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Abstract
Interrupt coalescing is a well known and proven tech-
nique for reducing CPU utilization when processing high
IO rates in network and storage controllers. Virtualiza-
tion introduces a layer of virtual hardware for the guest
operating system, whose interrupt rate can be controlled
by the hypervisor. Unfortunately, existing techniques
based on high-resolution timers are not practical for vir-
tual devices, due to their large overhead. In this paper, we
present the design and implementation of a virtual inter-
rupt coalescing (vIC) scheme for virtual SCSI hardware
controllers in a hypervisor.

We use the number of commands in flight from the
guest as well as the current IO rate to dynamically set
the degree of interrupt coalescing. Compared to exist-
ing techniques in hardware, our work does not rely on
high-resolution interrupt-delay timers and thus leads to
a very efficient implementation in a hypervisor. Further-
more, our technique is generic and therefore applicable
to all types of hardware storage IO controllers which, un-
like networking, don’t receive anonymous traffic. We
also propose an optimization to reduce inter-processor
interrupts (IPIs) resulting in better application perfor-
mance during periods of high IO activity. Our imple-
mentation of virtual interrupt coalescing has been ship-
ping with VMware ESX since 2009. We present our
evaluation showing performance improvements in micro
benchmarks of up to 18% and in TPC-C of up to 5%.

1 Introduction

The performance overhead of virtualization has de-
creased steadily in the last decade due to improved hard-
ware support for hypervisors. This and other storage de-
vice optimizations have led to increasing deployments
of IO intensive applications on virtualized hosts. Many
important enterprise applications today exhibit high IO
rates. For example, transaction processing loads can is-

sue hundreds of very small IO operations in parallel re-
sulting in tens of thousands of IOs per second (IOPS).
Such high IOPS are now within reach of even more IT
organizations with faster storage controllers, wider adop-
tion of solid-state disks (SSDs) as front-end tier in stor-
age arrays and increasing deployments of high perfor-
mance consolidated storage devices using Storage Area
Network (SAN) or Network-Attached Storage (NAS)
protocols.

For high IO rates, the CPU overhead for handling all
the interrupts can get very high and eventually lead to
lack of CPU resources for the application itself [7, 14].
CPU overhead is even more of a problem in virtualiza-
tion scenarios where we are trying to consolidate as many
virtual machines into one physical box as possible. Free-
ing up CPU resources from one virtual machine (VM)
will improve performance of other VMs on the same
host. Traditionally, interrupt coalescing or moderation
has been used in network and storage controller cards
to limit the number of times that application execution
is interrupted by the device to handle IO completions.
Such coalescing techniques have to carefully balance an
increase in IO latency with the improved execution effi-
ciency due to fewer interrupts.

In hardware controllers, fine-grained timers are used
in conjunction with interrupt coalescing to keep an up-
per bound on the latency of IO completion notifications.
Such timers are inefficient to use in a hypervisor and
one has to resort to other pieces of information to avoid
longer delays. This problem is challenging for several
other reasons, including the desire to maintain a small
code size thus keeping the trusted computing base to a
manageable size. We treat the virtual machine workload
as unmodifiable and as an opaque black box. We also
assume based on earlier work that guest workloads can
change their behavior very quickly [6, 10].

In this paper, we target the problem of coalescing in-
terrupts for virtual devices without assuming any support
from hardware controllers and without using high res-



olution timers. Traditionally, there are two parameters
that need to be balanced: maximum interrupt delivery la-
tency (MIDL) and maximum coalesce count (MCC). The
first parameter denotes the maximum time to wait before
sending the interrupt and the second parameter denotes
the number of accumulated completions before sending
an interrupt to the operating system (OS). The OS is in-
terrupted based on whichever parameter is hit first.

We propose a novel scheme to control for both MIDL
and MCC implicitly by setting the delivery ratio of in-
terrupts based on the current number of commands in
flight (CIF) from the guest OS and overall IO comple-
tion rate. The ratio, denoted as R, is simply the ratio of
how many virtual interrupts are sent to the guest divided
by the number of actual IO completions received by the
hypervisor on behalf of that guest. Note that 0 < R  1.
Lower values of delivery ratio, R, denotes a higher de-
gree of coalescing. We increase R when CIF is low and
decrease the delivery rate R for higher values of CIF.

The key insight in the paper is that unlike network IO,
CIF can be used directly for storage controllers because
each request has a corresponding command in flight prior
to completion. Also, based on the characteristics of stor-
age devices, it is important to maintain certain number
of commands in flight to efficiently utilize the underly-
ing storage device [9, 11, 23]. The benefits of command
queuing are well known and concurrent IOs are used in
most storage arrays to maintain high utilization. Another
challenge in coalescing interrupts for storage IO requests
is that many important applications issue synchronous
IOs. Delaying the completion of prior IOs can delay the
issue of future ones, so one has to be very careful about
minimizing the latency increase.

Another problem we address is specific to hypervisors,
where the host storage stack has to receive and process an
IO completion before routing it to the issuing VM. The
hypervisor may need to send inter-processor interrupts
(IPIs) from the CPU that received the hardware interrupt
to the remote CPU where the VM is running for notifi-
cation purposes. We provide an optimization to reduce
the number of IPIs issued using the timestamp of the last
interrupt that was sent to the guest OS. This reduces the
overall number of IPIs while bounding the latency of no-
tifying the guest OS about an IO completion.

We have implemented our virtual interrupt coalescing
(vIC) techniques in the VMware ESX hypervisor [21]
though they can be applied to any hypervisor including
type 1 and type 2 as well as hardware storage controllers.
Experimentation with a set of micro benchmarks shows
that vIC techniques can improve both workload through-
put and CPU overheads related to IO processing by up
to 18%. We also evaluated vIC against the TPC-C work-
load and found improvements of up to 5%. The vIC im-
plementation discussed here is being used by thousands

of customers in the currently shipping ESX version.
The next section presents background on VMware

ESX Server architecture and overall system model along
with a more precise problem definition. Section 3
presents the design of our virtual interrupt coalescing
mechanism along with a discussion of some practical
concerns. An extensive evaluation of our implementa-
tion is presented in Section 4, followed by some lessons
learned from our deployment experience in real world
in Section 5. Section 6 presents an overview of related
work followed by conclusions and directions for future
work in Sections 7 and 8 respectively.

