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Abstract
Nested paging is a hardware solution for alleviating the software
memory management overhead imposed by system virtualization.
Nested paging complements existing page walk hardware to form
a two-dimensional (2D) page walk, which reduces the need for
hypervisor intervention in guest page table management. However,
the extra dimension also increases the maximum number of archi-
tecturally-required page table references.

This paper presents an in-depth examination of the 2D page
table walk overhead and options for decreasing it. These options
include using the AMD OpteronTM processor’s page walk cache
to exploit the strong reuse of page entry references. For a mix of
server and SPEC R© benchmarks, the presented results show a 15%-
38% improvement in guest performance by extending the existing
page walk cache to also store the nested dimension of the 2D page
walk. Caching nested page table translations and skipping multiple
page entry references produce an additional 3%-7% improvement.

Much of the remaining 2D page walk overhead is due to low-
locality nested page entry references, which result in additional
memory hierarchy misses. By using large pages, the hypervisor can
eliminate many of these long-latency accesses and further improve
the guest performance by 3%-22%.

Categories and Subject Descriptors C.0 [General]: Modeling
of computer architecture; C.4 [Performance of Systems]: Design
studies; D.4.2 [Operating Systems]: Virtual Memory

General Terms Performance, Design, Measurement, Experimen-
tation

Keywords Virtualization, TLB, Memory Management, Nested
Paging, Page Walk Caching, Hypervisor, Virtual Machine Monitor,
AMD

1. Introduction
Virtualization allows multiple operating systems to run simulta-
neously on one physical system. These operating systems run as
guests on the virtualized system and have little or no knowledge
that they no longer control the physical system resources. The hy-
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pervisor is the underlying software that inserts abstractions into a
virtualized system: an operating system (OS) becomes a guest OS,
physical addresses become guest physical addresses, and, in gen-
eral, system elements that the OS presumed were real or physical
are converted into virtualized resources under control or manipula-
tion of the hypervisor [14, 16].

Ideally, a virtualized guest system will have comparable per-
formance to an equivalent native, non-virtualized system. This can
indeed be the case for compute-intensive applications. For exam-
ple, the performance overhead for a virtualized system running
SPECint R©2000 benchmarks can be less than 5% because the hy-
pervisor is infrequently invoked [2]. However, as the number of op-
erations requiring hypervisor intervention increases, performance
can degrade substantially. While tolerable in many server consoli-
dation environments, these longer run times are unsatisfactory for
performance-sensitive applications.

Operations intercepted by the hypervisor in a virtualized system
could consume thousands of cycles of overhead to trap the condi-
tion, exit the guest, emulate the operation in the hypervisor, and re-
turn to the guest. These costs lead Adams and Agesen to state that
“reducing the frequency of exits is the most important optimization
for classical [hypervisors]” [2]. More specifically, one of the pri-
mary sources of virtualization exits is software memory translation
management, which is required to maintain the guest page tables.

AMD has implemented nested paging to greatly reduce the
overhead of hypervisor intervention in memory management [4].
Under nested paging, the guest controls its unmodified page tables.
However, what the guest considers to be real, or system, physical
addresses are in fact virtualized by the hypervisor. Each guest
physical address in the guest page table is looked up in the nested
page tables by hardware to obtain the system physical address. The
end result is a two-dimensional (2D) page walk that translates the
guest virtual address directly to the system physical address.

Although nested paging removes the overhead of hypervisor in-
tervention, it increases the maximum number of page entry ref-
erences architecturally required to generate a system physical ad-
dress. If a guest page walk has n levels and a nested page walk has
m levels, a 2D walk requires nm + n + m page entry references.
For example, a 2D page walk with four-level guest paging and four-
level nested paging has six times more page entry references than a
four-level native page walk. Therefore, the overall performance of
a virtualized system is improved by nested paging when the elimi-
nated hypervisor memory management overhead is greater than the
new 2D page walk overhead.

Translation look-aside buffers (TLBs) can limit the nested pag-
ing overhead by caching the full 2D translation and reducing the
frequency of page walks. For applications with a high TLB hit ratio,
the additional 2D latency will have a negligible impact. However,
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workloads such as databases and web servers, which incur a high
TLB miss rate due to their large working sets and frequent TLB
flushes, are sensitive to the latency of a 2D page walk.

Contributions. This work discusses the AMD Opteron page walk
cache (PWC) for the first time. The PWC is designed to reduce the
latency of native page entry references by storing page entries in
a small, fast cache to avoid memory hierarchy accesses. The 2D
page entries are then studied for their cacheability and the highest
levels of the nested and guest dimensions are shown to have the
most potential for caching.

This paper goes on to evaluate extending the PWC beyond the
native implementation to include the nested dimension of 2D page
walks. This strategy improves the performance of the virtualized
guest workload by 15%-38%. Combining a Nested TLB with the
PWC further improves guest performance up to 7% by leveraging
redundancy and spatial locality to eliminate nested page walks.

These techniques recover more than half of the guest’s unvirtu-
alized native performance, but the remaining 2D page walk over-
head proves difficult to address with a PWC. Further investigations
reveal that 2D page entry references that miss in the PWC often
miss in the memory hierarchy as well. However, if the hypervisor
uses a larger nested page size, many aspects of the 2D page walk
overhead decrease and overall guest performance can improve by
an additional 3%-22% depending on the characteristics of the guest
workload.

2. Background
This section provides an overview of the native x86 page trans-
lation mechanism and a explanation of memory management for
virtualized systems, including a detailed description of nested pag-
ing. The impact of page size on native and nested page walks is also
discussed.

2.1 x86 Native Page Translation

Virtual memory is an abstraction of real system physical addresses,
and is typically set up by system software to provide separate
address spaces for each process or application [4]. The x86 page
translation mechanism uses hierarchical address-translation tables
referred to as page tables to translate from process-specific virtual
addresses (VA) to system-specific physical addresses (PA). The
x86 page tables are hardware-walked, and their layout is specified
by the x86 architecture. There are multiple modes of x86 paging,
varying primarily in the number of levels and in the ranges of VA
and PA that can be mapped.

