
Virtualization
History and Future Trends

Christoffer Dall - Candidacy Exam - January 2013

Columbia University - Computer Science Department

Saturday, January 19, 13

Historical Overview

IBM Mainframe VMs VMware
Workstation

Paravirtualization
Xen

’99‘70s ’03

x86 Hardware
Support

’05

CPU and Memory
Optimizations

’12

I/O and
Device Assignments

Virtual
Interrupts

Virtual
Power

Saturday, January 19, 13

Taxonomy

[Popek 74]

[Sugerman 01]

[Barham 03]

[Kivity 09]

[Ben-Yehuda 10]

[Colp 11]

[Bugnion 12]

[LeVasseur 04]

[Bugnion 97]

[Stoess 07]

[Nathuji 07]

[Ye 10]

[Tian 10]

[Krishnan 11]

[Hwang 12]

[Andrus 11]

Hardware Support

[Gum 83]

[Uhlig 05]

[Adams 06]

[Bhargava 08]

Virtualization Software Optimizations

[Waldspurger 02]

[Liu 06]

[Willmann 08]

[Russell 08]

[Amit 11]

[Ahmad 11]

[Agesen 12]

[Gordon 12]

Virtualization Software

[Wang 11]

Power

Saturday, January 19, 13

[Agesen 12]

[Wang 11]

Virtualization

[Popek 74]

[Sugerman 01]

[Barham 03]

[Kivity 09]

[Ben-Yehuda 10]

[Colp 11]

[Bugnion 12]

[LeVasseur 04]

[Bugnion 97]

[Stoess 07]

[Nathuji 07]

[Ye 10]

[Tian 10]

[Krishnan 11]

[Hwang 12]

[Andrus 11]

Hardware Support

[Gum 83]

[Uhlig 05]

[Adams 06]

[Bhargava 08]

Virtualization Software Optimizations

[Waldspurger 02]

[Liu 06]

[Willmann 08]

[Russell 08]

[Amit 11]

[Ahmad 11]

[Gordon 12]

Virtualization Software

[Wang 11]

Power

Saturday, January 19, 13

Virtualization [Popek 74]

• The mechanism through which we facilitate Virtual Machines

• Defined intuitively by Popek and Goldberg [Popek 74] to be:
“...an efficient, isolated duplicate of the real machine.”

Saturday, January 19, 13

VMMs [Popek 74]

• Virtual Machine Monitor (VMM)

• Three properties

1. Efficiency

2. Resource control

3. Equivalence

VMM

Hardware

VM VM

Saturday, January 19, 13

Virtualizable [Popek 74]

• Theorem:
“For any conventional third generation computer, a virtual machine
monitor may be constructed if the set of sensitive instructions for
that computer is a subset of the set of privileged instructions”

• All sensitive instructions trap to the VMM

• Allows for trap-and-emulate

Saturday, January 19, 13

Revitalization in the nineties

• VMware workstation in ’99
[Sugerman 01; Bugnion 12]

Kernel

Hardware

VM

vmm
driver VMM

User vmx

Saturday, January 19, 13

New Directions

Kernel

Hardware

VM

KVM

User QEMU

Xen and the art of
Virtualization
[Barham 03]

Kernel-Based VM
(KVM)

[Kivity 09]

Dom0
(QEMU)

Hardware

Dom1

Xen

Dom2

Saturday, January 19, 13

Hardware Support

[Popek 74]

[Sugerman 01]

[Barham 03]

[Kivity 09]

[Ben-Yehuda 10]

[Colp 11]

[Bugnion 12]

[LeVasseur 04]

[Bugnion 97]

[Stoess 07]

[Nathuji 07]

[Ye 10]

[Tian 10]

[Krishnan 11]

[Hwang 12]

[Andrus 11]

Hardware Support

[Gum 83]

[Uhlig 05]

[Adams 06]

[Bhargava 08]

Virtualization Software Optimizations

[Waldspurger 02]

[Liu 06]

[Willmann 08]

[Russell 08]

[Amit 11]

[Ahmad 11]

[Wang 11]

[Gordon 12]

Virtualization Software

[Agesen 12]

Power

Saturday, January 19, 13

Hardware Support Outline

• Intel VT-x and AMD-V

• Hardware vs. Software

• Hardware Memory Virtualization

Saturday, January 19, 13

Intel VT-x

Non-Root traps sensitive instructions

Root Non-Root (VM)

VM ENTRY

VM EXIT

Saturday, January 19, 13

Intel VT-x
Nested Page Tables (NPT)

Guest Virtual Address

Guest Physical Address

Host Physical Address

MMU
Nested Page Tables

Page Tables

Saturday, January 19, 13

Hardware Support

Not a new idea [Gum 83]

Saturday, January 19, 13

Hardware vs. Software

• Benefits not clear cut

• Comparison with software [Adams 06] show that especially
IO-bound workloads are actually faster.