2 System Model

Our system model consists of two components in the
VMware ESX hypervisor: VMkernel and the virtual ma-
chine monitor (VMM). The VMkernel is a hypervisor
kernel, a thin layer of software controlling access to
physical resources among virtual machines. The VMk-
ernel provides isolation and resource allocation among
virtual machines running on top of it. The VMM is re-
sponsible for correct and efficient virtualization of the
x86 instruction set architecture as well as emulation of
high performance virtual devices. It is also the concep-
tual equivalent of a “process” to the ESX VMkernel. The
VMM intercepts all the privileged operations from a VM
including IO and handles them in cooperation with the
VMkernel.

Figure 1 shows the ESX VMkernel executing storage
stack code on the CPU on the right and an example VM
running on top of its virtual machine monitor (VMM)
running on the left processor. In the figure, when an in-
terrupt is received from a storage adapter (1), appropriate
code in the VMkernel is executed to handle the IO com-
pletion (2) all the way up to the vSCSI subsystem which
narrows the IO to a specific VM. Each VMM shares a
common memory area with the ESX VMkernel, where
the VMkernel posts IO completions in a queue (3) fol-
lowing which it may issue an inter-process interrupt or
IPI (4) to notify the VMM. The VMM can pick up the
completions on its next execution (5) and process them
(6) resulting finally in the virtual interrupt being fired (7).

Without explicit interrupt coalescing, the VMM al-
ways asserts the level-triggered interrupt line for every
IO. Level-triggered lines do some implicit coalescing al-
ready but that only helps if two IOs are completed back-
to-back in the very short time window before the guest
interrupt service routine has had the chance to deassert
the line.

Only the VMM can assert the virtual interrupt line and
it is possible after step 3 that the VMM may not get
a chance to execute for a while. To limit any latency
implications of a VM not entering into the VMM, the



Figure 1: Virtual Interrupt Delivery Mechanism. When a disk IO completes, an interrupt is fired (1) from a physical
adapter to a particular Physical CPU (PCPU) where the interrupt handler of the hypervisor delivers it to the appropriate
device driver (2). Higher layers of the hypervisor storage stack process the completion until the IO is matched (vSCSI
layer) to a particular Guest Operating System which issued the IO and its corresponding Virtual Machine Monitor
(VMM). vSCSI then updates the shared completion queue for the VMM (3) and if the guest or VMM is currently
executing, issues an inter-processor interrupt (IPI) to the target PCPU where the VMM is known to be running (4).
The IPI is only a latency optimization since the VMM would have inspected the shared queues the next time the guest
exited to the VMM anyway. The remote VMM’s IPI handler takes the signal and (5) inspects the completion queues
of its virtual SCSI host bus adapters (HBAs), processes and virtualizes the completions (6) and fires a virtual interrupt
to be handled by the guest (7).

VMkernel will take one of two actions. It will sched-
ule the VM if it is descheduled. Otherwise, if both the
VM and the VMkernel are executing on separate cores at
the same time, the VMkernel sends an IPI, in step 4 in
the figure. This IPI is purely an optimization to provide
lower latency IO completions to the guest. Without the
IPI, guests may execute user level code for an extended
period without triggering any hypervisor intercept that
would allow for virtual interrupt delivery. Correctness
guarantees can still be met even if the IPI isn’t issued
since the VMM will pickup the completion as a matter
of course the next time that it gets invoked via a timer in-
terrupt or a guest exiting into VMM mode due to a priv-
ileged operation.

Based on the design described above, there are two in-
efficiencies in the existing mechanism. First the VMM
will interrupt the guest for every completion that it sees
posted by the VMkernel. We would like to coalesce these
to reduce the guest CPU overhead during high IO rates.
Second, IPIs are very costly and are used mainly as a la-

tency optimization. It would be desirable to dramatically
reduce them if one could track the rate at which comple-
tions are being picked up by the VMM. All this needs to
be done without the help of fine grained timers because
they are prohibitively expensive in a hypervisor. Thus
the main challenges in coalescing virtual interrupts can
be summarized as:

1. How to control the rate of interrupt delivery from a
VMM to a guest without loss of throughput?

2. How and when to delay the IPIs without inducing
high IO latencies?

In the next section, we present our virtual interrupt co-
alescing mechanisms to efficiently resolve both of these
challenges.

3 vIC Design

In this section, we first present some background on ex-
isting coalescing mechanisms and explain why they can-



not be used in our environment. Next, we present our
approach at a high level followed by the details of each
component and a discussion of specific implementation
issues.

3.1 Background
When implemented in physical hardware controllers, in-
terrupt coalescing generally makes use of high resolu-
tion timers to cap the amount of extra latency that in-
terrupt coalescing might introduce. Such timers allow
the controllers to directly control MIDL (maximum in-
terrupt delivery latency) and adapt MCC (maximum co-
alesce count) based on the current rate. For example,
one can configure MCC based on a recent estimate of in-
terrupt arrivals and put a hard cap on latency by using
high resolution timers to control MIDL. Some devices
are known to allow a configurable MIDL in increments
of tens of microseconds.

Such high resolution timers are generally used in ded-
icated IO processors where the firmware timer handler
overhead can be well contained and the hardware re-
sources can be provisioned at design time to meet the
overhead constraints. However, in any general purpose
operating system or hypervisor, it is generally not con-
sidered feasible to program high resolution timing as a
matter of course. The associated CPU overhead is sim-
ply too high.

If we were to try to directly map that MCC/MIDL so-
lution to virtual interrupts, we would be forced to drive
the system timer interrupt using resolutions as high as
100 µs. Such a high interrupt rate would have prohibitive
performance impact on the overall system both in terms
of the sheer CPU cost of running the software interrupt
handler ten thousand times a second, as well as the first-
and second-order context switching overhead associated
with each of them. As a comparison, Microsoft Win-
dows 7 typically sets up its timers to go off every 15.6 ms
or down to 1 ms in special cases whereas VMware ESX
configures timers in the range of 1 ms and 10 ms or even
longer when using one-shot timers. This is orders of
magnitude lower resolution than what is used by typical
storage hardware controller firmware.

3.2 Our approach
In our design, we define a parameter called interrupt de-
livery ratio R, as the ratio of interrupts delivered to the
guest and the actual number of interrupts received from
the device for that guest. A lower delivery ratio implies
a higher degree of coalescing. We dynamically set our
interrupt delivery ratio, R, in a way that will provide co-
alescing benefits for CPU efficiency as well as tightly
control any extra vIC-related latency. This is done using

commands in flight (CIF) as the main parameter and IO
completion rate (measured as IOs per sec or IOPS) as a
secondary control.

