
A Comparison of Software and Hardware Techniques for x86
Virtualization

Keith Adams
VMware

kma@vmware.com

Ole Agesen
VMware

agesen@vmware.com

Until recently, the x86 architecture has not permitted classical
trap-and-emulate virtualization. Virtual Machine Monitors for x86,
such as VMware R© Workstation and Virtual PC, have instead used
binary translation of the guest kernel code. However, both Intel
and AMD have now introduced architectural extensions to support
classical virtualization.

We compare an existing software VMM with a new VMM de-
signed for the emerging hardware support. Surprisingly, the hard-
ware VMM often suffers lower performance than the pure software
VMM. To determine why, we study architecture-level events such
as page table updates, context switches and I/O, and find their costs
vastly different among native, software VMM and hardware VMM
execution.

We find that the hardware support fails to provide an unambigu-
ous performance advantage for two primary reasons: first, it of-
fers no support for MMU virtualization; second, it fails to co-exist
with existing software techniques for MMU virtualization. We look
ahead to emerging techniques for addressing this MMU virtualiza-
tion problem in the context of hardware-assisted virtualization.

Categories and Subject Descriptors C.0 [General]: Hardware/soft-
ware interface; C.4 [Performance of systems]: Performance at-
tributes; D.4.7 [Operating Systems]: Organization and design

General Terms Performance, Design

Keywords Virtualization, Virtual Machine Monitor, Dynamic Bi-
nary Translation, x86, VT, SVM, MMU, TLB, Nested Paging

1. Introduction
The x86 has historically lacked hardware support for virtualization
[21]. While paravirtualization [5, 25], or changing the guest operat-
ing system to permit virtualization, has produced promising results,
such changes are not always practical or desirable.

The need to virtualize unmodified x86 operating systems has
given rise to software techniques that go beyond the classical trap-
and-emulate Virtual Machine Monitor (VMM). The best known of
these software VMMs, VMware Workstation and Virtual PC, use
binary translation to fully virtualize x86. The software VMMs have
enabled widespread use of x86 virtual machines to offer server con-
solidation, fault containment, security and resource management.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ASPLOS’06 October 21–25, 2006, San Jose, California, USA.
Copyright c© 2006 ACM 1-59593-451-0/06/0010. . . $5.00

Recently, the major x86 CPU manufacturers have announced ar-
chitectural extensions to directly support virtualization in hardware.
The transition from software-only VMMs to hardware-assisted
VMMs provides an opportunity to examine the strengths and weak-
nesses of both techniques.

The main technical contributions of this paper are (1) a re-
view of VMware Workstation’s software VMM, focusing on per-
formance properties of the virtual instruction execution engine;
(2) a review of the emerging hardware support, identifying perfor-
mance trade-offs; (3) a quantitative performance comparison of a
software and a hardware VMM.

Surprisingly, we find that the first-generation hardware sup-
port rarely offers performance advantages over existing software
techniques. We ascribe this situation to high VMM/guest transi-
tion costs and a rigid programming model that leaves little room
for software flexibility in managing either the frequency or cost of
these transitions.

While the first round of hardware support has been locked down,
future rounds can still be influenced, and should be guided by
an understanding of the trade-offs between today’s software and
hardware virtualization techniques. We hope our results encour-
age hardware designers to support the proven software techniques
rather than seeking to replace them; we believe the benefits of soft-
ware flexibility to virtual machine performance and functionality
are compelling.

The rest of this paper is organized as follows. In Section 2, we
review classical virtualization techniques and establish terminol-
ogy. Section 3 describes our software VMM. Section 4 summarizes
the hardware enhancements and describes how the software VMM
was modified to exploit hardware support. Section 5 compares the
two VMMs qualitatively and Section 6 presents experimental re-
sults and explains these in terms of the VMMs’ properties. Section
7 looks ahead to future software and hardware solutions to the key
MMU virtualization problem. Section 8 summarizes related work
and Section 9 concludes.

2. Classical virtualization
Popek and Goldberg’s 1974 paper [19] establishes three essential
characteristics for system software to be considered a VMM:

1. Fidelity. Software on the VMM executes identically to its exe-
cution on hardware, barring timing effects.

2. Performance. An overwhelming majority of guest instructions
are executed by the hardware without the intervention of the
VMM.

3. Safety. The VMM manages all hardware resources.

In 1974, a particular VMM implementation style, trap-and-
emulate, was so prevalent as to be considered the only practical

2

method for virtualization. Although Popek and Goldberg did not
rule out use of other techniques, some confusion has resulted over
the years from informally equating “virtualizability” with the abil-
ity to use trap-and-emulate.

To side-step this confusion we shall use the term classically vir-
tualizable to describe an architecture that can be virtualized purely
with trap-and-emulate. In this sense, x86 is not classically virtualiz-
able, but it is virtualizable by Popek and Goldberg’s criteria, using
the techniques described in Section 3.

In this section, we review the most important ideas from classi-
cal VMM implementations: de-privileging, shadow structures and
traces. Readers who are already familiar with these concepts may
wish to skip forward to Section 3.

2.1 De-privileging

In a classically virtualizable architecture, all instructions that read
or write privileged state can be made to trap when executed in an
unprivileged context. Sometimes the traps result from the instruc-
tion type itself (e.g., an out instruction), and sometimes the traps
result from the VMM protecting structures that the instructions ac-
cess (e.g., the address range of a memory-mapped I/O device).

A classical VMM executes guest operating systems directly, but
at a reduced privilege level. The VMM intercepts traps from the
de-privileged guest, and emulates the trapping instruction against
the virtual machine state. This technique has been extensively de-
scribed in the literature (e.g., [10, 22, 23]), and it is easily verified
that the resulting VMM meets the Popek and Goldberg criteria.

2.2 Primary and shadow structures

By definition, the privileged state of a virtual system differs from
that of the underlying hardware. The VMM’s basic function is to
provide an execution environment that meets the guest’s expecta-
tions in spite of this difference.

To accomplish this, the VMM derives shadow structures from
guest-level primary structures. On-CPU privileged state, such as
the page table pointer register or processor status register, is han-
dled trivially: the VMM maintains an image of the guest register,
and refers to that image in instruction emulation as guest operations
trap.

However, off-CPU privileged data, such as page tables, may re-
side in memory. In this case, guest accesses to the privileged state
may not naturally coincide with trapping instructions. For exam-
ple, guest page table entries (PTEs) are privileged state due to their
encoding of mappings and permissions. Dependencies on this priv-
ileged state are not accompanied by traps: every guest virtual mem-
ory reference depends on the permissions and mappings encoded in
the corresponding PTE.

Such in-memory privileged state can be modified by any store
in the guest instruction stream, or even implicitly modified as a
side effect of a DMA I/O operation. Memory-mapped I/O devices
present a similar difficulty: reads and writes to this privileged data
can originate from almost any memory operation in the guest in-
struction stream.

2.3 Memory traces

To maintain coherency of shadow structures, VMMs typically
use hardware page protection mechanisms to trap accesses to in-
memory primary structures. For example, guest PTEs for which
shadow PTEs have been constructed may be write-protected.
Memory-mapped devices must generally be protected for both
reading and writing. This page-protection technique is known as
tracing. Classical VMMs handle a trace fault similarly to a privi-
leged instruction fault: by decoding the faulting guest instruction,
emulating its effect in the primary structure, and propagating the
change to the shadow structure.

2.4 Tracing example: x86 page tables

To protect the host from guest memory accesses, VMMs typically
construct shadow page tables in which to run the guest. x86 speci-
fies hierarchical hardware-walked page tables having 2, 3 or 4 lev-
els. The hardware page table pointer is control register %cr3.

VMware Workstation’s VMM manages its shadow page tables
as a cache of the guest page tables. As the guest accesses previously
untouched regions of its virtual address space, hardware page faults
vector control to the VMM. The VMM distinguishes true page
faults, caused by violations of the protection policy encoded in
the guest PTEs, from hidden page faults, caused by misses in the
shadow page table. True faults are forwarded to the guest; hidden
faults cause the VMM to construct an appropriate shadow PTE,
and resume guest execution. The fault is “hidden” because it has
no guest-visible effect.