The page table namespace can become overloaded. The overall
hierarchy is sometimes referred to as the “page table,” and each
level of the tree is a table with a particular name, with the bottom-
most level of the tree also called the “page table.” Figure 1(a)
shows the AMD64 long mode page translation hierarchy for a 4KB
memory page. For brevity and clarity, we will refer to the levels
of the page table as Ln, where 1 ≤ n ≤ 4 and 1 is the bottom-
most level. Each level of the table is 4KB in size and is 4KB-
aligned. To avoid conflicts with x86’s “page table entry” (L1 in our
terminology), we generically refer to a table entry at any level as a
page entry.

A page walk is an iterative process where a physical memory
address is used as the base of an Ln table and nine bits of the VA
per iteration are used as an index into that table to retrieve the base
address of the Ln−1 table, until level 1 is reached. The address of
the page table base is stored in the architectural CR3 register. Each
successive level of the walk maps a smaller VA range: L4 entries
map 512GB, L3 maps 1GB, L2 maps 2MB, and L1 maps 4KB. The
L1 table entry provides the physical address of a 4KB physical page,

which is combined with the lowest 12 bits of the virtual address to
generate the final physical address of the referenced data.

2.2 Memory Management for Virtualization

Without hardware support, virtualizing the virtual memory system
is complex and one of the primary sources of hypervisor overhead.
The hypervisor must maintain a separate mapping of guest physical
addresses to system physical addresses and use the existing native
hardware page walk mechanism for translations from guest virtual
address to system physical address. To accomplish this translation,
the hypervisor can create a shadow page table that maps the same
domain of guest virtual address into output ranges of system phys-
ical memory [2, 8]. The hypervisor must intervene in every attempt
by the guest to install or update a page table.

To avoid the software overhead of shadow paging, hardware
mechanisms have been proposed to avoid the intervention of the
hypervisor for memory management [4, 7, 8]. One such technique
is nested paging, in which the guest page table converts guest
virtual address to guest physical address, while a new table, the
nested page table, is introduced to map guest physical address to
system physical address. The guest remains in control over its own
page table without hypervisor intercepts. Paging control bits and
CR3 are duplicated to allow the nested paging table base and mode
to be independent from the guest. When an address translation is
required, the 2D page walk hardware traverses the guest page table
to map guest virtual address to guest physical address, with each
guest physical address requiring a nested page table walk to obtain
the system physical address.

Figure 1(b) shows the steps required for a 2D walk. The num-
bers within each circle or square in Figure 1(b) show the ordering
of memory references that take place during an end-to-end 2D page
walk. The final “SPA” indicates a system memory reference to the
referenced datum once the translation has been created. The boxes
represent the stages of the guest page walk, and the circles represent
the stages of the nested page walk. Each circle or square contains a
label showing the level of the page walk, gL4 to gL1 for guest page
table walk and nL4 to nL1 for nested page table walk. Guest physical
addresss are indicated by dotted lines.

When referring to a specific access, the notation {column,row}
is used. For example, {nL1,gPA} refers to step 24 in the 2D page
walk. A nested page walk is required to map each guest physical
address reference, including those generated during a guest page
table access. A single four-level guest table walk invokes the nested
page walker five times, once for each guest page entry (gL4 to gL1)
and once for the final translation of the guest physical address of
the datum itself (gPA).

2.3 Two-Dimensional Page Table Walk

Consider a standard x86 page table walk where a physical address
is generated at each stage of the walk. In the first step, CR3 and
VA[47:39] combine to produce the required physical address in the
L4 table, and the memory read for the L4 entry comes directly from
memory and provides the base of the L3 table, as in Figure 1(a).
In nested paging, each gLn entry cannot be read directly using a
guest physical address; a nested page table walk must translate the
guest physical address before the gLn entry can be read. The guest
physical address for gL4 serves as an input to a recursive call to the
page table walker, this time with nCR3 as the base of the page table.
The page table walker reads the four {nLn,gL4} entries (steps 1-4 in
Figure 1(b)) to translate the guest physical address into a system
physical address that can be used to read the desired gL4 entry (step
5).

The walk proceeds to the next level of the guest page table,
which corresponds to the second row in Figure 1(b), and again
reads four {nLn,gL3} entries to find the required system physical
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Figure 1. (a) Standard x86 page walk. (b) Two-dimensional page walk. Italics indicate column and row names; notations such as {nL1,gPA} and {G,gL1}
indicate entries in the indicated columns and rows.

address. This portion of the walk repeats for gL2 and gL1. The gL1

entry at step 20 determines the guest physical address of the base
of the guest data page.

At this point, the guest page table has been traversed, but one
final nested page walk (steps 21-24) is required to translate the
guest physical address of the datum to a usable system physical
address.

2.4 Large Page Size

While the diagrams in this paper show four levels of long mode
translation, some workloads have accesses which use only a subset
of them. The most important such case is large page support.1 Large
pages provide several advantages in both the native and nested
paging scenarios, including memory savings, a reduction in TLB
pressure, and shorter page walks.

With 4KB pages, an OS must use an entire L1 table, which
occupies 4KB of memory, to map a contiguous 2MB region of
virtual memory. If the OS can place all 512 4KB pages of that
2MB region into one contiguous, aligned 2MB block of physical
memory, then the OS can substitute a single large page mapping
and thus save the 4KB of memory used by the L1 table.

In addition to the memory savings, large pages can reduce TLB
pressure. Each large page table entry can be stored in a single TLB
entry, while the corresponding regular page entries require 512
4KB TLB entries to map the same 2MB range of virtual addresses.
Large page use allows the page walk hardware to skip L1 entirely
and use the L2 page entry directly to map a 2MB page, reducing
page walk latency due to the number of page entry references. A
large page entry encountered at L2 causes an early exit from the
standard walk shown in Figure 1(a) and a bypass from {G,gL2} to
step 21 in Figure 1(b).