At a high level, if IOPS is high, we can coalesce more
interrupts within the same time period, thereby improv-
ing CPU efficiency. However, we still want to avoid and
limit the increase in latency for cases when the IOPS
changes drastically or when the number of issued com-
mands is very low. SSDs can typically do tens of thou-
sands of IOPS even with CIF = 1, but delaying IOs in this
case would hurt overall performance.

To control IO delay, we use CIF as a guiding param-
eter, which determines the overall impact that the coa-
lescing can have on the workload. For example, coalesc-
ing 4 IO completions out of 32 outstanding might not be
a problem since we are able to keep the storage device
busy with the remaining 28, whereas even a slight delay
caused by coalescing 2 IOs out of 4 outstanding could
result in the resources of the storage device not getting
fully utilized. Thus we want to vary the delivery ratio R
in inverse proportion of the CIF value. Using both CIF
values and estimated IOPS value, we are able to provide
effective coalescing for a wide variety of workloads.

There are three main parameters used in our algorithm:

• iopsThreshold: IOPS value below which no inter-
rupt coalescing is done.

• cifThreshold: CIF value below which no interrupt
coalescing is done.

• epochPeriod: Time interval after which we re-
evaluate the delivery ratio, in order to react to the
change in the VM workload.

The algorithm operates in one of the three modes:
(1) Low-IOPS (R = 1): We turn off vIC if the achieved
throughput of a workload ever drops below the iop-
sThreshold. Recall that we do not have a high resolution
timer. If we did, whenever it would fire, it would allow us
to determine if we have held on to an IO completion for
too long. A key insight for us is that instead of a timer,
we can actually rely on future IO-completion events to
give our code a chance to control extra latency.

For example, an IOPS value of 20,000 means that
on average there will be a completion returned every
50 µs. Our default iopsThreshold is 2000 that implies
a completion on average every 500 µs. Therefore, at
worst, we can add that amount of latency. For higher
IOPS, the extra latency only decreases. In order to do
this, we keep an estimate of the current number of IOPS
completed by the VM.

(2) Low-CIF (R = 1): We turn off vIC whenever the
number of outstanding IOs (CIF) drops below a config-
urable parameter cifThreshold. Our interrupt coalescing



Figure 2: Virtual Interrupt Delivery Steps. In addition to Figure 1, vIC adds a new shared area object tracking the last
time that the VMM fired an interrupt. Before sending the IPI, vSCSI checks to ensure that time since the last VMM-
induced virtual interrupt is less than a configurable threshold. If not so, an IPI is still fired, otherwise, it is deferred.
In the VMM, an interrupt coalescing scheme is introduced. Note that we did not introduce a high-resolution timer and
instead rely on the subsequent IO completions themselves to drive the vIC logic and to regulate the vIC related delay.

algorithm tries to be very conservative so as to not in-
crease the application IO latency for trickle IO work-
loads. Such workloads have very strong IO inter depen-
dencies and generally issue only a very small number of
outstanding IOs.

A canonical example of an affected workload is dd,
which issues one IO at a time. For dd, if we had co-
alesced an interrupt, it would actually hang forever. In
fact, waiting is completely useless for such cases and it
only adds extra latency. When only a small number of
IOs (cifThreshold) remain outstanding on an adapter, we
stop coalescing. Otherwise, there may be a throughput
reduction because we are delaying a large percentage of
IOs.

(3) Variable R based on CIF: Setting the delivery ra-
tio (R) dynamically is challenging since we have to bal-
ance the CPU efficiency gained by coalescing against ad-
ditional latency that may be added especially since that
may in turn lower the achieved throughput. We discuss
our computation of R next.

3.2.1 Dynamic Adjustment of Delivery Ratio R

Which ratio is picked depends upon the number of
commands in flight (CIF) and the configuration option
“cifThreshold”. As CIF increases, we have more room to

coalesce. For workloads with multiple outstanding IOs,
the extra delay works well since they are able to amortize
the cost of the interrupt being delivered to process more
than one IO. For example, if the CIF value is 24, even if
we coalesce 3 IOs at a time, the application will have 21
other IOs pending at the storage device to keep it busy.

In deciding the value of R, we have two main issues
to resolve. First we cannot choose an arbitrary frac-
tional value of R and implement that because of the lack
of floating point calculations in the VMM code. Sec-
ond, a simple ratio of the form 1/x based on a counter x
would imply that the only delivery-ratio options available
to the algorithm would be (100%, 50%, 25%, 12.5%,
...). The jump from 100% down to 50% is actually too
drastic. Instead, we found that to be able to handle a
multitude of situations, we need to have delivery ratios,
anywhere from 100% down to 6.25%. In order to do
this we chose to set two fields, countUp and skipUp, dy-
namically to express the delivery ratios. Intuitively, we
deliver (countUp) out of every (skipUp) interrupts, i.e.
R = countU p/skipU p. For example, to deliver 80% of
the interrupts, countUp = 4 and skipUp = 5 whereas for
6.25% countUp = 1 and skipUp = 16. Table 1 shows
the full range of values as encoded in Algorithm 1. By
allowing ratios between 100% and 50%, we can tightly



Algorithm 1: Delivery Ratio Determination
IntrCoalesceRecalc(int cif)
currIOPS : Current throughput in IOs per sec;
ci f : Current # of commands in flight (CIF);
ci f T hreshold : Configurable min CIF (default=4);
if currIOPS < iopsT hreshold_ ci f < ci f T hreshold then

/* R = 1 */
countU p � 1;
skipU p � 1;

else if ci f < 2⇤ ci f T hreshold then
/* R = 0.8 */
countU p � 4;
skipU p � 5;

else if ci f < 3⇤ ci f T hreshold then
/* R = 0.75 */
countU p � 3;
skipU p � 4;

else if ci f < 4⇤ ci f T hreshold then
/* R = 0.66 */
countU p � 2;
skipU p � 3;

else
/* R = 8/CIF */
countU p � 1;
skipU p � ci f /(2⇤ ci f T hreshold);

control the throughput loss at smaller CIF.
The exact values of R are determined based on experi-

mentation and to support the efficient implementation in
a VMM. Algorithm 1 shows the exact values of deliv-
ery ratio R as a function of CIF, cifThreshold and iop-
sThreshold. Next we will discuss the details of interrupt
delivery mechanism and some optimizations in imple-
menting this computation.