The VMM uses traces to prevent its shadow PTEs from becom-
ing incoherent with the guest PTEs. The resulting trace faults can
themselves be a source of overhead, and other coherency mecha-
nisms are possible. At the other extreme, avoiding all use of traces
causes either a large number of hidden faults or an expensive con-
text switch to prevalidate shadow page tables for the new context.

In our experience, striking a favorable balance in this three-way
trade-off among trace costs, hidden page faults and context switch
costs is surprising both in its difficulty and its criticality to VMM
performance. Tools that make this trade-off more forgiving are rare
and precious.

2.5 Refinements to classical virtualization

The type of workload significantly impacts the performance of the
classical virtualization approach [20]. During the first virtual ma-
chine boom, it was common for the VMM, the hardware, and all
guest operating systems to be produced by a single company. These
vertically integrated companies enabled researchers and practi-
tioners to refine classical virtualization using two orthogonal ap-
proaches.

One approach exploited flexibility in the VMM/guest OS in-
terface. Implementors taking this approach modified guest operat-
ing systems to provide higher-level information to the VMM [13].
This approach relaxes Popek and Goldberg’s fidelity requirement
to provide gains in performance, and optionally to provide features
beyond the bare baseline definition of virtualization, such as con-
trolled VM-to-VM communication.

The other approach for refining classical VMMs exploited flex-
ibility in the hardware/VMM interface. IBM’s System 370 archi-
tecture introduced interpretive execution [17], a hardware execu-
tion mode for running guest operating systems. The VMM encodes
much of the guest privileged state in a hardware-defined format,
then executes the SIE instruction to “start interpretive execution.”
Many guest operations which would trap in a de-privileged environ-
ment directly access shadow fields in interpretive execution. While
the VMM must still handle some traps, SIE was successful in re-
ducing the frequency of traps relative to an unassisted trap-and-
emulate VMM.

Both of these approaches have intellectual heirs in the present
virtualization boom. The attempt to exploit flexibility in the OS/VMM
layer has been revived under the name paravirtualization [25].
Meanwhile, x86 vendors are introducing hardware facilities in-
spired by interpretive execution; see Section 4.

3. Software virtualization
We review basic obstacles to classical virtualization of the x86
architecture, explain how binary translation (BT) overcomes the
obstacles, and show that adaptive BT improves efficiency.

3

3.1 x86 obstacles to virtualization

Ignoring the legacy “real” and “virtual 8086” modes of x86, even
the more recently architected 32- and 64-bit protected modes are
not classically virtualizable:

• Visibility of privileged state. The guest can observe that it has
been deprivileged when it reads its code segment selector (%cs)
since the current privilege level (CPL) is stored in the low two
bits of %cs.

• Lack of traps when privileged instructions run at user-level. For
example, in privileged code popf (“pop flags”) may change
both ALU flags (e.g., ZF) and system flags (e.g., IF, which
controls interrupt delivery). For a deprivileged guest, we need
kernel mode popf to trap so that the VMM can emulate it
against the virtual IF. Unfortunately, a deprivileged popf, like
any user-mode popf, simply suppresses attempts to modify IF;
no trap happens.

Other obstacles to classical virtualization exist on x86, but one
obstacle is enough if it disrupts binary-only OS distributions like
Windows.

3.2 Simple binary translation

The semantic obstacles to x86 virtualization can be overcome if the
guest executes on an interpreter instead of directly on a physical
CPU. The interpreter can prevent leakage of privileged state, such
as the CPL, from the physical CPU into the guest computation
and it can correctly implement non-trapping instructions like popf
by referencing the virtual CPL regardless of the physical CPL. In
essence, the interpreter separates virtual state (the VCPU) from
physical state (the CPU).

However, while interpretation ensures Fidelity and Safety, it
fails to meet Popek and Goldberg’s Performance bar: the fetch-
decode-execute cycle of the interpreter may burn hundreds of phys-
ical instructions per guest instruction. Binary translation, however,
can combine the semantic precision of interpretation with high per-
formance, yielding an execution engine that meets all of Popek and
Goldberg’s criteria. A VMM built around a suitable binary transla-
tor can virtualize the x86 architecture and it is a VMM according
to Popek and Goldberg.

(We note in passing that use of BT for a VMM’s execution
engine has close parallels in other systems work: JVMs use JIT
compilers [8]; architecture simulators and system emulators like
Shade [7] and Embra [26] use translators to combine subject code
and analysis code into fast target code.)

Our software VMM uses a translator with these properties:

• Binary. Input is binary x86 code, not source code.
• Dynamic. Translation happens at runtime, interleaved with ex-

ecution of the generated code.
• On demand. Code is translated only when it is about to execute.

This laziness side-steps the problem of telling code and data
apart.

• System level. The translator makes no assumptions about the
guest code. Rules are set by the x86 ISA, not by a higher-level
ABI. In contrast, an application-level translator like Dynamo
[4] might assume that “return addresses are always produced
by calls” to generate faster code. The VMM does not: it must
run a buffer overflow that clobbers a return address precisely as
it would have run natively (producing the same hex numbers in
the resulting error message).

• Subsetting. The translator’s input is the full x86 instruction set,
including all privileged instructions; output is a safe subset
(mostly user-mode instructions).

• Adaptive. Translated code is adjusted in response to guest be-
havior changes to improve overall efficiency.

To illustrate the translation process, we work through a small
example. Since privileged instructions are rare even in OS kernels
the performance of a BT system is largely determined by the trans-
lation of regular instructions, so our example is a simple primality
test:

int isPrime(int a) {
for (int i = 2; i < a; i++) {
if (a % i == 0) return 0;

}
return 1;

}

We compiled the C code into this 64-bit binary:

isPrime: mov %ecx, %edi ; %ecx = %edi (a)
mov %esi, $2 ; i = 2
cmp %esi, %ecx ; is i >= a?
jge prime ; jump if yes

nexti: mov %eax, %ecx ; set %eax = a
cdq ; sign-extend
idiv %esi ; a % i
test %edx, %edx ; is remainder zero?
jz notPrime ; jump if yes
inc %esi ; i++
cmp %esi, %ecx ; is i >= a?
jl nexti ; jump if no

prime: mov %eax, $1 ; return value in %eax
ret

notPrime: xor %eax, %eax ; %eax = 0
ret

We invoked isPrime(49) in a virtual machine, logging all
code translated. The above code is not the input to the translator;
rather, its binary (“hex”) representation is input:

89 f9 be 02 00 00 00 39 ce 7d ...

The translator reads the guest’s memory at the address indicated
by the guest PC, classifying the bytes as prefixes, opcodes or
operands to produce intermediate representation (IR) objects. Each
IR object represents one guest instruction.

The translator accumulates IR objects into a translation unit
(TU), stopping at 12 instructions or a terminating instruction (usu-
ally control flow). The fixed-size cap allows stack allocation of
all data structures without risking overflow; in practice it is rarely
reached since control flow tends to terminate TUs sooner. Thus, in
the common case a TU is a basic block (BB). The first TU in our
example is:

isPrime: mov %ecx, %edi
mov %esi, $2
cmp %esi, %ecx
jge prime

Translating from x86 to x86 subset, most code can be translated
IDENT (for “identically”). The first three instructions above are
IDENT. jge must be non-IDENT since translation does not pre-
serve code layout. Instead, we turn it into two translator-invoking
continuations, one for each of the successors (fall-through and
taken-branch), yielding this translation (square brackets indicate
continuations):

isPrime’: mov %ecx, %edi ; IDENT
mov %esi, $2
cmp %esi, %ecx
jge [takenAddr] ; JCC
jmp [fallthrAddr]

4

Each translator invocation consumes one TU and produces one
compiled code fragment (CCF). Although we show CCFs in textual
form with labels like isPrime’ to remind us that the address con-
tains the translation of isPrime, in reality the translator produces
binary code directly and tracks the input-to-output correspondence
with a hash table.