In a nested paging environment, large pages can potentially
provide the same benefits in both dimensions of the 2D walk.
However, most large page benefits are neutralized if a guest uses
a large page to map a block of memory that the nested page
table maps with smaller pages. For correctness, the TLB must
consider the page size for a given translation to be the smaller

1 While AMD64 now adds support for a 1GB page size, this paper uses large page
interchangeably with 2MB page.

of the nested and guest page sizes, referred to as splintering [4].
This has important performance implications (discussed further in
Section 6.5), as a splintered 2MB page in the guest could require as
many as 512 4KB TLB entries.

3. Page Walk Characterization
This section discusses the performance cost of page walks and
shows that guest and nested page entries exhibit both a high degree
of reuse and a reasonable amount of spatial locality, making them
good candidates for caching.

3.1 Page Walk Cost

Translation requests that miss in the TLB can degrade performance.
Thus, understanding the characteristics of how the TLB behaves in
virtualization workloads is key to improving paging performance.
Table 1 provides some basic information about TLB behavior.
The simulation parameters, methodology, and benchmarks used to
produce this data are discussed in detail in Section 5.

Table 1. TLB miss frequency, latency, and performance impact
Instruction and Data Translations

Walk Perfect TLB
TLB Misses Latency Opportunity

(Per 100K Inst.) 2D/Native Native 2D

MiscServer 294.3 4.01X 14.0% 75.7%

WebServer 129.0 3.90X 4.7% 44.4%

JavaServer 257.0 3.91X 13.5% 89.0%

IntCpu 70.4 4.57X 11.4% 48.6%

FpCpu 18.2 4.43X 5.7% 27.5%

These statistics were gathered on a model with no specialized page caching hardware
other than standard TLBs. Native refers to unvirtualized execution. The geometric
mean is used within the benchmark suites.

The TLB Misses column shows the average number of TLB
accesses that result in a page walk per 100,000 retired instructions
in each suite. This value applies to both native and virtualized guest
execution. The Walk Latency column shows the relative slowdown
of a 2D page walk with no page walk caching as compared to
a native table walk with no page walk caching. The slowdowns
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Figure 2. Page entry access coverage by a given percentage of unique page entries

are significant, with nested walks being on average 3.9-4.6 times
slower than their native counterparts. While a page table walk does
not automatically stall progress in an out-of-order machine, it will
often stall multiple operations to the same page in memory, and
can very quickly stall the entire machine while the TLB miss is
resolved.

The last piece of data in Table 1 is the performance improve-
ment that could be theoretically achieved with a perfect TLB, which
eliminates cold misses as well as conflict and capacity misses.
While native performance can improve 5%-14%, nested paging
shows much larger potential gains in guest performance – up to
89% on JavaServer and 75% on MiscServer. Even CPU-intensive
suites, which are generally less sensitive to TLB behavior, show
guest improvements of 27%-48%.

3.2 Page Entry Reuse and Locality

Page Entry Reuse. Page entries are cached most effectively when
most of the accesses are confined to a small working set of unique
entries. While the complete working set of page entries is large for
the workloads investigated, they show considerable reuse.

Figure 2 shows the degree of reuse for the guest and nested page
entries, where reuse is measured as the percentage of unique page
entries needed to account for a given percentage of all page entry
accesses. The larger workloads such as MiscServer and WebServer
require more guest pages to cover a given percentage of their page
entry accesses than smaller workloads such as IntCpu and FpCpu.
However, even in MiscServer, which has the least reuse, less than
10% of guest page entries would need to be cached to cover 90%
of accesses.

Nested page tables have much higher reuse than guest page
tables, in part due to the inherent redundancy of the nested page
walk. This is critical for performance since there are many more
nested accesses than guest accesses in a 2D page walk. As seen in
Figure 1(b), each level of the nested page table hierarchy must be
accessed for each guest level. Since typical guests require a very
limited number of nL4 and nL3 entries, in many cases the same
nested page entries are accessed multiple times in a 2D page walk.

While the large overall page entry working set of some work-
loads makes caching difficult, the working set is not distributed
equally across the 24 references in the 2D page walk. Figure 3
shows the percentage of all unique page entries encountered at each
step of the walk for MiscServer. Note that this is a measure of the
unique page entries seen rather than total accesses. One might ex-
pect to see an equivalent number of {nL1,gPA} and {G,gL1} entries in
Figure 3, since they are both mappings of the guest data into their
respective address spaces. The difference arises when the guest uses

large pages, which remove {G,gL1}, while the hypervisor configu-
ration for this section always uses full four-level nested paging.
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reference in MiscServer

Figure 3 clearly demonstrates that six of the references account
for nearly all of the unique page entries. The greyed references ac-
counted for significantly less than 1% of the unique page entries.
This has two important implications for caching: all the greyed
references should be easily cacheable, since very few entries are
needed to capture their working sets; and, the {nL1,gPA} and {G,gL1}
references together account for nearly 90% of the page entry work-
ing set and may prove difficult to cache effectively.

Page Entry Spatial Locality. Many common microarchitectural
techniques can take advantage of spatial locality. The spatial lo-
cality of page entries is heavily correlated to that of the guest’s
data stream, since striding through data regions larger than 4KB
will generally involve striding through {nL1,gPA} page entries. The
same rationale also applies to {G,gL1}, since it only differs from
{nL1,gPA} in that it maps the guest data stream to the guest physi-
cal address instead of the system physical address. Exploiting the
spatial locality of these steps in the 2D page walk is particularly
important since Figure 3 shows they are the least reused.