3.2.2 Delivering Interrupts

On any given IO completion, the VMM needs to decide
whether to post an interrupt to the guest or to coalesce
it with a future one. This decision logic is captured in
pseudo code in Algorithm 2. First, at every “epoch pe-
riod”, which defaults to 200 ms, we reevaluate the vIC
rate so we can react to changes in workloads. This is
done in function IntrCoalesceRecalc(), the pseudo code
for which is found in Algorithm 1.

Next, we check to see if the new CIF is below the
cifThreshold. If such a condition happens, we immedi-
ately deliver the interrupt. The VMM is designed as a
very high performance software system where we worry
about code size (in terms of both lines of code (LoC) and
bytes of .text). Ultimately, we have to calculate for
each IO completion whether or not to deliver a virtual
interrupt given the ratio R = countU p/skipU p. Since
this decision is on the critical path of IO completion, we

Algorithm 2: VMM—IO Completion Handler
ci f : Current # of commands in flight (CIF);
ci f T hreshold : Configurable min CIF (default=4);
epochStart : Time at start of current epoch (global);
epochPeriod : Duration of each epoch (global);
di f f  � currTime()� epochStart;
if di f f > epochPeriod then

IntrCoalesceRecalc(ci f );
if ci f < ci f T hreshold then

counter � 1;
deliverIntr();

else if counter < countU p then
counter ++;
deliverIntr();

else if counter >= skipU p then
counter � 1;
deliverIntr();

else
counter ++;
/* don’t deliver */

if Interrupt Was Delivered then
SharedArea.timeStamp � currTime();

CIF Intr Delivery Ratio R as %
1-3 100%
4-7 80%
8-11 75%

12-15 66%
CIF � 16 8 / CIF

e.g., CIF = 64 12%

Table 1: Default interrupt delivery ratio (R) as a function
of CIF. ci f T hreshold is set to the default of 4.

have designed a simple but very condensed logic to do so
with the minimum number of LoC, which needs careful
explanation.

In Algorithm 2, counter is an abstract number that
counts up from 1 till countU p� 1 delivering an in-
terrupt each time. It then continues to count up till
skipU p� 1 while skipping each time. Finally, once
counter reaches skipU p, it is reset back to 1 along with
an interrupt delivery. Let us look at two examples of a
series of counter values as more IOs come in, along with
whether the algorithm delivers an interrupt as tuples of
hcounter, deliver?i. For countU p/skipU p ratio of 3/4,
a series of IOs looks like:
h1, yesi, h2, yesi, h3, noi, h4, yesi.

Whereas for countU p/skipU p of 1/5:
h1, noi, h2, noi, h3, noi, h4, noi, h5, yesi.
Next we look at the optimization related to reducing

the number of IPIs sent to a VM during high IO rate.



3.3 Reducing IPIs

So far, we have described the mechanism for virtual in-
terrupt coalescing inside the VMM. As mentioned in
Section 2 and illustrated in Figure 1, another component
involved in IO delivery is the ESX VMkernel. Recall that
IO completions from hardware controllers are handled
by this component and sent to the VMM, an operation
that can require an IPI in case the guest is currently run-
ning on the remote processor. Since IPIs are expensive,
we would like to avoid them or at the very least mini-
mize their occurrence. Note that the IPI is a mechanism
to force the VMM to wrest execution control away from
the guest to process a completion. As such it is purely
a latency optimization and correctness guarantees don’t
hinge on it since the VMM frequently gets control any-
way and always checks for completions.

Figure 2 shows the additional data flow and compu-
tation in the system to accomplish our goal of reducing
IPIs. The primary concern is that a guest OS might have
scheduled a compute intensive task, which may result in
the VMM not receiving an intercept. In the worst case,
the VMM will wait until the next timer interrupt, which
could be several milliseconds away, to receive a chance
to execute and deliver virtual interrupts. So, our goal is
to avoid delivering IPIs as much as possible while also
bounding the extra latency increase.

We introduce as part of the shared area between the
VMM and the VMkernel where completion queues are
managed, a new time-stamp of the last time the VMM
posted an IO completion virtual interrupt to the guest
(see last line of Algorithm 2). We added a new step (3.5)
in the VMkernel where before firing an IPI, we check
the current time against what the VMM has posted to
the shared area. If the time difference is greater than a
configurable threshold, we post the IPI. Otherwise, we
give the VMM an opportunity to notice IO completions
in due course on its own. Section 4.5 provides exper-
imental evaluation of the impact of IPI delay threshold
values.

3.4 Implementation Cost

We took great care to minimize the cost of vIC and to
make our design and implementation as portable as pos-
sible. A part of that was to refrain from using any float-
ing point code. In the critical path code (Algorithm 2),
we even avoid integer divisions. This should allow our
design to be directly implementable in other hypervisors
on any CPU architecture, and even in firmware or hard-
ware of storage controllers. For reference, the increase in
the 64-bit VMM .text section was only 400 bytes and
the .data section grew by only 104 bytes. Our patch
for the LSI Logic emulation in the VMM was less than

120 LoC. Similarly, the IPI coalescing logic in the VMk-
ernel was implemented with just 50 LoC.

4 Experimental Evaluation

To evaluate our vIC approach, we have examined sev-
eral micro-benchmark and macro-benchmark workloads
and compared each workload with and without inter-
rupt coalescing. In each case we have seen a reduc-
tion in CPU overhead, often associated with an increase
in throughput (IOPS). For all of the experiments, un-
less otherwise indicated, the parameters are set as fol-
lows: ci f T hreshold = 4, iopsT hreshold = 2000 and
epochPeriod = 200 ms. All but the TPC-C experiments
were run on an HP Proliant DL-380 machine with 4 dual-
core AMD 2.4 GHz processors. The attached storage ar-
ray was an EMC CLARiiON CX3-40 with very small
fully cached LUNs. The Fibre Channel HBA used was a
dual-port QLogic 4Gb card.

In the next subsections, we first discuss the results for
the Iometer micro benchmark in Section 4.1. Next, we
cover the CPU utilization improvements of the Iometer
benchmark and a detailed break-down of savings in Sec-
tion 4.2. Section 4.3 presents our evaluation of vIC us-
ing two SQL IO simulators, namely SQLIOSim and GS-
Blaster. Finally, we present results for a complex TPC-
C-like workload in Section 4.4. For each of the experi-
ments, we have looked at the CPU savings along with the
impact on throughput and latency of the workload.