Continuing our example, we now execute the translated code.
Since we are calculating isPrime(49), jge is not taken (%ecx
is 49), so we proceed into the fallthrAddr case and invoke the
translator on guest address nexti. This second TU ends with jz.
Its translation is similar to the previous TU’s translation with all but
the final jz being IDENT.

To speed up inter-CCF transfers, the translator, like many pre-
vious ones [7], employs a “chaining” optimization, allowing one
CCF to jump directly to another without calling out of the trans-
lation cache (TC). These chaining jumps replace the continuation
jumps, which therefore are “execute once.” Moreover, it is often
possible to elide chaining jumps and fall through from one CCF
into the next.

This interleaving of translation and execution continues for as
long as the guest runs, with a decreasing proportion of translation
as the TC gradually captures the guest’s working set. For isPrime,
after looping the for loop for long enough to detect that 49 isn’t a
prime, we end up with this code in the TC:

isPrime’: *mov %ecx, %edi ; IDENT
mov %esi, $2
cmp %esi, %ecx
jge [takenAddr] ; JCC

; fall-thru into next CCF
nexti’: *mov %eax, %ecx ; IDENT

cdq
idiv %esi
test %edx, %edx
jz notPrime’ ; JCC

; fall-thru into next CCF
*inc %esi ; IDENT
cmp %esi, %ecx
jl nexti’ ; JCC
jmp [fallthrAddr3]

notPrime’: *xor %eax, %eax ; IDENT
pop %r11 ; RET
mov %gs:0xff39eb8(%rip), %rcx ; spill %rcx
movzx %ecx, %r11b
jmp %gs:0xfc7dde0(8*%rcx)

Above, there are four CCFs with the leading instruction in each
one marked with an asterisk. Two continuations remain because
they were never executed while two disappeared entirely and one
was replaced with a chaining jump to nexti’. For a bigger ex-
ample than isPrime, but nevertheless one that runs in exactly the
same manner, a 64-bit Windows XP Professional boot/halt trans-
lates 229,347 64-bit TUs, 23,909 32-bit TUs, and 6,680 16-bit TUs.

Since 49 isn’t a prime number, we never translate the BB that
returns 1 in isPrime. More generally, the translator captures an
execution trace of the guest code, ensuring that TC code has good
icache locality if the first and subsequent executions follow similar
paths through guest code. Error-handling and other rarely executed
guest code tends to get translated later than the first execution (if
ever), causing placement away from the hot path.

The translator does not attempt to “improve” the translated
code. We assume that if guest code is performance critical, the
OS developers have optimized it and a simple binary translator
would find few remaining opportunities. Thus, instead of applying
deep analysis to support manipulation of guest code, we disturb it
minimally.

Most virtual registers are bound to their physical counterparts
during execution of TC code to facilitate IDENT translation. One
exception is the segment register %gs. It provides an escape into
VMM-level data structures. The ret translation above uses a %gs
override to spill %rcx into VMM memory so that it can be used as
a working register in the translation of ret. Later, of course, the
guest’s %rcx value must be reloaded into the hardware %rcx.

isPrime is atypical in that it contains no memory accesses.
However, memory accesses are common so their translation must
run at close to native speed and have a form that prevents uninten-
tional access to the VMM. The efficiency requirement favors use of
hardware protection over insertion of explicit address checks.

x86 offers two protection mechanisms: paging and segmenta-
tion. For BT, segmentation works best. We map the VMM in the
high part of the guest’s address space and use segmentation to seg-
regate guest portions (low) and VMM portions (high) of the address
space. We then “truncate” guest segments so that they don’t over-
lap the VMM. When all segment registers (but %gs) hold truncated
segments, a fault ensues should a translated instruction attempt ac-
cess to the VMM. Selectively, the translator inserts %gs prefixes to
gain access to the VMM space. And, conversely, for the occasional
guest instruction that has a %gs prefix, the translator strips it and
uses a non-IDENT translation.

While most instructions can be translated IDENT, there are
several noteworthy exceptions:

• PC-relative addressing cannot be translated IDENT since the
translator output resides at a different address than the input.
The translator inserts compensation code to ensure correct ad-
dressing. The net effect is a small code expansion and slow-
down.

• Direct control flow. Since code layout changes during transla-
tion, control flow must be reconnected in the TC. For direct
calls, branches and jumps, the translator can do the mapping
from guest address to TC address. The net slowdown is insignif-
icant.

• Indirect control flow (jmp, call, ret) does not go to a fixed tar-
get, preventing translation-time binding. Instead, the translated
target must be computed dynamically, e.g., with a hash table
lookup. The resulting overhead varies by workload but is typi-
cally a single-digit percentage.

• Privileged instructions. We use in-TC sequences for simple op-
erations. These may run faster than native: e.g., cli (clear in-
terrupts) on a Pentium 4 takes 60 cycles whereas the translation
runs in a handful of cycles (“vcpu.flags.IF:=0”). Complex
operations like context switches call out to the runtime, causing
measurable overhead due both to the callout and the emulation
work.

Finally, although the details are beyond the scope of this paper,
we observe that BT is not required for safe execution of most user
code on most guest operating systems. By switching guest execu-
tion between BT mode and direct execution as the guest switches
between kernel- and user-mode, we can limit BT overheads to ker-
nel code and permit application code to run at native speed.

3.3 Adaptive binary translation

Modern CPUs have expensive traps, so a BT VMM can outperform
a classical VMM by avoiding privileged instruction traps. To illus-
trate, we compared implementations of a simple privileged instruc-
tion (rdtsc) on a Pentium 4 CPU: trap-and-emulate takes 2030 cy-
cles, callout-and-emulate takes 1254 cycles, and in-TC emulation
takes 216 cycles.

However, while simple BT eliminates traps from privileged
instructions, an even more frequent trap source remains: non-

5

Figure 1. Adaptation from IDENT to SIMULATE.

privileged instructions (e.g., loads and stores) accessing sensitive
data such as page tables. We use adaptive BT to essentially elim-
inate the latter category of traps. The basic idea is “innocent until
proven guilty.” Guest instructions start in the innocent state, en-
suring maximal use of IDENT translations. During execution of
translated code we detect instructions that trap frequently and adapt
their translation:

• Retranslate non-IDENT to avoid the trap; for example, the
translation may call out to an interpreter.

• Patch the original IDENT translation with a forwarding jump to
the new translation.

The left half of Figure 1 shows a control flow graph with an
IDENT translation in ccf1, and arbitrary other control flow in
the TC represented by ccf2, ccf3 and ccf4. The right half shows
the result of adapting from IDENT in ccf1 to translation type
SIMULATE in ccf5. Adaptation takes constant time since use of
a forwarding jump within ccf1 avoids the need to visit all ccf1’s
direct ancestors to redirect exit control flow from ccf1 to ccf5.

After adaptation, we avoid taking a trap in ccf1 and instead
execute a faster callout in ccf5. The simulate callout continues to
monitor the behavior of the offending instruction. If the behavior
changes and the instruction becomes innocent again, we switch the
active translation type back to IDENT by removing the forwarding
jump from ccf1 and inserting an opposing one in ccf5.

The VMM uses adaptation not just in a bimodal form that
distinguishes between innocent and guilty instructions, but with
the ability to adapt to a variety of situations, including access to a
page table, access to a particular device, and access to the VMM’s
address range.

A guest instruction whose translation has been adapted suffers
a dynamic overhead of a forwarding jump to reach the replacement
translation. Adaptation’s static overhead, i.e., code patching and
resulting loss of icache contents, can be controlled with hysteresis
to ensure a low adaptation frequency. We adapt aggressively from
a trapping translation to a non-trapping more general form, but less
aggressively towards a more optimistic translation.

4. Hardware virtualization
In this section, we discuss recent architectural changes that permit
classical virtualization of the x86. The discussion applies to both
AMD’s SVM and Intel’s VT; the similarity between the two archi-
tectures is obvious from their respective manuals [2, 12]. VMware
has implemented an experimental VMM to exploit these new hard-
ware capabilities. We describe this hardware-assisted VMM (for
brevity: hardware VMM), and compare it with the software VMM.

