi and A. Starikovskiy. The Ondemand Governor. in
Proceedings of the Linux Symposium.

344