4.1 Iometer Workload
We evaluated two Iometer [1] workloads running on a
Microsoft Windows 2003 VM on top of an internal build
of VMware ESX Server. The first workload consists of
4KB sequential IO reads issued by one worker thread
running on a fully cached Logical Unit (LUN). In other
words, all IO requests are hitting the array’s cache in-
stead of requiring disk access. The second workload is
identical except for a different block size of 8KB.

For both workloads we varied the number of outstand-
ing IOs to see the improvement over baseline. In Ta-
ble 2, we show the full matrix of our test results for the
4KB workload. Furthermore, Table 3 summarizes the
percentage improvements over the baseline where coa-
lescing was disabled. The column labeled R, in Table 2,
is the average ratio chosen by algorithm based on vary-
ing CIF over the course of the experiment; as expected,
our algorithm coalesces more rigorously as the number
of outstanding IOs is increased. Looking closely at the
64 CIF case, we can see that the dynamic delivery ratio,
R, was found to be 1/6 on average. This means that one
interrupt was delivered for every six IOs. The guest op-
erating system reported a drop from 113K interrupts per



OIO R̂ IOPS CPU
cost
cycles/ IO

Int/sec
Guest

Baseline
IOPS

Baseline
CPU
Cost

Baseline
Int/sec
Guest

8 4/5 31.2K 82.6K 49K 30.5K 84.2K 47K
16 2/3 38.9K 74.8K 58K 38.4K 77.0K 60K
32 1/3 48.3K 68.0K 69K 46.4K 70.5K 74K
64 1/6 53.1K 64.0K 34K 52.9K 78.4K 113K

Table 2: Iometer 4KB reads with one worker thread and
a cached Logical Unit (LUN). R̂ is the average delivery
ratio set dynamically by the algorithm in this experiment.
OIO is the number of outstanding IOs setting in Iometer.
At runtime, CIF is often lower than the workload config-
ured OIO as confirmed by R̂ here being lower than the
R(OIO) from Table 1.

OIO IOPS
%diff

CPU cost
%diff

Int/sec Guest
%diff

8 2.3% -1.9% 4.3%
16 1.3% -2.8% -3.3%
32 4.1% -3.5% -6.8%
64 0.4% -18.4% -66.4%

Table 3: Summary of improvements in key metrics with
vIC. The experiments is the same as in Table 2.

second to 34K. The result of this is that the CPU cycles
per IO have also dropped from 78.4K to 64.0K, which is
an efficiency gain of 18%.

In Tables 4 and 5 we show the same results as before,
but now with the 8KB IO workload. For the 64 CIF case,
the algorithm results in the same interrupt coalescing ra-
tio of 1/6 with now a 7% efficiency improvement over
the baseline. The interrupt per second in the guest have
dropped from 30K to 11K.

In both Table 2 and 4 we see a noticeable reduction in
CPU cycles per IO whenever vIC has been enabled. We
also would like to note that throughput never decreased
and in many cases actually increased significantly.

4.2 Iometer CPU Usage Breakdown

For the 8KB sequential read Iometer workload with 64
outstanding IOs, we examined the breakdown between
the VMM and guest OS CPU usage. Table 6 shows the
monitor’s abridged kstats. The VMK VCPU HALT statis-
tic is the percent of time that the guest was idle. No-
tice that the guest idle time has increased which im-
plies that the guest OS spent less time processing IO
for the same effective throughput. The guest kernel run-
time is measured by the amount of time we spent in the
TC64 IDENT. Here we see a noticeable decrease in ker-
nel mode execution time from 9.0% to 7.4%. The LSI
Logic virtual SCSI adapter IO issuing time measured
by device Priv Lsilogic IO has decreased from

OIO R̂ IOPS CPU
cost
cycles/ IO

Int/sec
Guest

Baseline
IOPS

Baseline
CPU
Cost

Baseline
Int/sec
Guest

8 4/5 31.2K 83.6K 48K 29.9K 88.2K 49K
16 2/3 39.3K 77.6K 61K 38.5K 81.3K 63K
32 1/3 41.5K 76.0K 60K 41.1K 77.1K 69K
64 1/6 41.5K 71.0K 11K 41.1K 75.7K 30K

Table 4: Iometer 8KB reads with one worker thread and
a cached Logical Unit (LUN). Caption as in Table 2.

OIO IOPS
%diff

CPU cost
%diff

Int/sec Guest
%diff

8 4.3% -5.2% -2.0%
16 2.1% -4.5% -3.2%
32 1.0% -1.5% -13.0%
64 1.0% -6.2% -63.3%

Table 5: Summary of improvements in key metrics with
vIC. The experiments is the same as in Table 4.

5.0% to 4.3%.
The IO completion work done in the VMM is part of

a generic message delivery handler function and is mea-
sured by DrainMonitorActions in the profile. The
table shows a slight increase from 0.5% to 0.7% of CPU
consumption due to the management of the interrupt co-
alescing ratio.

The net savings gained by enabling virtual interrupt
coalescing can be measured by looking at the guest idle
time which is a significant 6.4% of a core. In a real work-
load which performs both IO and CPU-bound operations,
this would result in an extra 6+% of available time for
computation. We expect that some part of this gain also
includes the reduction of the virtualization overhead as
a result of vIC mostly consisting of second order effects
related to virtual device emulation.

4.3 SQLIOSim and GSBlaster

We also examined the results from SQLIOSim [13] and
GSBlaster. Both of these macro-benchmark workloads
are designed to mimic the IO behavior of Microsoft SQL
Server.

SQLIOSim is designed to target an “ideal” IO latency
to tune for. That means that if the benchmark sees a
higher IO latency it assumes that there are too many out-
standing IOs and reduces that number. The reverse case
is also true allowing the benchmark to tune for this pre-
set optimal latency value. The user chooses this value to
maximize their throughput and minimize their latency. In
SQLIOSim we used the default value of 100ms.

GSBlaster is our own internal performance testing tool
which behaves similar to SQLIOSim. It was designed
as a simpler alternative to SQLIOSim which we could



With vIC Without vIC
VMK VCPU HALT 71.4% 65.0%
TC64 IDENT 7.4% 9.0%
device Priv Lsilogic IO 4.3% 5.0%
DrainMonitorActions 0.7% 0.5%

Table 6: VMM profile for 8KB sequential read Iometer
workload. Each row represents time spent in the related
activity relative to a single core. The list is filtered down
for space reasons to only the profile entries that changed.