4.1 x86 architecture extensions

The hardware exports a number of new primitives to support a
classical VMM for the x86. An in-memory data structure, which
we will refer to as the virtual machine control block, or VMCB,
combines control state with a subset of the state of a guest virtual
CPU. A new, less privileged execution mode, guest mode, supports
direct execution of guest code, including privileged code. We refer
to the previously architected x86 execution environment as host
mode. A new instruction, vmrun, transfers from host to guest mode.

Upon execution of vmrun, the hardware loads guest state from
the VMCB and continues execution in guest mode. Guest execu-
tion proceeds until some condition, expressed by the VMM using
control bits of the VMCB, is reached. At this point, the hardware
performs an exit operation, which is the inverse of a vmrun oper-
ation. On exit, the hardware saves guest state to the VMCB, loads
VMM-supplied state into the hardware, and resumes in host mode,
now executing the VMM.

Diagnostic fields in the VMCB aid the VMM in handling the
exit; e.g., exits due to guest I/O provide the port, width, and di-
rection of I/O operation. After emulating the effect of the exiting
operation in the VMCB, the VMM again executes vmrun, return-
ing to guest mode.

The VMCB control bits provide some flexibility in the level of
trust placed in the guest. For instance, a VMM behaving as a hyper-
visor for a general-purpose OS might allow that OS to drive system
peripherals, handle interrupts, or build page tables. However, when
applying hardware assistance to pure virtualization, the guest must
run on a shorter leash. The hardware VMM programs the VMCB to
exit on guest page faults, TLB flushes, and address-space switches
in order to maintain the shadow page tables; on I/O instructions
to run emulated models of guest peripherals; and on accesses to
privileged data structures such as page tables and memory-mapped
devices.

4.2 Hardware VMM implementation

The hardware extensions provide a complete virtualization solu-
tion, essentially prescribing the structure of our hardware VMM (or
indeed any VMM using the extensions). When running a protected
mode guest, the VMM fills in a VMCB with the current guest state
and executes vmrun. On guest exits, the VMM reads the VMCB
fields describing the conditions for the exit, and vectors to appro-
priate emulation code.

Most of this emulation code is shared with the software VMM.
It includes peripheral device models, code for delivery of guest in-
terrupts, and many infrastructure tasks such as logging, synchro-
nization and interaction with the host OS. Since current virtual-
ization hardware does not include explicit support for MMU vir-
tualization, the hardware VMM also inherits the software VMM’s
implementation of the shadowing technique described in Section 2.

4.3 Example operation: process creation

In explaining the BT-based VMM, we used isPrime as an exam-
ple guest program. On a hardware VMM, isPrime is uninterest-
ing, because, containing only ALU operations and control-flow, its
execution is identical in host and guest mode. We need a more sub-
stantial operation to illustrate the operation of a hardware VMM.
So, consider a UNIX-like operating system running in guest mode
on the hardware VMM, about to create a process using the fork(2)
system call.

• A user-level process invokes fork(). The system call changes
the CPL from 3 to 0. Since the guest’s trap and system call
vectors are loaded onto the hardware, the transition happens
without VMM intervention.

6

• In implementing fork, the guest uses the “copy-on-write” ap-
proach of write-protecting both parent and child address spaces.
Our VMM’s software MMU has already created shadow page
tables for the parent address space, using traces to maintain
their coherency. Thus, each guest page table write causes an
exit. The VMM decodes the exiting instruction to emulate its ef-
fect on the traced page and to reflect this effect into the shadow
page table. By updating the shadow page table, the VMM write-
protects the parent address space in the hardware MMU.

• The guest scheduler discovers that the child process is runnable
and context switches to it. It loads the child’s page table pointer,
causing an exit. The VMM’s software MMU constructs a new
shadow page table and points the VMCB’s page table register
at it.

• As the child runs, it touches pieces of its address space that are
not yet mapped in its shadow page tables. This causes hidden
page fault exits. The VMM intercepts the page faults, updates
its shadow page table, and resumes guest execution.

• As both the parent and child run, they write to memory lo-
cations, again causing page faults. These faults are true page
faults that reflect protection constraints imposed by the guest.
The VMM must still intercept them before forwarding them to
the guest, to ascertain that they are not an artifact of the shad-
owing algorithm.

4.4 Discussion

The VT and SVM extensions make classical virtualization possi-
ble on x86. The resulting performance depends primarily on the
frequency of exits. A guest that never exits runs at native speed,
incurring near zero overhead. However, this guest would not be
very useful since it can perform no I/O. If, on the other hand, ev-
ery instruction in the guest triggers an exit, execution time will be
dominated by hardware transitions between guest and host modes.
Reducing the frequency of exits is the most important optimization
for classical VMMs.

To help avoid the most frequent exits, x86 hardware assistance
includes ideas similar to the s/370 interpretive execution facility
discussed in Section 2.5. Where possible, privileged instructions af-
fect state within the virtual CPU as represented within the VMCB,
rather than unconditionally trapping [24].

Consider again popf. A naive extension of x86 to support clas-
sical virtualization would trigger exits on all guest mode execu-
tions of popf to allow the VMM to update the virtual “interrupts
enabled” bit. However, guests may execute popf very frequently,
leading to an unacceptable exit rate. Instead, the VMCB includes a
hardware-maintained shadow of the guest %eflags register. When
running in guest mode, instructions operating on %eflags operate
on the shadow, removing the need for exits.

The exit rate is a function of guest behavior, hardware design,
and VMM software design: a guest that only computes never needs
to exit; hardware provides means for throttling some exit types; and
VMM design choices, particularly the use of traces and hidden page
faults, directly impact the exit rate as shown with the fork example
above.

5. Qualitative comparison
An ideal VMM runs the guest at native speed. The software and
hardware VMMs experience different trade-offs in their attempts
to approach this ideal. BT tends to win in these areas:

• Trap elimination: adaptive BT can replace most traps with
faster callouts.

• Emulation speed: a callout can provide the emulation routine
with a predecoded guest instruction, whereas a hardware VMM
must fetch and decode the trapping guest instruction to emulate
it.

• Callout avoidance: for frequent cases, BT may use in-TC emu-
lation routines, avoiding even the callout cost.

Conversely, the hardware VMM wins in these areas:

• Code density is preserved since there is no translation.
• Precise exceptions: BT performs extra work to recover guest

state for faults and interrupts in non-IDENT code.
• System calls run without VMM intervention.

In summary, hardware and software VMMs suffer different
overheads. While software virtualization requires careful engineer-
ing to ensure efficient execution of guest kernel code, hardware vir-
tualization delivers native speed for anything that avoids an exit but
levies a higher cost for the remaining exits (on current hardware).
The software VMM has a richer set of options available, includ-
ing adaptation, whereas current hardware mechanisms aim more
narrowly at trap-and-emulate style virtualization, leaving less flex-
ibility to use other software/hardware combinations.

6. Experiments
We have examined a number of 64-bit workloads under VMware
Player 1.0.1’s software and hardware-assisted VMMs. Our hard-
ware host is an HP xw4300 workstation, containing a VT-enabled
3.8 GHz Intel Pentium 4 672 with hyperthreading disabled in the
BIOS.

Current Intel CPUs lack support for segment limits in 64 bit
mode, leaving us without our preferred method for protecting the
software VMM. So we caution that in the measured hardware en-
vironment the software VMM fails Popek and Goldberg’s Safety
requirement. However, the VMM exhibits similar performance on
AMD’s Opteron processor where 64-bit segment limits are sup-
ported, so we are confident that these measurements accurately rep-
resent the performance of the software VMM.

We qualify our results in this section by noting that we are
comparing a recently developed hardware VMM on a particular
microarchitecture with a mature commercial product. While the
comparison cannot be completely “apples-to-apples,” we feel it still
offers insight. Improvements in software and hardware may change
the constants, but the broad profile of the two approaches’ strengths
and weaknesses will remain the same.

We find that compute-intensive benchmarks run essentially at
native speed on both VMMs. However, as workloads include pro-
gressively more privileged operations (context switches, memory
mapping, I/O, interrupts, system calls), both VMMs suffer over-
heads. Using a series of increasingly targeted benchmarks we show
how and why the software VMM usually outperforms the hardware
VMM.