Figure 4 shows the distribution of unique {nL1,gPA} page entries
accessed per cache line from the set of lines that service at least
one {nL1,gPA} page entry access. Since L1 page entries are eight
bytes each in long mode, the maximum number of page entries per
64-byte cache line is eight. The individual workloads have very
different spatial locality profiles. For IntCpu and FpCpu, more than
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70% of lines have at least two {nL1,gPA} page entries, with more
than 30% having the full eight. On the other end of the spectrum,
the larger workloads have few full lines. Even for MiscServer,
however, more than 30% of lines have at least two {nL1,gPA} page
entries. While not shown here, {G,gL1} entries exhibit a similar
distribution.
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Figure 4. Spatial locality of {nL1,gPA} page entries
This graph is based only on the last page entry reference in a nested page walk. These
page entries are eight bytes wide, so a 64-byte cache line can contain up to eight valid
page entries.

4. Page Walk Acceleration
Building on the page entry properties in the previous section, the
AMD Opteron’s page translation acceleration techniques for native
page walks are described and extensions for 2D page walks are
discussed.

4.1 AMD Opteron Translation Caching

AMD Opteron processors have facilities to accelerate native ad-
dress translation and page walks. For instance, like most general-
purpose microprocessors, the AMD Opteron TLB stores the full
virtual address to physical address memory page translation.

The AMD Opteron processor further benefits from the frequent
reuse of page entry references by accelerating native page walks
with a page walk cache (PWC). The PWC is a small, fast, fully-
associative, physically-tagged page entry cache. A PWC hit pre-
vents a page entry reference from accessing the memory hierarchy.

The PWC stores page entries from all page table levels except
L1, which is effectively stored in the TLB. All page entries are
initially brought into the L2 cache and treated like any other data.
Therefore, on a PWC miss, the page entry data may reside in the
L2 cache, L3 cache (if present), or main memory. Not caching page
entries in the L1 caches is a design decision and not a fundamental
requirement for page entry caching.

4.2 Translation Caching for 2D Page Walks

To accommodate nested paging, designers can easily modify the
TLB to store the full guest virtual address to system physical ad-
dress translation, which is the equivalent of the entire walk down to
the {nL1,gPA} page entry. The design choices for caching 2D page
walk entries, however, are more varied than native and potentially
more critical, as indicated by the perfect TLB speedups in Table 1.

Figure 5 illustrates the three 2D page walk cache designs out-
lined in this section. Four-level paging for guest, nested, and native
page tables are assumed for illustrative purposes. Each page entry
reference in the figure is represented as a circle or a square, as in

Figure 1(b). The following describes the caching schemes in more
detail.

One-Dimensional PWC (1D PWC). This design operates almost
identically to the native environment. Only page entry data from the
guest dimension are stored in the PWC and the entries are tagged
based on the system physical address. As indicated by the unshaded
references in Figure 5(a), all nested page entries require a memory
hierarchy access and cannot benefit from the lower-latency PWC.
Also, the lowest level guest page table entry {G,gL1} is not cached
in the PWC, similar to the AMD Opteron processor’s decision to
exclude L1 in native page walks.

(a):  1D_PWC (b):  2D_PWC
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Figure 5. 2D page walk caching designs

Two-Dimensional PWC (2D PWC). The 2D PWC design extends 1D PWC

into the nested dimension of the 2D page walk. This caching strat-
egy stores data for all 24 page table references of the 2D page walk,
turning the 20 unconditional cache hierarchy accesses of 1D PWC into
16 likely PWC hits (dark-filled references in Figure 5(b)) and four
possible PWC hits (checkered references), where the likelihood of
hitting in the PWC is shown in Figure 3. Like 1D PWC, all page en-
tries are tagged with their system physical address and {G,gL1} is
not cached.

Two-Dimensional PWC with Nested Translations (2D PWC+NT).
The 2D PWC+NT configuration augments 2D PWC with a dedicated guest
physical address to system physical address translation buffer, the
Nested TLB (NTLB). The primary goal of the NTLB is to reduce
the average number of page entry references that take place during
a 2D page walk. A separate structure is used to simplify the design
of the PWC and isolate the nested page table translations. The
NTLB uses the guest physical address of the guest page entry
to cache the corresponding nL1 entry. Caching nL1 page entries
is preferable to caching G entries because of the superior reuse
characteristics of nL1 demonstrated in Figure 3. In addition, storing
nL1 page entries allows one NTLB entry to exploit spatial locality
and provide translations for all page entries that reside in the same
page of memory.

The common-case 2D page walk with 2D PWC+NT is depicted in
Figure 5(c). The page walk begins by accessing the NTLB with
the guest physical address of {G,gL4}. The top solid arrow indicates
that this access is expected to hit in the NTLB and produce the
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data of {nL1,gL4}, allowing nested references 1-4 (Figure 1(b)) to
be skipped (shown as an X in a filled circle). On an NTLB hit, the
system physical address of {G,gL4} needed for the PWC access is
calculated. Similarly, the system physical addresses for the gL3 and
gL2 rows are calculated.

The NTLB translation for the gL1 row has reuse equivalent to
{G,gL2} and therefore has an increased chance of missing in the
NTLB (shown with a dashed arrow). The NTLB translation from
gPA level guest physical address to system physical address occurs
at the same frequency as a TLB miss. Therefore, there is no attempt
to cache this translation in the NTLB (analogous to the {G,gL1}
entry in the PWC). Finally, note that accessing the new NTLB
structure imposes latency in the page walk unrelated to the PWC
that is not present in the other schemes.

5. Methodology
This section describes the simulation environment for evaluating
the described page translation caching strategies. This discus-
sion includes hypervisor-independent 2D page walk modeling, the
baseline microarchitecture, and the analyzed workloads. The base-
line microarchitecture remains constant throughout the paper and
closely resembles that of the AMD Opteron processor.