IOPS CPU
Cost

Baseline
IOPS

Baseline
CPU
Cost

IOPS
%diff

CPU
Cost
%diff

SQLIOSim 6282 339K 5327 410K +17.9% -17.4%
GSBlaster 24651 126K 20755 151K +18.8% -16.6%

Table 7: Performance improvements in SQLIOSim and
GSBlaster. Improvements are seen both in IOPS and
CPU efficiency.

understand and analyze in an easier manner. As opposed
to SQLIOSim, when using GSBlaster we choose a fixed
value for the number of outstanding IOs. It will then run
the workload based on this configuration.

Table 7 shows the results of our optimization on both
the target macro-benchmark workloads. We can see that
the IOPS increased as a result of vIC by more than
17%. As in previous benchmarks, we also found that
the CPU cost per IO decreased (by 17.4% in the case of
SQLIOSim and 16.6% in the case of GSBlaster).

4.4 TPC-C Workload
The results seen so far have been for micro and macro
benchmarks with relatively simple workload drivers.
Whereas such data gives us insight into the upside po-
tential of vIC, we have to put that in context of a large,
complex application that performs computation as well
as IO. We chose to evaluate our system on our internal
TPC-C testbed1. The number of users is always kept
large enough to fully utilize the CPU resources, such that
adding more users won’t increase the performance. Our
TPC-C run was on a 4-way Opteron E based machine.
The system was backed by a 45-disk EMC CX-3-20 stor-
age array.

Table 8 shows results with and without interrupt co-
alescing with a ci f T hreshold range of 2–4. When vIC
is enabled, we were able to increase the number of users
from 80 to 90 at the CPU saturation point. This immedi-
ately demonstrates that vIC freed up more CPU for real
workload computation. Increasing the number of users
also helps increase the achieved, user-visible benchmark

1Non-comparable implementation; results not TPC-CTMcompliant;
deviations include: batch benchmark, undersized database.

T T Users IOPS Intr/ Latency
Diff Sec

No vIC 43.3 80 10.2K 9.9K 7.7ms
cifT = 4 44.6 +3.0% 90 10.4K 6.4K 8.5ms
cifT = 2 45.5 +5.1% 90 10.5K 5.8K 9.2ms

Table 8: TPC-C workload throughput (T ) run with
and without interrupt coalescing and with different
cifThreshold (cifT) configuration parameter values.

Diff vs. baseline
ci f T = 4 ci f T = 2

IDT AfterInterrupt -28% -31%
device Priv Lsilogic IO -12% -14%
DrainMonitorActions -19% -22%
Intr Deliver -25% -30%
Intr IOAPIC -40% -46%
device SCSI CmdComplete -13% -16%
Intr -42% -49%

Table 9: VMM profile for TPC-C. Each row represents
improvements in time spent in the related activity. The
list is filtered down for space reasons to only the profile
entries that changed significantly.

metric of throughput or transactions per minute. Table 8
shows that the transcation rate increased by 3.0% and
5.1% for ci f T hreshold of 4 and 2, respectively. In our
experience, optimizations for TPC-C are very difficult
and significant investment is made for each fractional
percent of improvement. As such, we consider an in-
crease of 3.0%–5.1% to be very significant.

We also logged data for the algorithm-selected vIC
rate, R, every 200 ms during the run. Figure 3 shows
the histogram of the distribution of R for certain duration
of the TPC-C run. It is interesting that R varies dramat-
ically throughout the workload. The frequency distribu-
tion here is a function of the workload and not vIC.

Furthermore, in Figure 4 we show the same data plot-
ted against time. The interrupt coalescing rate varies sig-
nificantly because the TPC-C workload has periods of
IO bursts. In fact, there are numerous times where the
algorithm selects to deliver less than 1 out of every 12
interrupts. This illustrates how the self-adaptability and
responsiveness of our algorithm is necessary to satisfy
complex real-world workloads.

As a result of interrupt coalescing, we see a decrease in
virtual interrupts per second delivered to the guest from
9.9K to 6.4K and 5.8K. We also noticed an increase in
the IOPS achieved by the storage array. This can be
explained by the fact that there is increased parallelism
(more users) in the input workload. Such a change in
workload has been demonstrated in earlier work to in-
crease throughput [11].

Any increase in parallelism is also accompanied by an
expected increase in average latency [11]. This explains
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Figure 4: The algorithm selected virtual interrupt coalescing rate, R, over time for TPC-C. The high dynamic range
illustrates the burstiness in outstanding IOs of the workload and the resulting online adaptation by vIC.

Figure 3: Histogram of dynamically selected virtual in-
terrupt coalescing rates, R, during our TPC-C run. The
x-axis is log-scale.

the bulk of the increase between the no-vIC and the vIC-
enabled rows in Table 8. However, one would expect
a certain increase in latency from any interrupt coalesc-
ing algorithm. In our case, we expect latency increases
to be less than a few hundred microseconds. Using in-
stantaneous IOPS, CIF and R, we can calculate the mean
delay from vIC. For instance, at the median delivery rate
R = 1/3, at the achieved mean IOPS of 10K for this ex-
periment, the increase would be 200 µs.

In Table 9 we show a profile of percentage reduction
in CPU utilization of several key VMM components as a

result of interrupt coalescing. IOs are processed as part
of the VMM’s action processing queue. The reduction
in the queue processing is between 19% and 22% for the
CIF thresholds of 4 and 2 respectively. Fewer interrupts
means that the guest operating system is performing
fewer register operations on the virtual LSI Logic con-
troller, shown by device Priv Lsilogic IO. The
net reduction in device operations translated to a 12%
and 14% reduction, respectively, in CPU usage relative
to using the virtual device without vIC. We also mea-
sured an approximately 30% reduction in the monitor’s
interrupt delivery function Intr Deliver.

4.5 IPI interference: CPU-bound loads

Recall that we described an optimization of not posting
IPIs in all cases using a threshold delay, in order to lower
the impact of IPIs on VMs workload (Section 3.3). In
this section, we first motivate our optimization by show-
ing that the impact on CPU-bound applications can be
very high. We show nevertheless that sending at least
some IPIs is essential as an IO latency and throughput
optimization. We then provide data to illustrate the diffi-
cult trade-off between the two concerns.

