Lower Bounds via the Cell-Sampling Method

Omri Weinstein
Columbia

Locality in TCS

* Locality/Sparsity is central to TCS and Math:

* PCP Theorems

* Locally-Decodable Codes (LDCs)

* Data Structures

* Derandomization (expanders, k-wise independence)
* Matrix Rigidity

* Compressed sensing

* Graph decompositions (LLL)

Limits of Local Computation ?

* Typically, locality comes at price (e.g. blowup in size of input)

* How can we prove lower bounds on this tradeoff?

e This Tutorial:

“Cell Sampling”: A simple & unified technique. Proves highest
known unconditional lower bounds in various computational models.

Plan

¢ Cell-Sampling technique

* Applications:
|) Time-Space Tradeoffs in Data Structures (near-neighbor search)
II) LB for Locally Decodable Codes (rate vs. locality)
lIl) Matrix Rigidity (sparsity vs. rank)

* Limits of cell-sampling method

Information Theory 10|

* Entropy : For random variable X » !,

H.(X) = 2. x '(x) 18(1/'(x)) = Ex[lg 1/'(X)]
Captures how “unpredictable” X'is — E.g., H(Ber('2)) = | bit, H(Unif)) = Ig(n) bits .

» Conditional Entropy : H(X[Y) := E [H.(X |[Y=y)]

Thm (Shannon '48): E,[cost of sending X] , H.(X) bits. (tight by Huffman code)

X»!

Cell Sampling

* LBs on “locality” via compression argument.

* High-level idea:
Too-good-to-be-true “local” Algorithm =» impossible compression of input.

(Typically not enough by itself — need to combine argument with extra features/
structure of problem, e.g., geometric/ combinatorial etc — more on this soon)

* Let’s exemplify this method by proving time-space tradeoffs for data structures.

Data Structures LBs (“Cell-Probe” model)

* DS = “compact” representation of info in database, so that queries about data can
be answered quickly.

* Static Data Structures: Given data X of n elements in advance (e.g., graph, string,
set of pts, etc.), preprocess it into small memory s so that 8 query q 2 Q can be
computed fast with t memory accesses (computations free of charge!).

* NNS: Data=nptsin {01} o
* q
o
Data Structure |:Precompute and
store all answers in lookup table. ° @
(t=1, s=29)
o o W

* Data Structure LBs: Is there anything in between ? Study time-space tradeoffs (s vs. t).

Ex: Polynomial Evaluation

* PolyEval:
* Input: Random degree-n polynomial P 2; F.. (m = n?). /
* Query: Element x 2 F,, =» Return P(x). /\
* H(P) = (nt+l)lg(m) (n+| random coeff2 F_ , word size w=lg m) / \J

* Trivial: s=n+l,t=n+l (read all coefficients)

Thm : Any D with space s=O(n) must have query time t ;| ()(lg n).

Proof (via cell-sampling) /
* Assume toward contradiction 9 D with space s=10n and query /\\
time t=o(lg n). (recall word-size w=Ig m). / \/

) Use data structure to encode P using less than (n+1)Igm bits (!)

e Alice Encodes P : l

* Build DS D on P.

* Alice picks a random sample C of mem cells: ID(P)]=10n (words)
* Include each cell w.p p:= |/100. -1'41 lja | sy |i13

* Sends Bob C (addresses + contents).

= E[message length] = (s /100) 2w < 10n 3Ign/100 < (n+1)Ilg(m) bits = H(P) !

= Expected cost < H(P) bits.

"= Decoding P:
= Bob iterates through all x 2 F, : DS(P)
" Run query algorithm of DS on x: 2212227 .. [2> Bsofjaa]| =2 [22 [+>
= |f read outside C, discard x.
= Probability recover answer to fixed x = p* = (1/100)! % el }

» E.[# surviving queries x] = m¢ (1/100)'= £(n? ¢ 2t) = nZo()
But every nt+| queries determine P, hence Bob learns H(P) ~n¢lgm bits of info

from <n¢lgm bits of CC (!)
) t=Q(lg n). [More generally :

t, Q(lg(n)/Ig(s/n))]
* Special property of polynomials: Any large enough set of answers recovers entire
input (“n-wise independence”). Most natural problems don’t have this feature..

Time-Space Lower Bounds
for Near-Neighbor Search

Nearest-Neighbor Search

* NNS: Preprocess dataset X = x,,..., X, in metric space (say RY with 1, norm), s.t given
a query q 2 RY, closest point in X to q can be retrieved as fast as possible.