Hypervisor-independent Simulation. This paper presents sim-
ulated 2D page walk caching results in a hypervisor-independent
environment. The configuration and implementation variabilities
of a specific hypervisor are removed and only the isolated guest
performance is reported. This is equivalent to using a theoretical
system with absolutely no hypervisor overhead and guest virtual-
ization overhead due only to the 2D page walk.

These simulations use pre-generated nested page tables based
on AMD64 long mode with 4KB pages to map guest addresses
to the system physical address space. The guest paging mode and
page size are properties of the virtualized guest and therefore vary
across the analyzed workloads. Note that the nested page size does
not need to match the guest page size. Many existing hypervisors
use 4KB nested pages for mapping guest physical addresses due
to the complexity of eliminating sub-2MB fragmentation. As de-
scribed in Section 2.2, this forces all TLB entries to be 4KB transla-
tions, regardless of the guest’s use of large pages. In Section 6.5, the
impact of exclusively using a nested page size of 2MB is evaluated.

Baseline Architecture. Page walk caching is evaluated in the con-
text of the latest generation AMD Opteron processor microarchi-
tecture. A cycle-accurate simulator is used to evaluate the page
table caching tradeoffs. The simulator has been validated against
silicon and the simulated microarchitecture is similar to the native
Quad-Core AMD Opteron microprocessor [15, 17]. Table 2 out-
lines some of the important microarchitectural parameters. Note
that TLB flushing due to requirements of the x86 ISA and microar-
chitecture is modeled. The majority of instructions that flush are
writes to control registers that dictate paging properties.

All simulations in this work are performed with a single thread
of execution, which is similar to examining a single guest on a
single core in a single socket. This may not be appropriate for
all virtualization tradeoffs because it ignores multi-processor and
multi-guest effects. For this work, we assume that the tradeoffs ana-
lyzed for page walk hardware are mostly immune to these effects in
both the server consolidation and high-performance virtualization
scenarios. In both of these cases, a high-performance hypervisor
can use affinity-based scheduling of virtual machines such that the
frequency of TLB and PWC flushes easily surpasses that of guest
core migrations.

Table 2. Default Microarchitectural Parameters
Memory Hierarchy (AMD Opteron processor)

64 KB L1 instruction cache & 64 KB L1 data cache
512 KB L2 Cache & 2 MB L3 Cache & DDR2-800 memory
Average L2 miss latency†: 100 cycles

Data TLB (AMD Opteron processor)

64-entry, fully-associative L1 D-TLB (any page size)
512-entry, 4-way L2 D-TLB (4KB pages)
128-entry, direct-mapped L2 D-TLB (2MB pages)

Instruction TLB (AMD Opteron processor)

32-entry, fully-associative L1 I-TLB (4KB pages)
16-entry, fully-associative L1 I-TLB (2MB pages)
512-entry, 4-way L2 I-TLB (4KB pages)

Page Walk Cache (experimental)

24-entry, fully-associative, LRU PWC
2-cycle PWC access
11-cycle PWC-miss-to-L2 cache hit
Flushed on each TLB flush

Nested TLB (experimental)

16-entry, fully-associative, LRU NTLB
2-cycle NTLB access
Never flushed during guest execution

† - The average L2 miss latency is the average number of cycles across all
workloads to receive any type of data from either the L3 cache or memory.

Page Walk Configuration. Table 2 also presents the base configu-
ration of the page walk. The page walk parameters are experimental
and are not chosen to be consistent with AMD microarchitectures.
In addition to the page walk configurations presented in the results
of Section 4, the following configuration is also evaluated in Sec-
tion 6. The no page walk caching configuration has no PWC or
NTLB, forcing all 24 nested and guest page entries to be retrieved
from the memory hierarchy.

Benchmarks. The simulation inputs are suites of retired instruc-
tion traces. Similar to techniques such as SimPoint [6], tracing re-
gions are selected and weighted to represent the entire run of the
benchmark. Each simulation consists of a warmup phase and a full
simulation phase that produces the results seen in this work. Due to
the warmup phase, many of the cold-start microarchitecture effects
(including TLB misses) are not present in these runs.

Table 3 lists the workloads presented in the analysis sections.
The MiscServer suite has database and services benchmarks, in-
cluding OLTP and SAP. The JavaServer and WebServer suites have
multiple versions and configurations of the corresponding SPEC
benchmarks. These three suites represent server workloads which
are often virtualized. For example, the VMmark benchmark [18]
includes SPECjbb2005, SPECweb2005, and a database compo-
nent. While all programs are potential virtualization candidates, the
SPEC CPU2006 suites are presented primarily to serve as reference
points.

Table 3. Benchmark Description
MiscServer OLTP with three different back-end databases; SAP; stock mar-

ket analysis; MAPI Messaging Benchmark 3 (MMB3); terminal
services

WebServer SPECweb R©2005, SPECweb R©99, SPECweb R©99 SSL

JavaServer Three runs of SPECjbb R©2005, each with a different JVM;
SPECjbb R©2000

IntCpu All SPECint R©2006 benchmarks

FpCpu All SPECfp R©2006 benchmarks
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6. Results
This section first presents the performance of the described page
walk caching schemes and shows that both of the 2D PWC de-
signs significantly outperform 1D PWC. The performance advantage
of 2D PWC+NT over 2D PWC is then analyzed in more detail by examin-
ing the PWC access characteristics.

Overall, page walk caching allows the guest to reclaim half of
the performance lost to 2D page walk overhead. However, further
analysis reveals that lower level nested page entry references are
difficult to cache in the PWC and miss frequently in the L2 cache.
The results section concludes by exploring hardware and software
modifications to further improve 2D page walk performance. Siz-
ing and policy alternatives are studied for the PWC and NTLB
structures, and a larger nested page size is tested.