We ran two workloads, one IO bound and the other
CPU bound, on the same virtual machine running the Mi-
crosoft Windows 2003 operating system. The IO-bound
workload is running an Iometer, 1 worker benchmark,
doing 8 OIO, 8K Read from a fully cached small LUN.
The CPU-bound workload is an SMP version of Hyper Pi
for which the run time in seconds to calculate 1M digits
of p on two virtual processors is plotted as triangles (av-
erage of 6 runs). Hyper Pi is fully-backlogged and we run



Figure 5: Effect of different IPI send thresholds. This plot illustrates the trade-off in IO throughput and CPU efficiency
of two co-running benchmarks, as we vary the key parameter: the IPI send threshold. The workloads are run on the
same 2-vCPU Windows 2003 guest. The IO workload performance is shown as vertical bars for an Iometer, 1 worker,
8 OIO, 8K Read from a fully cached small LUN. Each IO data point is the average of 50 consecutive samples. The
CPU-bound workload is an SMP version of Hyper Pi for which the run time in seconds to calculate 1M digits of
pi on two virtual processors is plotted as triangles (average of 6 runs). For each workload, both the co-running and
independent scores are plotted. No delay in sending an IPI results in the highest IO throughput whereas waiting 500
microseconds to send an IPI results in the highest performance of the CPU-bound workload.

it at the idle priority class effectively giving Iometer
higher priority while ensuring that the guest never halts
due to idling.

Figure 5 shows the effect of different IPI send thresh-
olds on performance. This plot illustrates the trade-off
in IO throughput and CPU efficiency of two co-running
benchmarks respectively, as we vary the IPI send thresh-
old from VMkernel. For each workload, Figure 5 shows
both the co-running and independent scores. The IO
workload performance is shown as vertical bars in terms
of IO throughput observed by Iometer. Each IO data
point is the average of 50 consecutive samples. Perfor-
mance of Hyper Pi workload is shown in terms of time
to completion of 1 million digit computation for p.

First, notice that the throughput for “IOPS no Hyper
Pi” bars do not change much with the IPI send threshold.
This is because the guest is largely idle and frequently
entering the CPU halt state. Whenever the guest halts,
the VMM gains execution control and has the chance to
check for pending completions from the VMkernel. As
such, sending IPIs more or less frequently has hardly any
bearing on the latency of the VMM noticing and deliver-
ing an interrupt to the guest. Similarly, the blue triangle
case of “Hyper Pi no IO” shows no sensitivity to our pa-
rameter. This is obvious: no IO activity means that IPIs
are out of the picture anyway.

As soon as we run those two benchmarks together,
they severely interfere with each other. This is due to
the fact that Hyper Pi is keeping the CPU busy imply-
ing that the guest never enters halt. Therefore, the VMM
only has rare opportunities to check for pending IO com-

pletions (e.g., when a timer interrupt is delivered). Hyper
Pi sees its best performance at high IPI-send thresholds
(right end of the x-axis) since it gets to run uninterrupted
for longer periods of time. However, IO throughput (see
the blue bars) suffers quite a bit from the increased la-
tency. Conversely, if no delay is used (left end of the
x-axis), the impact on the performance of Hyper Pi is se-
vere. As expected, IO performance does really well in
such situations.

It should be noted that the two workloads, though run-
ning on the same virtual machine, are not tied to each
other. In other words, there is no closed loop between
them as is often the case with enterprise applications.
Still, the setup is illustrative in showing the impact of
IPIs on IO and CPU bound workloads.

These results indicate that setting a good IPI send
threshold is important but nontrivial and even workload
dependent. We consider automatic setting of this param-
eter to be highly interesting future work. For ESX, we
have currently set the default to be 100 microseconds to
favor CPU bound parts of workloads based on experi-
ments on closed loop workloads run against real disks.

5 Deployment Experience

Our implementation of vIC as described in this paper has
been the default for VMware’s LSI Logic virtual adapter
in the ESX hypervisor since version 4.0, which was re-
leased in the second quarter of 2009. As such, we have
significant field experience with deployments into the
tens of thousands of virtual machines. Since then, we



have not received any performance bug reports on the
virtual interrupt coalescing algorithm.

On the other hand, the pvscsi virtual adapter which
first shipped in ESX 4.0 did not initially have some of
the optimizations that we developed for the LSI Logic
virtual interrupt coalescing. In particular, although it had
variable interrupt coalescing rates depending on CIF, it
was missing the iopsT hreshold and was not capable of
setting the coalescing rate, R, between 1/2 and 1. As
a result, several performance bugs were reported. We
triaged these bugs to be related to the missing optimiza-
tions in pvscsi which are now fixed in the subsequent
ESX 4.1 release. We feel that this experience further vali-
dates the completeness of our virtual interrupt coalescing
approach as a successful, practical technique for signif-
icantly improving performance in one dimension (lower
CPU cost of IO) without sacrificing others (throughput
or latency).

The key issue with any interrupt coalescing scheme is
the potential for increases in IO response times which
we have studied above. At high IO rates, some appli-
cation IO threads might be blocked a little longer due
to coalescing. In our case, this delay is strictly bound
by the 1/iopsT hreshold. Our solution is significantly
better than other coalescing techniques since it explic-
itly takes CIF into account. In our experience, vIC lets
compute threads of real applications run longer before
getting interrupted. Increased execution time can reduce
overhead from sources such as having the application’s
working set evicted from the CPU caches, etc. Interrupt
coalescing is all about the trade off between CPU effi-
ciency and IO latencies. Hence, we provide parameters
to adjust that tradeoff if necessary, though the default set-
tings have been tuned using a variety of workloads.

6 Related Work

Interrupts have been in active use since early days of
computers to handle input-output devices. Smother-
man [19] provides an interesting history of the evolution
of interrupts and their usage in various computer sys-
tems starting from UNIVAC (1951). With increasing net-
work bandwidth and IO throughput for storage devices,
the rate of interrupts and thus CPU overhead to handle
them has been increasing pretty much since the interrupt
model was first developed. Although processor speeds
and number of cores have been increasing to keep up
with these devices, the motivation to reduce overall CPU
overhead of interrupt handling has remained strong. In-
terrupt coalescing has been very successfully deployed
in various hardware controllers to mitigate the CPU over-
head. Many patents and papers have been published on
performing interrupt coalescing for network and storage
hardware controllers.