• example:
in/out instruction sequences rewritten to single exit

Saturday, January 19, 13

Hardware vs. Software

• Hardware extensions have matured

• But, exits are still expensive...

• Still uses combination of hardware/software approach in
commercial VMware products [Agesen 12].

• Software methods still useful for nested virtualization
[Ben-Yehuda 10]

Saturday, January 19, 13

Nested Page Tables
nL4
1

nL2
3

nL3
2

nL1
4

nL4
6

nL2
8

nL3
7

nL1
9

nL4
11

nL2
13

nL3
12

nL1
14

nL4
16

nL2
18

nL3
17

nL1
19

nL4
21

nL2
23

nL3
22

Nested page tablegVA

gL3
10

gL2
15

gL1
20

gL4
5

SPA

gCR3

gVA[11:0]

gVA[20:12]

gVA[29:21]

gVA[38:30]

gVA[47:39]

nCR3

TLB
Entry
Value

VA

L3
(PDP)

L2
(PD)

L1
(PT)

L4
(PML4)

VA[11:0]

VA[20:12]

VA[29:21]

VA[38:30]

VA[47:39]

512GB

1GB

2MB

4KB

PA

(a) (b)

GPA

nL1
24

SPA SPA SPA SPA GPA

G
uest page table

TLB
Entry
Value

gL1

gL2

gL3

gL4

gPA

nL4 nL3 nL2 nL1 G

CR3

PA

Figure 1. (a) Standard x86 page walk. (b) Two-dimensional page walk. Italics indicate column and row names; notations such as {nL1,gPA} and {G,gL1}
indicate entries in the indicated columns and rows.

address. This portion of the walk repeats for gL2 and gL1. The gL1

entry at step 20 determines the guest physical address of the base
of the guest data page.

At this point, the guest page table has been traversed, but one
final nested page walk (steps 21-24) is required to translate the
guest physical address of the datum to a usable system physical
address.

2.4 Large Page Size

While the diagrams in this paper show four levels of long mode
translation, some workloads have accesses which use only a subset
of them. The most important such case is large page support.1 Large
pages provide several advantages in both the native and nested
paging scenarios, including memory savings, a reduction in TLB
pressure, and shorter page walks.

With 4KB pages, an OS must use an entire L1 table, which
occupies 4KB of memory, to map a contiguous 2MB region of
virtual memory. If the OS can place all 512 4KB pages of that
2MB region into one contiguous, aligned 2MB block of physical
memory, then the OS can substitute a single large page mapping
and thus save the 4KB of memory used by the L1 table.

In addition to the memory savings, large pages can reduce TLB
pressure. Each large page table entry can be stored in a single TLB
entry, while the corresponding regular page entries require 512
4KB TLB entries to map the same 2MB range of virtual addresses.
Large page use allows the page walk hardware to skip L1 entirely
and use the L2 page entry directly to map a 2MB page, reducing
page walk latency due to the number of page entry references. A
large page entry encountered at L2 causes an early exit from the
standard walk shown in Figure 1(a) and a bypass from {G,gL2} to
step 21 in Figure 1(b).

In a nested paging environment, large pages can potentially
provide the same benefits in both dimensions of the 2D walk.
However, most large page benefits are neutralized if a guest uses
a large page to map a block of memory that the nested page
table maps with smaller pages. For correctness, the TLB must
consider the page size for a given translation to be the smaller

1 While AMD64 now adds support for a 1GB page size, this paper uses large page
interchangeably with 2MB page.

of the nested and guest page sizes, referred to as splintering [4].
This has important performance implications (discussed further in
Section 6.5), as a splintered 2MB page in the guest could require as
many as 512 4KB TLB entries.

3. Page Walk Characterization
This section discusses the performance cost of page walks and
shows that guest and nested page entries exhibit both a high degree
of reuse and a reasonable amount of spatial locality, making them
good candidates for caching.

3.1 Page Walk Cost

Translation requests that miss in the TLB can degrade performance.
Thus, understanding the characteristics of how the TLB behaves in
virtualization workloads is key to improving paging performance.
Table 1 provides some basic information about TLB behavior.
The simulation parameters, methodology, and benchmarks used to
produce this data are discussed in detail in Section 5.