6.1 Guest Performance Improvement

Figure 6 compares the performance improvements offered by the
presented page walk caching schemes and a hypothetical hypervi-
sor change to the performance of the unvirtualized guest (i.e., na-
tive). The results show that reasonable page walk caching hardware
can deliver 51%-78% of the native speedup and, when combined
with large nested page sizes, 86%-93% of native performance is
possible.
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Figure 6. Guest performance improvement
The guest performance is reported as speedup over the baseline microarchi-
tecture with 2D page walks but no page walk caching.

The three hardware-only page walk caching schemes improve
performance by turning page entry memory hierarchy references
into lower latency PWC accesses and, in the case of 2D PWC+NT,
skipping some page entry references entirely. 1D PWC, which caches
only references from the guest dimension of the 2D page walk,
yields little performance relative to the baseline. This is expected,
as 21 of the 24 page entry references still require memory hierar-
chy accesses. For 2D PWC, which caches all but the {G,gL1} entry in
the PWC, the absolute guest speedups range from 18% on Web-
Server to 38% on JavaServer. The 2D PWC+NT configuration, which
adds a separate NTLB structure to cache page-level guest physical
address to system physical address translations, performs the best.
It improves WebServer, JavaServer, and MiscServer guest perfor-
mance over 2D PWC by 3.2%, 7.3%, and 5.9% respectively.

The unvirtualized performance (Native) is 23%-74% better than
no page walk caching and still 5%-28% better than 2D PWC+NT.
Reasons behind this performance difference are presented in
Section 6.3. The 2D PWC+NT w/2MB NP configuration combines the
2D PWC+NT caching with a 2MB nested page size. This improves on
2D PWC+NT by up to 21% and is examined further in Section 6.5.

6.2 Page Walk Caching Comparison

The 2D PWC+NT configuration improves on the 2D PWC by as much
as 7.3% because it can skip nested page walk references. Each
NTLB access adds two cycles, but eliminating accesses that would
otherwise have hit in the PWC saves two cycles and eliminating
memory hierarchy accesses saves many more cycles.

To determine where 2D PWC+NT differs from 2D PWC, Figure 7
examines the page walk translation cache accesses and page entry
caching miss characteristics in more detail using the MiscServer
suite. The left side of the figure shows the total PWC and NTLB
(where applicable) accesses for 2D PWC and 2D PWC+NT, while the
right side shows the total page entry references that miss in all
caching structures and require memory hierarchy accesses. Each
bar is segmented into references based on page entry location in
the 2D page walk. The heights of all four stacked bars are relative
to the total number of PWC accesses in the 2D PWC scheme. NTLB
accesses are represented by the NTLB All segment and are unique
to 2D PWC+NT.
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Figure 7. Page entry caching characteristics for MiscServer
The stacks are normalized to the number of PWC accesses for 2D PWC and
segmented based on the caching structure and the page walk level of the
access. The 2D PWC+NT scheme adds a second caching structure, the NTLB,
to assist the PWC. There are no NTLB-related page entry caching misses
because a NTLB miss results directly in PWC accesses instead of memory
hierarchy accesses.

The first thing to note is that 2D PWC+NT has 40% fewer to-
tal PWC and NTLB accesses than 2D PWC and the accesses are
not always even across all page entry reference locations. For in-
stance, the PWC Nested gL1 accesses are reduced by the NTLB in
2D PWC+NT as expected from Figure 5(c). Even though the {nL1,gL1}
reference has lower reuse, it is valid for multiple {G,gL1} entries
and exhibits short-term spatial locality similar to that observed in
Figure 4. Therefore, one NTLB entry can eliminate a nested page
walk for all page entries on the same page in memory. This same
NTLB property allows 2D PWC+NT to eliminate even more of the
PWC Nested gL2, PWC Nested gL3, and PWC Nested gL4 ac-
cesses.

The PWC Guest component of the stack counts guest page entry
accesses. Since these G column references are not skipped, the
number of guest page entry references does not change between
2D PWC and 2D PWC+NT. The PWC Nested gPA portion of the stack
represents the four nested accesses in the gPA row of Figure 1(b)
and is also constant across both caching schemes. As shown in
Figure 5(c), the gPA level nested translation is uncacheable in the
2D PWC+NT scheme, so it will perform as many gPA-level nested
accesses as 2D PWC.

Page entry translation caching misses, which result in memory
hierarchy accesses, are presented on the right half of Figure 7. The
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2D PWC+NT design has 23% fewer PWC misses than 2D PWC compared
to a 67% reduction in PWC accesses and 40% reduction in overall
accesses. This disparity occurs because 2D PWC+NT obviates the need
to store entries that can be skipped but does not solve the reuse
issues inherent in the large working set steps shown in Figure 3. So,
although the NTLB eliminates many of the PWC accesses for well-
behaved page entry references, it does not eliminate a significant
portion of the accesses that have the highest penalty.

Figure 8 continues the in-depth look at MiscServer by focus-
ing on the per-reference characteristics of 2D PWC+NT caching. Each
data pair in the table displays the access frequency on the top (in
accesses per thousand retired instructions) and the PWC hit per-
centage on the bottom. Together these metrics portray the utility of
caching each page entry reference, where darker shading indicates
that a reference is more cacheable and lighter shading indicates that
a reference is less cacheable.
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Figure 8. Access rate and hit percentage per page entry reference
The data pairs consist of an activity metric (top) and a success metric (bottom).
Activity is measured in PWC accesses per thousand retired instructions. Success is
measured in PWC hit percentage.

The page entry access rates show the relative activity of each
reference. The access rates for nested page entries within a guest
row are equal since the presented schemes do not allow skipping
a portion of a nested page walk. However, between guest rows,
the magnitude of page entry accesses varies based on the ability
of the NTLB to eliminate nested page walks. The guest page entry
references (G column) and gPA row nested page entry references
occur more often because they are never skipped, as shown earlier
in Figure 5(c). The access rates in the G column are not exactly
the same due to the guest’s choice of paging modes, e.g., non-long
mode paging may not require the guest L3 or L4 levels while 2MB
pages will not require the guest L1 level.