6.1 Initial measurements

As an example of a benign workload, we ran SPECint 2000 on Red-
Hat Enterprise Linux 3. Since user-level computation is not taxing
for VMMs, we expect both guest runs to score close to native. Fig-
ure 2 confirms this expectation, showing a slowdown over native of
0-9%, with a 4% average slowdown for the software VMM and 5%
for the hardware VMM. The overhead results from both host back-
ground activity, such as timer interrupts and housekeeping kernel
threads, and virtualization overheads in guest background activity.
Surprisingly, mcf runs faster than native on both VMMs. Measure-
ment with an external timer to rule out virtual timing jitter showed

7

 0

 20

 40

 60

 80

 100

 120

specjbbtwolfbzip2vortexgapperlbmkeonparsercraftymcfvprgzip

%
 o

f n
at

iv
e

(h
ig

he
r

is
 b

et
te

r)

Software VMM
Hardware VMM

Figure 2. SPECint 2000 and SPECjbb 2005.

 0

 20

 40

 60

 80

 100

2DGraphicsLargeRAMApacheWinApacheLincompileWincompileLin

%
 o

f n
at

iv
e

(h
ig

he
r

is
 b

et
te

r)

Software VMM
Hardware VMM

Figure 3. Macrobenchmarks.

the performance improvement to be real. We speculate that the
VMM positively perturbs TLBs and caches for this combination of
workload and hardware but have been unable to prove this conclu-
sively because hardware performance counters cannot be applied
to workloads running in VMware Player 1.0.1.

The SPECjbb 2005 benchmark tests server-side Java Virtual
Machine (JVM) performance. To achieve guest variety, we ran
SPECjbb on Windows 2003 Enterprise x64 Edition, using Sun
JVM version 1.5.0 06-b05. The results in Figure 2, again normal-
ized to native, show that both the software and hardware VMMs
come very close to native performance, reaching 98% and 99%, re-
spectively. Since the JVM runs as a single user-level process, direct
execution dominates SPECjbb’s runtime within a VM, just as with
SPECint. This test came even closer to native performance than
SPECint perhaps due to Windows 2003’s lower timer interrupt rate
(60Hz, vs. 100Hz for the Linux VM).

For a more challenging server workload, we ran the Apache
ab server benchmarking tool with 128 clients against Linux and
Windows installations of the Apache http server; see Figure 3.

VMware Player uses a hosted I/O model in which all network
packets pass through the host OS’s I/O stack. Due to this overhead,
all four guest/VMM combinations compare poorly to native. How-
ever, the relative merits of the two VMMs are guest-dependent. On
Windows, the hardware VMM achieves a superior ratio to native
performance (67%) to that of the software VMM (53%). On Linux,

however, the software VMM (45%) dominates the hardware VMM
(38%). For reasons described below, we attribute this to differences
in Apache configuration. Apache defaults to a single address space
on Windows, and many address spaces in UNIX-like operating sys-
tems such as Linux.

For a desktop-oriented workload, we ran PassMark on Windows
XP Professional x64 Edition both natively and in a VM. PassMark
is a synthetic suite of microbenchmarks intended to isolate vari-
ous aspects of workstation performance. We found that the two
VMMs encountered similar overhead in most PassMark compo-
nents. Many of these benchmarks stress I/O devices whose laten-
cies easily hide differences in CPU virtualization.

However, two benchmarks revealed discrepancies between the
VMMs, as shown in Figure 3. The “Large RAM” component ex-
hausts the 1GB of RAM available in both host and guest, leading to
paging. Both VMMs show a significant deficit relative to the native
score of 335 op/s. However, the software VMM, scoring 175 op/s,
fares much better than the hardware VMM at 67 op/s.

In the 2D graphics score, the host scored 590 op/s, while the
software and hardware VMMs scored 374 op/s and 413 op/s re-
spectively. In this case, the hardware VMM achieved 70% of native
performance, while the software VMM achieved only 63%. Instru-
mentation of the software VMM confirmed that the 2D graphics
workload suffers from system call overheads. We attribute the hard-
ware VMM’s success at this workload to its superiority in handling
kernel/user transitions.

For a less synthetic workload, we examined compile jobs on
both Linux (“make -j8 bzImage” for kernel 2.6.11) and Windows
(Cygwin “make” Apache 2.2.0). We see a similar pattern for both
guests with the software VMM being closer to native. In the Linux
compile job, the host took 265 seconds, the software VMM took
393 seconds (67.4% of native performance), and the hardware
VMM took 484 seconds (54.8% of native). Put differently, the
software VMM’s overhead is 128 seconds whereas the hardware
VMM’s overhead is almost twice as large at 219 seconds. The
Windows compile job behaves similarly, although both VMMs
display a larger gap relative to native due to IPC overheads (i.e.,
additional context switches) from the Cygwin UNIX emulation
environment.

Investigating the hardware VMM’s large deficit in kernel com-
pilation, we gathered samples of the guest program counter while
executing under both VMMs. We found that the guest spends more
time servicing page faults and context switches on the hardware
VMM. Our next benchmark zooms in on these overheads.

6.2 Forkwait

To magnify the differences between the two VMMs, we use the
familiar UNIX kernel microbenchmark forkwait, which stresses
process creation and destruction. The program is perhaps most
concisely described by its source:

int main(int argc, char *argv[]) {
for (int i = 0; i < 40000; i++) {
int pid = fork();
if (pid < 0) return -1;
if (pid == 0) return 0;
waitpid(pid);

}
return 0;

}

forkwait focuses intensely on virtualization-sensitive opera-
tions, resulting in low performance relative to native execution.
Measuring forkwait, our host required 6.0 seconds to create and
destroy 40000 processes. The software VMM, on the other hand,
took 36.9 seconds, while the hardware VMM consumed a sobering
106.4 seconds. forkwait effectively magnifies the difference be-

8

 0.1

 1

 10

 100

 1000

 10000

 100000

ptemoddivzeropgfaultcallretcr8wrinsyscall

C
P

U
 c

yc
le

s
(s

m
al

le
r

is
 b

et
te

r)

Native
Software VMM

Hardware VMM

Figure 4. Virtualization nanobenchmarks.

tween the two VMMs, the hardware VMM inducing approximately
4.4 times greater overhead than the software VMM. Still, this pro-
gram stresses many divergent paths through both VMMs, such as
system calls, context switching, creation of address spaces, modifi-
cation of traced page table entries, and injection of page faults.

6.3 Virtualization nanobenchmarks

To better understand the performance differences between the two
VMMs, we wrote a series of “nanobenchmarks” that each exer-
cise a single virtualization-sensitive operation. Often, the measured
operation is a single instruction long. For precise control over the
executed code, we repurposed a custom OS, FrobOS, that VMware
developed for VMM testing.

Our modified FrobOS boots, establishes a minimal runtime en-
vironment for C code, calibrates its measurement loops, and then
executes a series of virtualization-sensitive operations. The test re-
peats each operation many times, amortizing the cost of the binary
translator’s adaptations over multiple iterations. In our experience,
this is representative of guest behavior, in which adaptation con-
verges on a small fraction of poorly behaving guest instructions.
The results of these nanobenchmarks are presented in Figure 4. The
large spread of cycle counts requires the use of a logarithmic scale.

syscall. This test measures round-trip transitions from user-
level to supervisor-level via the syscall and sysret instructions.
The software VMM introduces a layer of code and an extra privi-
lege transition, requiring approximately 2000 more cycles than a
native system call. In the hardware VMM, system calls execute
without VMM intervention, so as we expect, the hardware VMM
executes system calls at native speed.

in. We execute an in instruction from port 0x80, the BIOS
POST port. Native execution accesses an off-CPU register in the
chipset, requiring 3209 cycles. The software VMM, on the other
hand, translates the in into a short sequence of instructions that
interacts with the virtual chipset model. Thus, the software VMM
executes this instruction fifteen times faster than native. The hard-
ware VMM must perform a vmm/guest round trip to complete the
I/O operation. This transition causes in to consume 15826 cycles
in the tested system.