Table 1. TLB miss frequency, latency, and performance impact
Instruction and Data Translations

Walk Perfect TLB
TLB Misses Latency Opportunity

(Per 100K Inst.) 2D/Native Native 2D

MiscServer 294.3 4.01X 14.0% 75.7%

WebServer 129.0 3.90X 4.7% 44.4%

JavaServer 257.0 3.91X 13.5% 89.0%

IntCpu 70.4 4.57X 11.4% 48.6%

FpCpu 18.2 4.43X 5.7% 27.5%

These statistics were gathered on a model with no specialized page caching hardware
other than standard TLBs. Native refers to unvirtualized execution. The geometric
mean is used within the benchmark suites.

The TLB Misses column shows the average number of TLB
accesses that result in a page walk per 100,000 retired instructions
in each suite. This value applies to both native and virtualized guest
execution. The Walk Latency column shows the relative slowdown
of a 2D page walk with no page walk caching as compared to
a native table walk with no page walk caching. The slowdowns

28

Some concerning results [Bhargava 08]

Saturday, January 19, 13

[Agesen 12]

Hardware Support

[Popek 74]

[Sugerman 01]

[Barham 03]

[Kivity 09]

[Ben-Yehuda 10]

[Colp 11]

[Bugnion 12]

[LeVasseur 04]

[Bugnion 97]

[Stoess 07]

[Nathuji 07]

[Ye 10]

[Tian 10]

[Krishnan 11]

[Hwang 12]

[Andrus 11]

Hardware Support

[Gum 83]

[Uhlig 05]

[Adams 06]

[Bhargava 08]

Virtualization Software Optimizations

[Waldspurger 02]

[Liu 06]

[Willmann 08]

[Russell 08]

[Amit 11]

[Ahmad 11]

[Gordon 12]

Virtualization Software

[Wang 11]

Power

Saturday, January 19, 13

Optimizations

• Memory Consumption

• Paravirtualized drivers

• Direct Device Assignment

• Virtual Interrupts

Saturday, January 19, 13

Direct Device Assignment

• One major bottleneck is I/O

• Still far from bare metal

• Direct Device Assignment is a potential solution

Saturday, January 19, 13

Direct Device Assignment

• Liu et al. [Liu 06] propose to simply
assign a device directly to a VM

• Requires device support

• Control messages trap to VMM

• IOMMUs can help
[Willmann 08; Amit 11]

Hardware

VMM

VM VM

Device

Driver

Saturday, January 19, 13

• Interrupts can limit CPU performance and I/O throughput

• Worse in VMs due to VMEXITs

• Especially bad on systems with high IRQ frequency

Virtual Interrupts

Saturday, January 19, 13

Virtual Interrupts

• ELI [Gordon 12]: VMs handle interrupts for certain devices

• ELI uses a shadow Interrupt Descriptor Table (IDT) to let
guest handle interrupts directly, while remaining in control of
host devices

IRQ Device NP Handler

Host Device 1

Host Device 1

Host Device 1

Guest Device 0 handle_disk_irq()

Host Device 1

Guest Device 0 handle_nic_irq()

Saturday, January 19, 13

Virtual Interrupts

Saturday, January 19, 13

[Agesen 12]

Hardware Support

Power

[Popek 74]

[Sugerman 01]

[Barham 03]

[Kivity 09]

[Ben-Yehuda 10]

[Colp 11]

[Bugnion 12]

[LeVasseur 04]

[Bugnion 97]

[Stoess 07]

[Nathuji 07]

[Ye 10]

[Tian 10]

[Krishnan 11]

[Hwang 12]

[Andrus 11]

Hardware Support

[Gum 83]

[Uhlig 05]

[Adams 06]

[Bhargava 08]

Virtualization Software Optimizations

[Waldspurger 02]

[Liu 06]

[Willmann 08]

[Russell 08]

[Amit 11]

[Ahmad 11]

[Gordon 12]

Virtualization Software

[Wang 11]

Saturday, January 19, 13

Data Centers

Amazon AWS hosts 46,000 servers
8 MW power consumption at $88 million / year

Saturday, January 19, 13

Power Architecture for VMs

• Accounting model [Stoess 07]

• Problem is that VMMs are uninformed about VMs and VMs
don’t know their real power consumption (VMEXITs)

• Accounting model suggests passing allocation hints up the
stack, and statistics down the stack

2 Distributed Energy Management

The following section presents the design principles
we consider to be essential for distributed energy
management. We begin with formulating the goals
of our work. We then describe the unified energy
model that serves as a foundation for the rest of our
approach. We finally describe the overall structure
of our distributed energy management framework.