Gian-Paolo’s patent [15] provides a method for dy-
namic adjustment of maximum frame count and max-
imum wait time parameters for sending the interrupts
from a communication interface to a host processor. The
packet count parameter is increased when the rate of ar-
rivals is high and decreased when the interrupt arrival
rate gets low. The maximum wait time parameter en-
sures a bounded delay on the latency of the packet deliv-
ery. Hickerson and Mccombs’s patent [12] uses a single
counter to keep track of the number of initiated tasks.
The counter is decremented on the task completion event
and it is incremented when the task is initiated. A delay
timer is set using the counter value. An interrupt is gen-
erated either when the delay timer is fired or the counter
value is less than a certain threshold. In contrast to both
of these patented techniques, our mechanism adjusts the
delivery rate itself based on CIF and does not rely on
any delay timers. It should be noted, however, that our
approach is complementary to interrupt coalescing opti-
mizations done in the hardware controllers since they can
benefit in lowering the load on the hypervisor host, in our
case the ESX VMkernel.

QLogic [4] and Emulex [5] have also implemented in-
terrupt coalescing in their storage HBAs but the details
of their implementation are not publicly available. The
knowledge base article for a Qlogic driver [3] suggests
the use of a delay parameter, ql2xintrdelaytimer which
is used as a wait time for firmware before generating
an interrupt. This is again dependent on high resolution
timers and delaying the interrupts by a certain amount.
Online documentation suggests that the QLogic inter-
rupt delay timer can be set in increments of 100 µs. In-
terrupt coalescing can be disabled by another parameter
called ql2xoperationmode. Interestingly, this driver pa-
rameter allows two modes of interrupt coalescing distin-
guished by whether an interrupt is fired if CIF drops to 0.
A similar document related to Emulex device driver for
VMware [2] suggests the use of statically defined delay
and IO count thresholds, lpfc cr delay, lpfc cr count, for
interrupt coalescing.

Stodolsky, Chen and Bershad [20] describe an opti-
mistic scheme to reduce the cost of interrupt masking by
deferring the processing (“continuation”) of any interrupt
that arrives during a critical section to a later time. Many
operating systems now use similar techniques to handle
the scheduling of deferred processing for interrupts. The
paper also suggests that interrupts be masked at the time
of deferral so that the critical section can continue with-
out further interruptions. Level-triggered interrupts like
the ones described in our work are another way of ac-
complishing the same thing. Both of these techniques
from the Bershad paper are complementary to the idea
of coalescing which is more concerned with the delay of
interrupt delivery.



Zec et al. [22] study the impact of generic inter-
rupt coalescing implementation in 4.4BSD on the steady
state TCP throughput. They modified the fxp driver in
FreeBSD and controlled only the delay parameter Td ,
which specifies the time duration between the arrival of
first packet and the time at which hardware interrupt is
sent to the OS. Similarly, Dong et al. recently studied [8]
the CPU impact of interrupts and proposed an adaptive
interrupt coalescing scheme for a network controller.

Mogul and Ramakrishnan [14] studied the problem of
receive livelock, where the system is busy processing in-
terrupts all the time and other necessary tasks are starved
to the most part. To avoid this problem they suggested
the hybrid mechanism of polling under high load and us-
ing regular interrupts for lighter loads. Polling can in-
crease the latency for IO completions, thereby affecting
the overall application behavior. They optimized their
system by using various techniques to initiate polling and
enable interrupts under specific conditions. They also
proposed round robin polling to fairly allocate resources
among various sources.

Salah et al. [17] did an analysis of various interrupt
handling schemes such as polling, regular interrupts, in-
terrupt coalescing, and disabling and enabling of inter-
rupts. Their study concludes that no single scheme is
good under all traffic conditions. This further moti-
vates the need for an adaptive mechanism that can ad-
just to the current interrupt arrival rate and other work-
load parameters. Salah [16] performed an analytical and
simulation study of the relative benefit of time-based
versus number-of-packets based interrupt coalescing in
context of networking. More recently Salah and Qah-
tan [18] implemented and evaluated a different hybrid
interrupt handling scheme for Gigabit NICs in Linux ker-
nel 2.6.15. Their hybrid scheme switches between inter-
rupt disabling-enabling (DE) and polling.

Our approach, instead of switching to polling, adjusts
the overall interrupt delivery rate during high load. We
believe this is more flexible and adapts well to drastic
changes in guest workload. We also use CIF which is
available only in context of storage controllers but allows
us to solve this problem more efficiently. Furthermore,
we do not have the luxury to change the guest behavior
in terms of interrupts vs polling because the guest OS is
like a black box to virtualization hypervisors.

7 Conclusions

In this paper, we studied the problem of efficient virtual
interrupt coalescing in context of virtual hardware con-
trollers implemented by a hypervisor. We proposed the
novel techniques of using the number of commands in
flight to dynamically adjust the interrupt delivery ratio in
fine-grained steps and to use future IO events to avoid

the need of high-resolution timers. We also designed
a technique to reduce the number of inter-processor in-
terrupts while keeping the latency bounded. Our pro-
totype implementation in the VMware ESX hypervisor
showed that we are able to improve application through-
put (IOPS) by up to 19% and improve CPU efficiency
up to 17% (for the GSBlaster and SQLIOSim workloads
respectively). When tested against our TPC-C work-
load, vIC improved the workload performance by 5.1%
and demonstrated the ability of our algorithm to adapt
quickly to changes in the workload. Our technique is
equally applicable to hypervisors and hardware storage
controllers; we hope that our work spurs further work in
this area.

8 Open Problems

There are some open problems which deserve further
exploration by our fellow researchers and practitioners.
Firmware implementations of vIC could lower the cost
of hardware controllers and provide tighter latency con-
trol than what is available today. Currently, our vIC
implementation hard-codes the best CIF-to-R mappings
based on extensive experimentation. Dynamic adapta-
tion of that mapping appears to be an interesting prob-
lem. In some architectures, PCI devices are directly
passed-through to VMs. Interrupt coalescing in this con-
text is worthy of investigation.

At first blush, networking controllers do not appear
to lend themselves to a CIF-based approach since the
protocol layering in the stack means that the lower lay-
ers (where interrupt posting decisions are made) do not
know the semantics of higher layers. Still, we speculate
that inference techniques might be applicable to do ag-
gressive coalescing without loss of throughput in context
of high-bandwidth TCP connections using window size-
based techniques.
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