cr8wr. %cr8 is a privileged register that determines which
pending interrupts can be delivered. Only %cr8 writes that reduce
%cr8 below the priority of the highest pending virtual interrupt
cause an exit [24]. Our FrobOS test never takes interrupts so no
%cr8 write in the test ever causes an exit. As with syscall, the
hardware VMM’s performance is similar to native. The software
VMM translates %cr8 writes into a short sequence of simple in-

 0

 2

 4

 6

 8

 10

translateptemodpgfaultcallretcr8wrin/outsyscall

O
ve

rh
ea

d
(s

ec
on

ds
)

Software VMM
Hardware VMM

Figure 5. Sources of virtualization overhead in an XP boot/halt.

structions, completing the %cr8 write in 35 cycles, about four times
faster than native.

call/ret. BT slows down indirect control flow. We target this
overhead by repeatedly calling a subroutine. Since the hardware
VMM executes calls and returns without modification, the hard-
ware VMM and native both execute the call/return pair in 11 cycles.
The software VMM introduces an average penalty of 40 cycles, re-
quiring 51 cycles.

pgfault. In both VMMs, the software MMU interposes on
both true and hidden page faults. This test targets the overheads
for true page faults. While both VMM paths are logically similar,
the software VMM (3927 cycles) performs much better than the
hardware VMM (11242 cycles). This is due mostly to the shorter
path whereby the software VMM receives control; page faults,
while by no means cheap natively (1093 cycles on this hardware),
are faster than a vmrun/exit round-trip.

divzero. Division by zero has fault semantics similar to those
of page faults, but does not invoke the software MMU. While
division by zero is uncommon in guest workloads, we include
this nanobenchmark to clarify the pgfault results. It allows us
to separate out the virtualization overheads caused by faults from
the overheads introduced by the virtual MMU. As expected, the
hardware VMM (1014 cycles) delivers near native performance
(889 cycles), decisively beating the software VMM (3223 cycles).

ptemod. Both VMMs use the shadowing technique described in
Section 2.4 to implement guest paging with trace-based coherency.
The traces induce significant overheads for PTE writes, causing
very high penalties relative to the native single cycle store. The
software VMM adaptively discovers the PTE write and translates it
into a small program that is cheaper than a trap but still quite costly.
This small program consumes 391 cycles on each iteration. The
hardware VMM enters and exits guest mode repeatedly, causing
it to perform approximately thirty times worse than the software
VMM, requiring 12733 cycles.

To place this data in context, Figure 5 shows the total over-
heads incurred by each nano-operation during a 64-bit Windows
XP Professional boot/halt. Although the pgfault nanobenchmark
has much higher cost on the hardware VMM than the software
VMM, the boot/halt workload took so few true page faults that the
difference does not affect the bottom line materially. In contrast,
the guest performed over 1 million PTE modifications, causing
high overheads for the hardware VMM. While the figure may sug-
gest that in/out dominates the execution profile of the hardware
VMM, the vast majority of these instructions originate in atypical
BIOS code that is unused after initial boot.

9

3.8GHz P4 672 2.66GHz Core 2 Duo
VM entry 2409 937
Page fault VM exit 1931 1186
VMCB read 178 52
VMCB write 171 44

Table 1. Micro-architectural improvements (cycles).

System calls were similar in frequency to PTE modifications.
However, while the software VMM slows down system calls sub-
stantially, on an end-to-end basis system calls were not frequent
enough to offset the hardware VMM’s penalty for PTE modifica-
tion (and I/O instructions), and the hardware VMM incurs consider-
ably more total overhead than the software VMM in this workload.

The cost of running the binary translator (vs. executing the
translated code) is rarely significant; see again Figure 5. There are
two reasons. First, the TC captures the working set and continued
execution amortizes away translation costs for long-running work-
loads. Second, the translator is quite fast because it does little anal-
ysis (2300 cycles per x86 instruction, compared with 100-200 kcy-
cles per Java bytecode for some optimizing JITs [1]). High trans-
lator throughput ensures good performance even for a worst-case
workload like boot/halt that mostly executes cold code.

In Section 2.4, we discussed the importance of finding a sweet
spot in the three-way trade-off among trace costs, hidden page
faults and context-switch costs. These nanobenchmarks demon-
strate that hardware virtualization makes all three dimensions of
this design space more treacherous by replacing faults with costlier
guest/vmm round-trips. Further, in the absence of a hardware ba-
sis for supporting BT execution the hardware VMM is unable to
adapt to frequently exiting workloads. Without this tool for easing
the three-way trade-off, we have found few workloads that benefit
from current hardware extensions.

We discovered two such workloads. Apache on Windows and
2D PassMark are similar in that they consist of a single address
space, and the workloads require few I/O exits relative to the num-
ber of system calls performed. The few I/O exits are a consequence
of guest buffering, in the case of Apache, and of the virtual SVGA
device (which uses a shared-memory FIFO of graphics operations,
usually avoiding exits until the FIFO fills up) in the case of Pass-
Mark. We consider these workloads the exception that proves the
rule, however. Workloads that enter CPL 0 frequently, but rarely
perform privileged operations are unusual. Recall the old UNIX
benchmarking cheat of returning a cached value from getpid(2):
if the application isn’t asking for a privileged service, why enter the
kernel at all?

7. Software and hardware opportunities
Many of the difficult cases for the hardware VMM examined in
Section 6.3 surround MMU virtualization. In this section, we con-
sider future approaches in both hardware and software to close the
gap to software VMM performance, and ultimately approach native
performance.

7.1 Microarchitecture

Hardware overheads will shrink over time as implementations ma-
ture. Measurements on a desktop system using a pre-production
version of Intel’s next generation “Core” microarchitecture to ship
in the second half of 2006 demonstrates that this positive trend is al-
ready under way; see Table 1. The number of cycles for a VM entry
drops from 2409 on P4 to 937 on Core, a 61% reduction. Factoring
in Core’s lower clock, the time reduction is still a respectable 44%
from 634 ns to 352 ns. Core offers a less dramatic 12% improve-
ment in the cost of a page fault VM exit: from 508 ns to 446 ns.

This microarchitectural improvement visibly impacts the bot-
tom line. Let us illustrate by comparing forkwait on P4 and
Core. Native execution of forkwait on our P4 takes 6.02 seconds
whereas our Core CPU runs it in just 2.62 seconds. This dramatic
difference in native performance means that it is not meaningful
to directly compare execution times of the hardware VMMs. In-
stead, we compare ratios to native. On P4, the hardware VMM runs
forkwait 17.7x slower than native in 106.4 seconds. On Core,
the hardware VMM improves the score to 14.8x slower than na-
tive, taking 38.9 seconds. For reference, the software VMM is 6.1x
slower than native on P4 (36.9 seconds) and 7.0x slower than na-
tive on Core (18.4 seconds). Keeping in mind the extreme nature
of forkwait, the improvement from 17.7x to 14.8x is significant,
but it is also clear that more work remains to be done before virtual
performance approaches native.

While this hardware VMM performance improvement is en-
couraging, we speculate that even a hypothetical “perfect” microar-
chitecture in which VM exits are free could have a performance
deficit relative to the software VMM for MMU-related operations.
The remaining performance gap is due to the “stateless” nature
of the hardware VMM: after resuming a guest in direct hardware-
assisted execution, the VMM has little idea what state the guest is
in when execution returns to the VMM. So the VMM incurs soft-
ware overheads reconstructing guest state by reading VMCB fields
(handling a typical exit requires ten vmreads) and in some cases
decoding the exiting instruction. While improvements on this state
reconstruction software are certainly possible, a complete elimina-
tion of it is unlikely. “Stateless” VMM operation is characteristic
of hardware-assisted direct execution. Thus, the opportunities for
making exits faster, in both hardware and software, are limited.

