Virtualization History and Future Trends

Christoffer Dall - Candidacy Exam - January 2013

Columbia University - Computer Science Department

Saturday, January 19, 13

Historical Overview

Taxonomy

Virtualization Software		<u>Hardware Support</u>	
[Sugerman 01]	[Kivity 09]		
[Bugnion 12]	[Barham 03]	[Gum 83]	[Adams 06]
[Popek	74]		[Agesen 12]
[Colp 11]	[Bugnion 97]	[Uhlig 05]	[Bhargava 08]
[Ben-Yehuda 10]	[LeVasseur 04]		[Wang 11]
<u>Optimizat</u>	<u>tions</u>	<u>Pov</u>	<u>wer</u>
<u>Optimizat</u> [Waldspurger 02]	<u>tions</u> [Gordon 12]	Por [Stoess 07]	<u>Ner</u> [Hwang 12]
<u>Optimizat</u> [Waldspurger 02] [Liu	tions [Gordon 12] 06]	<u>Pov</u> [Stoess 07] [Nathuji 07]	<u>Ner</u> [Hwang 12]
<u>Optimizat</u> [Waldspurger 02] [Liu [Willmar	tions [Gordon 12] 06] n 08]	<u>Pov</u> [Stoess 07] [Nathuji 07]	<u>Ner</u> [Hwang 12]
Optimizat [Waldspurger 02] [Liu [Willman [Amit	tions [Gordon 12] 06] n 08] 11]	Pov [Stoess 07] [Nathuji 07] [Ye 10]	<u>/Ver</u> [Hwang 12] [Krishnan 11]

Virtualization

Virtualization Software		Hardware Support	
[Sugerman 01]	[Kivity 09]		
[Bugnion 12]	[Barham 03]		
[Popek 74]			
[Colp 11]	[Bugnion 97]		
[Ben-Yehuda 10]	[LeVasseur 04]		
<u>Optimization</u>	C C		

Saturday, January 19, 13

Virtualization [Popek 74]

- The mechanism through which we facilitate Virtual Machines
- Defined intuitively by Popek and Goldberg [Popek 74] to be: "...an efficient, isolated duplicate of the real machine."

VMMs [Popek 74]

- Virtual Machine Monitor (VMM)
- Three properties
 - I. Efficiency
 - 2. Resource control
 - 3. Equivalence

L	VM	VM
L	V	MM
	Hard	dware

Virtualizable [Popek 74]

• Theorem:

"For any conventional third generation computer, a virtual machine monitor may be constructed if the set of sensitive instructions for that computer is a subset of the set of privileged instructions"

- All sensitive instructions trap to the VMM
- Allows for trap-and-emulate

Revitalization in the nineties

• VMware workstation in '99 [Sugerman 01; Bugnion 12]

New Directions

Xen and the art of Virtualization [Barham 03]

Kernel-Based VM (KVM) [Kivity 09]

Hardware Support

<u>Virtualization Software</u>		Hardware Support	
	[Kivity 09]		
	[Barham 03]	[Gum 83]	[Adams 06]
	74]		[Agesen 12]
	[Bugnion 97]	[Uhlig 05]	[Bhargava 08]
	[LeVasseur 04]		[Wang 11]
	<u>tions</u>	<u>Pov</u>	<u>wer</u>
	tions [Gordon 12]	<u>Pov</u> [Stoess 07]	<u>Wer</u>
	<u>tions</u> [Gordon 12] 06]	<u>Pov</u> [Stoess 07] [Nathuji 07]	<u>wer</u> [Hwang 12]
	tions [Gordon 12] 06] n 08]	<u>Po</u> [Stoess 07] [Nathuji 07]	<u>Wer</u> [Hwang 12]
	tions [Gordon 12] 06] nn 08] 11]	Pov [Stoess 07] [Nathuji 07]	<u>VVer</u> [Hwang 12] [Krishnan <u>11</u>]

Hardware Support Outline

- Intel VT-x and AMD-V
- Hardware vs. Software
- Hardware Memory Virtualization

Intel VT-x

Non-Root traps sensitive instructions

Intel VT-x

Nested Page Tables (NPT)

Hardware Support

Not a new idea [Gum 83]

Hardware vs. Software

- Benefits not clear cut
- Comparison with software [Adams 06] show that especially IO-bound workloads are actually faster.
 - example:
 - in/out instruction sequences rewritten to single exit

Hardware vs. Software

- Hardware extensions have matured
- But, exits are still expensive...
- Still uses combination of hardware/software approach in commercial VMware products [Agesen 12].
- Software methods still useful for nested virtualization [Ben-Yehuda 10]

Nested Page Tables

Some concerning results [Bhargava 08]

Hardware Support

<u>Optimiz</u>	<u>ations</u>	<u>wer</u>
Optimiz [Waldspurger 02] [Liu [Willma	Gordon 12] [Gordon 12] 06] ann 08]	<u>wer</u> [Hwang 12]

Optimizations

- Memory Consumption
- Paravirtualized drivers
- Direct Device Assignment
- Virtual Interrupts

Direct Device Assignment

- One major bottleneck is I/O
- Still far from bare metal
- Direct Device Assignment is a potential solution

Direct Device Assignment

- Liu et al. [Liu 06] propose to simply assign a device directly to a VM
- Requires device support
- Control messages trap to VMM
- IOMMUs can help [Willmann 08; Amit 11]

Virtual Interrupts

- Interrupts can limit CPU performance and I/O throughput
- Worse in VMs due to VMEXITs
- Especially bad on systems with high IRQ frequency

Virtual Interrupts

IRQ Device	NP	Handler
Host Device	I	
Host Device		
Host Device		
Guest Device	0	handle_disk_irq()
Host Device	I	
Guest Device	0	handle_nic_irq()

- ELI [Gordon 12]:VMs handle interrupts for certain devices
- ELI uses a shadow Interrupt Descriptor Table (IDT) to let guest handle interrupts directly, while remaining in control of host devices

Virtual Interrupts

Hardware Support

<u>ations</u>	<u>Pov</u>	<u>wer</u>
ations [Gordon 12] 06] ann 08]	<u>Pov</u> [Stoess 07] [Nathuji 07]	<u>Wer</u> [Hwang 12]

Amazon AWS hosts 46,000 servers 8 MW power consumption at \$88 million / year

Power Architecture for VMs

Accounting model [Stoess 07]

- Problem is that VMMs are uninformed about VMs and VMs don't know their real power consumption (VMEXITs)
- Accounting model suggests passing allocation hints up the stack, and statistics down the stack

VirtualPower [Nathuji 07]

- Main idea: Present virtual ACPI states to VMs
- How does virtual ACPI states map to hardware states?
- Soft Scaling
- Information from ACPI can be aggregated in data centers with heterogenous hardware

CPU Consolidation

The Effectiveness of CPU Consolidation [Hwang 12]

Interesting related observation about exclusive caches in [Krishnan 2011]

Conclusion

Saturday, January 19, 13

VM Power Metering

- Model: Upper and lower bounds on CPU and on Memory [Krishnan 11]
- Power consumption depends on how memory bound
- Depends on cache structures, L1 snooping wakes up other cores

I/O Power Savings

- Prolong sleep periods of mechanical disks [Yel0]
 - Early flushes, and buffering writes
- Expose virtual per-device power state agents to VMs [Tian 10]

vIC [Ahmad II]

- Virtual Interrupt Coalescing
- Balance coalescing with latency
- Define a ratio R = Virtual IRQs / Hardware IRQs
- The lower R, the more coalescing
- Dynamically determine R based on Commands-In-Flight (CIF) and estimated IOPS