2.1 Design Goals

The increasing number of layers, components, and
subsystems in modern OS structures demands for a
distributed approach to control the energy spent in
the system. The approach must perform effectively
across protection boundaries, and it must comprise
different types of activities, software abstractions,
and hardware resources. Furthermore, the approach
must be flexible enough to support diversity in en-
ergy management paradigms. The desire to control
power and energy effects of a computer system stems
from a variety of objectives: Failure rates typically
increase with the temperature of a computer node or
device; reliability requirements or limited cooling ca-
pacities thus directly translate into temperature con-
straints, which are to be obeyed for the hardware to
operate correctly. Specific power limits, in turn, are
typically imposed by battery or backup generators,
or by contracts with the power supplier. Controlling
power consumption on a per-user base finally enables
accountable computing, where customers are billed
for the energy consumed by their applications, but
also receive a guaranteed level or quality of service.
However, not only the objectives for power manage-
ment are diverse; there also exists a variety of al-
gorithms to achieve those objectives. Some of them
use real temperature sensors, whereas others rely on
estimation models [3, 12]. To reach their goals, the
algorithms employ different mechanisms, like throt-
tling resource usage, request batching, or migrating
of execution [4, 9, 17]. Hence, a valid solution must
be flexible and extensible enough to suit a diversity
of goals and algorithms.

2.2 Unified Energy Model

To encompass the diverse demands on energy man-
agement, we propose to use the notion of energy
as the base abstraction in our system, an approach
which is similar to the currentcy model in [28]. The
key advantage of using energy is that it quantifies
power consumption in a partitionable way – unlike
other physical effects of power consumption such as

the temperature of a device. Such effects can easily
be expressed as energy constraints, by means of a
thermal model [3, 12]. The energy constraints can
then be partitioned from global notions into local,
component-wise ones. Energy constraints also serve
as a coherent base metric to unify and integrate man-
agement schemes for different hardware devices.

2.3 Distributed Management

Current approaches to OS power management are
tailored to single building-block OS design, where
one kernel instance manages all software and hard-
ware resources. We instead model the OS as a set of
components, each responsible for controlling a hard-
ware device, exporting a service library, or providing
a software resource for use by applications.

Our design is guided by the familiar concept of
separating policy and mechanism. We formulate the
procedure of energy management as a simple feed-
back loop: the first step is to determine the current
power consumption and to account it to the origi-
nating activities. The next step is to analyze the
accounting data and to make a decision based on
a given policy or goal. The final step is to respond
with allocation or de-allocation of energy consuming
resources to the activities, with the goal to align the
energy consumption with the desired constraints.

We observe that mainly the second step is asso-
ciated with policy, whereas the two other steps are
mechanisms, bound to the respective providers of
the resource, which we hence call resource drivers.
We thus model the second step as an energy man-
ager module, which may, but need not reside in a
separate software component or protection domain.
Multiple such managers may exist concurrently the
system, at different position in the hierarchy and
with different scopes.

Energy

manager

Resource driver 1

Resource driver 2

Energy consuming

resource 2

energy accounting

Energy consuming

resource 1

Client

Client

Client

energy allocation

Figure 2: Distributed energy management. Energy
managers may reside in different components or pro-
tection domains. Resource drivers consume resources
themselves, for which the energy is accounted back to
the original clients.

Each energy manager is responsible for a set of
subordinate resources and their energy consump-

2007 USENIX Annual Technical ConferenceUSENIX Association 3

Saturday, January 19, 13

VirtualPower [Nathuji 07]

• Main idea: Present virtual ACPI states to VMs

• How does virtual ACPI states map to hardware states?

• Soft Scaling

• Information from ACPI can be aggregated in data centers with
heterogenous hardware

Saturday, January 19, 13

CPU Consolidation

The Effectiveness of CPU Consolidation [Hwang 12]
Interesting related observation about exclusive caches in [Krishnan 2011]

Saturday, January 19, 13

Conclusion

IBM Mainframe VMs VMware
Workstation

Paravirtualization
Xen

’99‘70s ’03

x86 Hardware
Support

’05

CPU and Memory
Optimizations

’12

I/O and
Device Assignments

Virtual
Interrupts

Virtual
Power

? ?

?
ARM

Saturday, January 19, 13

Saturday, January 19, 13

VM Power Metering

• Model: Upper and lower bounds on CPU and on Memory
[Krishnan 11]

• Power consumption depends on how memory bound

• Depends on cache structures, L1 snooping wakes up other
cores

Saturday, January 19, 13

I/O Power Savings

• Prolong sleep periods of mechanical disks [Ye10]

• Early flushes, and buffering writes

• Expose virtual per-device power state agents to VMs [Tian 10]

Saturday, January 19, 13

vIC [Ahmad 11]

• Virtual Interrupt Coalescing

• Balance coalescing with latency

• Define a ratio R = Virtual IRQs / Hardware IRQs

• The lower R, the more coalescing

• Dynamically determine R based on Commands-In-Flight (CIF)
and estimated IOPS

Saturday, January 19, 13