7.2 Hardware VMM algorithmic changes

A more potent approach is to eliminate exits entirely. Consider, for
instance, the ptemod nanobenchmark, which repeatedly modifies a
guest page table entry. VMware Player 1.0.1 incurs a VM exit for
each modification due to traces on shadow page tables. However,
the x86’s relaxed TLB coherency rules permit other page table co-
herency strategies than tracing. For example, VMware Workstation
2.0, released in 2000, would aggressively drop traces upon guest
page table modification, allowing the shadow page tables to be-
come temporarily incoherent with the guest page tables in order to
reduce trace costs.

While this algorithm reduces trace costs, it shifts work into the
VMM’s guest page table reload path, which must process the back-
log of page table writes to bring the shadow and guest page ta-
bles into harmony. The algorithm also prevents some non-obvious
optimizations that are possible with more aggressive tracing. For
instance, page table modifications that change a page from not-
present to present usually occur in guest kernels’ page fault han-
dlers in response to demand-paging activity. Thus, these PTE mod-
ifications are almost always followed immediately by a user-level
access to the freshly mapped page. By catching PTE writes with
tracing, we can save a subsequent hidden page fault by eagerly
placing a corresponding present entry in the shadow as soon as the
guest PTE write executes. This optimization is important in process
creation workloads such as forkwait, and is hard to apply without
tracing.

In the years since the release of Workstation 2.0, VMware’s
binary translator has become increasingly capable of adapting to
trace accesses, allowing our software MMU to make liberal use
of traces. This extreme point in the design space is not optimal
for the hardware-assisted VMM where trace accesses are costlier.
Consequently, an effort to explore the design space of less trace-
intensive software MMU algorithms is now under way at VMware.
While this work is still in progress, and beyond the scope of this

10

paper, preliminary results appear promising: the hardware VMM
gains on the software VMM, but still does not surpass it.

7.3 A hybrid VMM

For clarity of comparison, we have discussed the software and hard-
ware VMM as entirely separate entities. However, both VMMs are
part of the same binary in VMware Player 1.0.1, and nothing forces
us to rely exclusively on one technique for executing a guest. We
have experimented with a hybrid VMM that dynamically selects the
execution technique using simple guest behavior-driven heuristics,
with the goal of reaping the benefits of both the hardware VMM’s
superior system call performance and the software VMM’s supe-
rior MMU performance. While we achieved some encouraging im-
provements on toy workloads, the heuristics driving this adaptation
are still immature and require further tuning. For production use
of BT on Intel CPUs we would additionally need to implement a
performant VMM protection scheme that doesn’t require segmen-
tation.

7.4 Hardware MMU support

We are optimistic about the potential of future hardware assistance
in the area of MMU virtualization. The three-way trade-off among
trace costs, hidden page faults and context-switch costs was suc-
cessfully addressed with appropriate hardware in IBM’s s/370 ma-
chines [17]. Both AMD’s “nested paging” [2] and Intel’s “EPT”
[16] proposals for MMU virtualization are similar to the SIE de-
sign.

In both schemes, the VMM maintains a hardware-walked
“nested page table” that translates guest physical addresses to
host physical addresses. This mapping allows the hardware to dy-
namically handle guest MMU operations, eliminating the need for
VMM interposition. The operation of this scheme is illustrated in
Figure 6. While running in hardware-assisted guest execution, the
TLB contains entries mapping guest virtual addresses all the way
to host physical addresses. The process of filling the TLB in case
of a miss is somewhat more complicated than that of typical virtual
memory systems. Consider the case of a guest reference to virtual
address V that misses in the hardware TLB:

1. The hardware uses the guest page table pointer (%cr3) to locate
the top level of the guest’s hierarchical page table.

2. %cr3 contains a guest physical address, which must be trans-
lated to a host physical address before dereferencing. The hard-
ware walks the nested page table for the guest’s %cr3 value to
obtain a host physical pointer to the top level of the guest’s page
table hierarchy.

3. The hardware reads the guest page directory entry correspond-
ing to guest virtual address V .

4. The PDE read in step 3 also yields a guest physical address,
which must also be translated via the nested page table before
proceeding.

5. Having discovered the host physical address of the final level
of the guest page table hierarchy, the hardware reads the guest
page table entry corresponding to V . In our example, this PTE
points to guest physical address X, which is translated via a
third walk of the nested page table, e.g. to host physical address
Y .

6. The translation is complete: virtual address V maps to host
physical address Y . The page walk hardware can now fill the
TLB with an appropriate entry (V, Y) and resume guest execu-
tion, all without software intervention.

For an M -level guest page table on an N -level nested page ta-
ble, a worst-case TLB miss requires MN memory accesses to sat-

isfy. We are, however, optimistic about this potential problem. The
same microarchitectural implementation techniques that make vir-
tual memory perform acceptably (highly associative, large, multi-
level TLBs, caching) should apply at least as well to the nested
page table. Thus, nested paging holds the promise of eliminating
trace overheads and allowing guest context switches without VMM
intervention. By resolving the most important sources of overhead
in current VMMs, nested paging hardware should easily repay the
costs of (slightly) slower TLB misses.

8. Related work
Our approach to this topic owes a debt to the long-running RISC
vs. CISC debate [6, 18]. This quarrel in its narrow sense has been
fought to a draw, with a current abundance of both RISC and
CISC designs. However, the controversy’s lasting gifts have been
skepticism towards the intuition that hardware always outperforms
software, and the consensus that measurement must guide design
of the hardware/software interface [11].

The picoJava microprocessor lands at one end of the hard-
ware/software split [15]. This processor effectively reimplements
the software JVM version 1.0 in hardware. While picoJava was
never intended as a high performance bytecode execution engine, it
is still striking to observe just how differently a modern JVM deliv-
ers performance through multi-stage JIT compilation. The picoJava
design, frozen in time in the last millenium, is not what one would
build today to run Java.

Transmeta’s Crusoe design team took the opposite approach,
building an x86 compatible CPU by codesigning a VLIW core and
a substantial software component that includes an optimizing, dy-
namic, adaptive, binary translator from x86 to the internal VLIW
architecture [9]. Their core implements basic primitives to sup-
port key aspects of the software, including speculation and self-
modifying code.

The emergence of open source operating systems, such as
Linux, has enabled paravirtualization, the modification of oper-
ating systems to be better virtual citizens [5, 25, 14]. The approach
has merit as it gains performance and permits a simpler VMM de-
sign. However, it sacrifices the ability to run legacy and proprietary
operating systems. Moreover, a new interface between the guest
and VMM must now be standardized, documented and supported
in addition to the existing interface between OS and hardware [3].

9. Conclusions
We have described the implementation of a software VMM that
employs BT for x86 guest execution. Recent hardware extensions
now permit implementation of a trap-and-emulate hardware VMM
that executes guests directly.

Intuitively, one would expect hardware support to improve per-
formance across the board, but experiments on first generation
hardware painted a mixed picture. Our software and hardware
VMMs both perform well on compute-bound workloads. For work-
loads that perform I/O, create processes, or switch contexts rapidly,
software outperforms hardware. In two workloads rich in system
calls, the hardware VMM prevails.

We have traced this surprising result to its root cause by study-
ing architecture-level operations for which the software and hard-
ware VMMs impose very different amounts of overhead. While
the new hardware removes the need for BT and simplifies VMM
design, in our experiments it rarely improves performance. New
MMU algorithms in the hardware VMM might narrow this gap, but
current hardware support is CISC-like in its packaging of a whole
solution and difficult to exploit without giving up existing software
techniques.

11

Guest

VMM

Guest PT Ptr

Nested PTPtr

1

2, 4, 5

6

3

TLB Fill Hardware

gVA −> gPA

gPA XgVA V

gPA X hPA Y
gPA −> hPA

V Y

hPAgVA

TLB

Figure 6. Nested paging hardware.

Over years of work on VMMs, we have come to appreciate
the flexibility of having software control in our VMMs. We hope
that coming hardware support for virtualization will be designed
to blend easily with and complement existing software techniques.
This may contribute to faster adoption of the hardware and advance
the general state of virtualization.