The PWC hit percentages correlate closely with the working
set analysis of Figure 3. The {G,gL1} entries are not written into
the PWC, thus the 0% hit percentage. The {nL1,gPA} entry is writ-
ten into the PWC, but is available only for roughly seven out of
1,000 accesses. These results indicate that this entry should not be
cached by default and additional simulations (not shown) report a
0.4% performance increase if {nL1,gPA} is not cached. It is not as
clear whether the frequently accessed {G,gL2} and {nL2,gPA} entries
should be cached by default since they hit in the PWC for less than
half of the accesses. Selective page walk caching schemes are not
pursued in this work.

6.3 Page Entry Memory Hierarchy Accesses

Figure 6 shows that 2D PWC+NT improves guest performance by
18%-45% compared to no page walk caching. This is possible be-
cause the page walk caching hardware hits in the PWC or skips the
references for page entries with high reuse. However, the page en-
try references at the lower levels of the guest and nested page tables
prove difficult to contain within the PWC. This section reveals that
these PWC misses often miss in the L2 cache as well. This has a
significant impact on page walk performance and explains much of
the remaining 2D page walk overhead because an L2 cache miss
is approximately nine times more costly, on average, than an L2
cache hit.

Recall that all page entries are initially brought into the L2
cache and are subject to the policies of the memory hierarchy.
Therefore, on a PWC miss, the memory hierarchy is queried with
the system physical address for the required page entry. Table 4
presents L2 cache statistics for just these page entry references. The
first data column states that L2 accesses incurred during a 2D page
walk using the 2D PWC+NT configuration generate 2.7-5.5 times more
L2 misses than the native page walk. This increase is primarily
because the native page walk has fewer entries that are difficult
to cache (L1 and sometimes L2) compared to the 2D page walk
({G,gL1}, {nL1,gPA} and sometimes {G,gL2}, {nL2,gPA}, {nL1,gL1},
and {nL2,gL1}). Guests that use large pages will also see an increase
in page entry misses in the L2 cache because the smaller nested
page size leads to page splintering and results in more TLB misses
(see Section 6.5 for performance with a large nested page size).

Table 4. L2 cache misses for page entry references (2D PWC+NT)
Page Entry L2 Cache Page Entry L2 Cache
Misses (2D/Native) Miss %

MiscServer 3.06X 25.07

WebServer 5.52X 19.58

JavaServer 3.13X 24.55

IntCpu 2.74X 14.67

FpCpu 2.95X 16.35

The second data column shows the L2 cache miss percentage
when isolating the accesses due only to page entries from the 2D
page walk. As an example, references in the MiscServer workloads
are not available in the L2 cache approximately once out of every
four accesses. The miss percentages are relatively high because the
PWC and NTLB have filtered the easy-to-cache accesses and the
remaining accesses are difficult to cache.

The results from this section imply that the reuse analysis and
cacheability conclusions of Section 3.2 apply to both the PWC
and to the L2 cache. Increasing the sizes of the PWC and NTLB
can further improve performance to an extent, as examined in
Section 6.4.

6.4 Hardware: Impact of Increased Resources

This section examines the sensitivity of guest performance to the
sizes of the PWC and NTLB. This analysis demonstrates the mod-
est extent to which the increasing page walk caching entries can
reduce the 2D page walk overhead.

Figure 9 presents performance improvements for the Misc-
Server suite due to increases in the PWC and NTLB sizes. These
improvements are relative to the baseline 24-entry PWC and 16-
entry NTLB 2D PWC+NT configuration. For the five PWC caching
configurations on the X-axis, there are three corresponding NTLB
sizes. The 8096 w/(G, gL1) configuration is unique in that it writes
the gL1 guest page entry to the PWC. At 8096 entries, the PWC is
large enough to surpass the translation working set of the TLBs.
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Under these circumstances, this change in policy improves perfor-
mance. All PWC and NTLB configurations are fully-associative
and accessed with the same latency regardless of size.
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Figure 9. Impact of PWC and NTLB configuration on MiscServer guest
performance
The performance improvement for three NTLB sizes are presented for each PWC
configuration. The NTLB 16 bar for the 24-entry PWC configuration is 0% since it is
the same configuration as the baseline. The w/(G, gL1) configuration allows caching
of the {G,gL1} entry.

Several important conclusions can be drawn from Figure 9.
First, a substantial increase in PWC and NTLB entries brings some
extra performance but does not come close to bridging the gap
between guest and native performance. Second, while the first
16 NTLB entries resulted in a 6% performance improvement for
MiscServer, investing in additional NTLB entries has little impact,
especially as the number of PWC entries are increased. Finally, for
our base configuration, increasing PWC entries is more productive
than increasing NTLB entries, but requires substantial hardware
for little performance improvement. Note that increasing page walk
caching resources for JavaServer had very similar results to Misc-
Server while it delivered much lower performance improvements
for WebServer (no greater than 4% for the same configurations).

These hardware resource results emphasize that the utility of
page walk caching is confined to efficiently taking advantage of
inter-walk and intra-walk page entry reuse to improve page walk
latencies and will not remove the 2D page walk overhead entirely.
If additional resources are dedicated to translation speedup, it is
preferable to target full translation caching (i.e., the TLBs). For
example, increasing the L2 data TLB to 8096 4KB page entries in-
creases overall performance for MiscServer by 11.3% (not shown)
compared to 8.5% with 8096 PWC entries.

6.5 Software: Impact of Large Nested Pages

Adding large nested page sizes to the 2D PWC+NT page walk caching
brings guest performance within 7%-14% of unvirtualized perfor-
mance, as shown earlier in Figure 6. Large nested page sizes are
beneficial because they remove one nested page entry reference per
guest level, including the hard-to-cache nL1 references. This section
compares the default 4KB nested page size to a 2D page walk that
uses 2MB nested pages to map all of guest physical memory.