Acknowledgments. Special thanks to Jim Mattson for sig-
nificant contributions to the hardware VMM. General thanks to
the dozens of members of VMware’s VMM group since 1998.
Warmest thanks to our readers: Eli Collins, Erik Cota-Robles, Alex
Garthwaite, Geoff Pike, Mendel Rosenblum, and Richard Uhlig.
We would also like to thank the anonymous ASPLOS reviewers for
suggestions that greatly shaped our paper.

References
[1] AGESEN, O., AND DETLEFS, D. Mixed-mode bytecode execution.

Technical Report SMLI TR-200-87, Sun Microsystems, Inc., Moun-
tain View, CA, USA, 2000.

[2] AMD. AMD64 Virtualization Codenamed “Pacifica” Technology:
Secure Virtual Machine Architecture Reference Manual, May 2005.

[3] AMSDEN, Z., ARAI, D., HECHT, D., HOLLER, A., AND SUBRAH-
MANYAM, P. VMI: An interface for paravirtualization. Ottawa Linux
Symposium (2006).

[4] BALA, V., DUESTERWALD, E., AND BANERJIA, S. Dynamo: a
transparent dynamic optimization system. In PLDI ’00: Proceedings
of the ACM SIGPLAN 2000 conference on programming language
design and implementation (New York, NY, USA, 2000), ACM Press,
pp. 1–12.

[5] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T.,
HO, A., NEUGEBAUER, R., PRATT, I., AND WARFIELD, A. Xen and
the art of virtualization. In SOSP ’03: Proceedings of the nineteenth
ACM symposium on operating systems principles (New York, NY,
USA, 2003), ACM Press, pp. 164–177.

[6] CLARK, D. W., AND STRECKER, W. D. Comments on ”the case
for the reduced instruction set computer,” by Patterson and Ditzel.
SIGARCH Comput. Archit. News 8, 6 (1980), 34–38.

[7] CMELIK, B., AND KEPPEL, D. Shade: a fast instruction-set simulator
for execution profiling. In SIGMETRICS ’96: Proceedings of the 1996
ACM SIGMETRICS international conference on measurement and
modeling of computer systems (New York, NY, USA, 1994), ACM
Press, pp. 128–137.

[8] CRAMER, T., FRIEDMAN, R., MILLER, T., SEBERGER, D.,
WILSON, R., AND WOLCZKO, M. Compiling java just in time.
IEEE Micro 17, 3 (1997), 36–43.

[9] DEHNERT, J. C., GRANT, B. K., BANNING, J. P., JOHNSON, R.,
KISTLER, T., KLAIBER, A., AND MATTSON, J. The transmeta
code morphing software: using speculation, recovery, and adaptive

retranslation to address real-life challenges. In CGO ’03: Proceedings
of the international symposium on code generation and optimization
(Washington, DC, USA, 2003), IEEE Computer Society, pp. 15–24.

[10] DEITEL, H. M. An introduction to operating systems (2nd ed.).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1990.

[11] HENNESSY, J. L., AND PATTERSON, D. A. Computer architecture:
a quantitative approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2002.

[12] INTEL CORPORATION. Intel R© Virtualization Technology Specifica-
tion for the IA-32 Intel R© Architecture, April 2005.

[13] KARGER, P. A., ZURKO, M. E., BONIN, D. W., MASON, A. H.,
AND KAHN, C. E. A vmm security kernel for the vax architecture. In
IEEE Symposium on Security and Privacy (1990), pp. 2–19.

[14] LEVASSEUR, J., UHLIG, V., CHAPMAN, M., CHUBB, P., LESLIE,
B., AND HEISER, G. Pre-virtualization: Slashing the cost of
virtualization. Technical Report 2005-30, Fakultät für Informatik,
Universität Karlsruhe (TH), Nov. 2005.

[15] MCGHAN, H., AND O’CONNOR, M. Picojava: A direct execution
engine for java bytecode. Computer 31, 10 (1998), 22–30.

[16] NEIGER, G., SANTONI, A., LEUNG, F., RODGERS, D., AND UHLIG,
R. Intel virtualization technology: Hardware support for efficient
processor virtualization. Intel Technology Journal 10, 3 (2006).

[17] OSISEK, D. L., JACKSON, K. M., AND GUM, P. H. ESA/390
interpretive-execution architecture, foundation for VM/ESA. IBM
Systems Journal 30, 1 (1991), 34–51.

[18] PATTERSON, D. A., AND DITZEL, D. R. The case for the reduced
instruction set computer. SIGARCH Comput. Archit. News 8, 6 (1980),
25–33.

[19] POPEK, G. J., AND GOLDBERG, R. P. Formal requirements for
virtualizable third generation architectures. Commun. ACM 17, 7
(1974), 412–421.

[20] POPEK, G. J., AND KLINE, C. S. The pdp-11 virtual machine
architecture: A case study. In SOSP ’75: Proceedings of the fifth ACM
symposium on operating systems principles (New York, NY, USA,
1975), ACM Press, pp. 97–105.

[21] ROBIN, J., AND IRVINE, C. Analysis of the intel pentium’s ability to
support a secure virtual machine monitor. In Proceedings of the 9th
USENIX Security Symposium (2000).

[22] SILBERSCHATZ, A., AND PETERSON, J. L., Eds. Operating systems
concepts. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1988.

[23] SMITH, J. E., AND NAIR, R. Virtual machines: versatile platforms for
systems and processes. Morgan Kaufmann Publishers, San Francisco,
CA, USA, 2005.

[24] UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A. L., MAR-
TINS, F. C. M., ANDERSON, A. V., BENNETT, S. M., KAGI, A.,

12

LEUNG, F. H., AND SMITH, L. Intel virtualization technology.
Computer 38, 5 (2005), 48–56.

[25] WHITAKER, A., SHAW, M., AND GRIBBLE, S. D. Scale and
performance in the denali isolation kernel. SIGOPS Oper. Syst.
Rev. 36, SI (2002), 195–209.

[26] WITCHEL, E., AND ROSENBLUM, M. Embra: fast and flexible
machine simulation. In SIGMETRICS ’96: Proceedings of the 1996
ACM SIGMETRICS international conference on measurement and
modeling of computer systems (New York, NY, USA, 1996), ACM
Press, pp. 68–79.

Raw data

Times in seconds (smaller is better; BT/VT
times obtained via external time source)

Native BT VT

vpr 136 135 139
gcc 67.5 71.0 74.0
mcf 257 244 248
crafty 62.7 64.7 64.9
parser 180 186 187
eon 94 97.2 97.7
perlbmk 115 116 123
gap 71.4 73.7 74.4
vortex 113 116 118
bzip2 114 124 125
twolf 198 210 210
gzip 130 135 139
gcc 67.5 71.0 73.9
gap 73.0 73.7 74.4
kerncomp 265 393 483
kerncomp "Core" 204 259.3 281
forkwait 6.02 36.95 106.4
forkwait "Core" 2.62 18.43 38.89

Passmark ops/sec (larger is better)
Native BT VT

Large RAM 335.44 175.00 67.13
2D Graphics 589.86 373.78 413.05

ApacheBench requests/second (larger is better)
RedHat Enterprise Linux 3

#processes Native BT VT

1 718.24 684.38 584.24
8 1818.85 991.55 840.38
32 1206.01 999.92 815.49
64 2071.09 1014.92 802.05
128 2201.90 985.28 845.12
256 250.94 48.23 52.55

ApacheBench requests/second (larger is better)
WinNetEnterprise

#threads Native BT VT

1 616.48 367.98 430.00
8 815.79 431.10 558.96
32 811.84 431.68 556.53
64 808.93 430.17 525.35
128 803.39 428.70 537.93
256 807.88 426.28 530.16

SPECjbb score (larger is better)
WinNetEnterprise

Native BT VT

SPECjbb 9608 9430 9528

Nano-benchmarks in cycles (smaller is better)
Native BT VT

syscall 242 2308 246
in 3209 216 15826
cr8write 150 35 177
call/ret 11 51 11
pgfault 1093 3927 11242
divzero 889 3223 1014
ptemod: unchanged 1 391 12733
ptemod: P->NP 4 17 9154 (*)
ptemod: NP->P 5 2121 17020 (*)

(*) Unused in main body of paper.

13