The hypervisor is responsible for generating the nested page ta-
bles and therefore determines the nested page size. Since the nested
page size in turn dictates the number of nested page levels, this
choice has important implications for 2D page walk performance.
Section 2.4 explains that the TLB will store a translation at the
smaller of the guest and nested page sizes. Therefore, hypervisors
that use large nested pages allow guests that use large pages to re-
ceive the full benefits of large pages. Even when a large nested

page backs a small guest page, the elimination of nL1 references
provides a significant reduction of memory references. System vir-
tualization requires techniques like these, in addition to better TLBs
and page entry caching, to significantly reduce the memory man-
agement overhead.

Table 5 presents relative performance and page translation ac-
tivity for the 2MB nested page size configuration compared to the
default 4KB-only nested page size configuration. The three data
columns are presented as a percent reduction versus the default
4KB nested page configuration.

Table 5. Page walk data for 2D PWC+NT with 2MB nested page size
Reduction vs 2D PWC+NT with

4KB Nested Page Size

TLB PWC Page Entry
Misses Accesses L2 Cache Misses

MiscServer 21% 38.0% 60.0%

WebServer 43% 55.5% 61.0%

JavaServer 32% 44.4% 64.7%

Large pages allow the TLB to cover a larger data region with
fewer translations. For guest applications that regularly use 2MB
pages, mapping these pages to 4KB nested pages will put more
pressure on the TLBs. Here, the use of 2MB nested pages results
in 21%-43% fewer TLB misses than in the 4KB nested page size
configuration. In addition, if all guest physical addresss are mapped
to 2MB pages by the nested page tables, the nL1 references for
the gPA, gL1, gL2, gL3, and gL4 levels are all eliminated. So, even
without guest large pages, 2MB nested pages will improve TLB
performance due to page walk access and miss count reductions.
The PWC access counts for these server workloads are reduced by
38%-55%. The biggest improvement comes from having fewer L2
cache misses. The ability to eliminate poor-locality references, like
{nL1,gL1} and {nL1,gPA}, reduces the number of L2 cache misses by
60%-64%.

7. Related Work
There are a number of alternatives to the x86 hierarchical page walk
that, on average, require fewer levels of translation and fewer ac-
cesses to memory. For example, PA-RISC’s hashed page table [10]
works well for large address spaces with sparse utilization. In the
worst case, the entire link must be traversed to determine the phys-
ical address. However, the average traversal time is fairly short be-
cause the average chain length is 1.5 entries.

Clustered page tables have been proposed as a way to improve
hashed page tables when there are clusters of contiguous pages
being allocated [13]. They minimize the size of the page table
and/or reduce the size of the hash lists by clustering contiguous
pages together into sub-blocks. Minimizing the size of the page
table results in better locality for the page table entries in the
caches, while reducing the size of the hash table lists means fewer
traversals are required to find the correct page.

Some of these hashed paging techniques could have been used
to minimize the number of translations in nested paging. However,
allowing the nested page table format to differ from the native
format would incur undesired complexity.

Other work has focused on caching or eliminating some of the
translation steps similar to the work presented here. The Intel ap-
plication note on memory management [9] discusses paging caches
that use various bits of the linear address to index into the cache and
skip some of the translation steps. However this document does not
provide a detailed analysis of their mechanism. Leidtke proposed
guarded page tables [12] to eliminate page tables and translation
steps when there is only one valid entry in a page table. Simi-
larly, the AMD I/O virtualization architecture (IOMMU) allows the
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grouping of virtual address bits to be used for the next step of the
translation [3]. This allows the IOMMU to skip page translation
steps for sparsely allocated device virtual memory. Region Looka-
side Buffers are used to skip some translation steps by caching mul-
tiple level page tables in a special TLB [5].

Finally, a set of papers and implementations have focused on
reducing the impact of TLB page walks by prefetching entries
into the TLB. The PA-SEMI PWRficient family prefetches the
next sequential page into the TLB on a TLB miss [19]. Also, a
doubly-linked list can be used to keep track of the TLB entries for
prefetching [1]. The work by Kandiraju examines different methods
for predicting the next TLB entry to prefetch based on mechanisms
used for cache prefetching [11].

8. Conclusion
Nested paging is a hardware technique to reduce the complex-
ity of software memory management during system virtualization.
Nested page tables combine with the guest page tables to map the
guest physical address space to the system physical address space,
resulting in a two-dimensional (2D) page walk. A hypervisor is no
longer required to trap on all guest page table updates and signif-
icant virtualization overhead is eliminated. However, nested pag-
ing can introduce new overhead for guest applications due to the
increase in page entry references. Unvirtualized server and SPEC
applications are shown to outperform the virtualized versions with
no page walk caching by 20%-70%. This work studies the sources
of this overhead, the properties of a 2D page walk, and solutions
for minimizing the 2D page walk latency.

This paper first presents the benefits and limitations of page
walk caching along with an analysis of page entry reuse and spatial
locality. The spatial locality analysis confirms that encountered
page entries are frequently co-located at a cache line granularity.
The reuse analysis shows that the page entry working set is not
distributed equally across all the references in a 2D page walk.
While there is heavy page entry reuse at the upper levels of both
the nested and guest page walks, the references at the lower levels
account for nearly 90% of the page entry working set and will not
be cached effectively.

The AMD Opteron page walk cache (PWC) for native page
walks and PWC extensions for 2D page walks are described and
evaluated using a hypervisor-independent simulation methodology.
Extending the PWC and adding a Nested TLB for 2D page walks
improves guest performance by as much as 46% and eliminates
over half the overhead of 2D page walks compared to no page walk
caching. However, page entries at the lower page table levels limit
the improvements because of poor cacheability in both the PWC
and the memory hierarchy. This paper then demonstrates that hy-
pervisor software can eliminate long-latency page entry references
and further improve guest performance as much as 22% by using
large nested page sizes.
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