0.1} (d=100¢lg(n))

°
q /¢ , ™
Data Structure |: A () Data Structure 2 '
Precompute and store all Store DB (graph) as is. Bead entire
answers in lookup table. R @ DB when given query (linear scan).
(t=1, s=24=nl0) o (t=n, s=n)
-) ’ \ /

* Better time-space tradeoffs (s vs. t) ?

* Probably not... (“Curse of dimensionality”)

Approximate NNS

(c,r)-ANN: Relaxed requirement: Given radius r and apx parameter c > |, if
9 x;s.t|q-x]|<r returnx;s.t|q-x| - cgr.

{0,1}

* “Robust” version has dramatic consequences (LSH) : .

s=n*", t=0(n") for c=(1/*)-apx. (1, 1, [IM98, Pan06, ARI5.]) .

cr
 Is this optimal? Can we get near-linear space an t = n°(1)? \\Ir
.)

e Thm [PTW’I0, LMWY’I9]:

8 DS D for (1/?)-ANN over d-dim Hamming space, o o

t, Q(d / Ig(dw)) for s = O(n) space.

* Ford=£(gn) > Qg n/lglg n).

Proof 2d = 10

« Consider X = x,...x, » U(29) , d = [0¢lg(n) (whp, B,.4(x,) are all unique)

* Isoperimetric Fact: 8 |S| = 2(!"79) i.(S) , 24
(Harper’s Inequality: least-expanding subset of hypercube = ball)

(*) Cor: 8 fixed subset of |S| & 2(" 34 r-ANN queries (r=*d), Pr , ; ,y [% 2 i:(S)] , "2
) n/4 data points x; fall into any such S whp.

» Consider (0-err) D solving ANN with s=10n space (say), t = o(*’d / Ig w) query time.
q

* D = too good to be true (rand) compression scheme :
for encoding n/8 x,'s using o(n¢d) = o(n Ig n) bits ! J

D(x)

jatt | sv |i13

* Alice samples 8 cell ¢ 2 D(x) iid wp p := |/100w. -
ja1

Alice sends Bob contents + addresses of sampled cells 2
E[|C|¢ w] = 2psw < n/10 bits (recall p = |/100w)

E «[# surviving queries Q] = 29¢ Prc«[D(q) > C] = 29¢p*
& 29 ¢ (1/100w)°(? e w) > 2d = 0% d) > (1=)¢ (p = 1/100w)

If it were the case that Q ? X (i.e., (X|Q) » U(29)) By (¥) (j=(Q) , 2¢"),
Bob would have been able to recover n/4 (say) x/'s just from C = contradiction!

But D is adaptive = surviving queries heavily depend on content of
cells (function of X) =» Surviving set Q = Q(X) correlated with X!

In principle, all x;'s could all fall into :}.(Q) (even though
it has covers Y2 the space). D(x)

222 ja1] If...|Else|389] ja#t | Sy |j13

¢ Obs: Q(X) determined by only |[C|lw < o(n) bits (actually n/10 but good enough)
(DPI) H(X];(Q(X))) > nd — o(n) bits : X is still “close” to U(29)... 2

* Formalize this using simple “geometric packing” argument: Suppose fsoc
that > n/4 x/’s fall outside . (Q) => these pts are (essentially) (d-1)-dim.

=>» Can save 1 bit for their encoding, already gives impossible compression...

* So may assume > n/4 x.'s indeed fall into j.(Q) as desired, in which case prev “naiive”
analysis goes through. .

* Cell-Sampling also used in highest (~Ig"2 n) dynamic data structure
lower bounds... [Larl2, LWY 8]

Lower Bounds on
Locally Decodable Codes

Error Correcting Codes + = (frac) distance of C 0,13

 ECC C:F'—=F" (m>n)s.t 8xy|C(x)—y| <£) xrecovered fromy. e

* For £ = "4 (say), 9 ECCs with constant rate m = O(n). . ‘

* But decoding requires reading entire codeword C(x), even if just want x; .

* If interested in decoding only x, , can hope to read few (ideally O(1)) bits of C(x) ?

« g-LDC C:{0,I}" > {0,1}™s.t 8x,y |C(X) —y| <=+) recover x; by reading only q bits of y.

y = C(x) + £m “noise”
| J0 |O] 1] 1] 0J0O0] 11]0

LOC&||)’-DeCOC|ab|e Codes LDCs must randomize!

q-LDC C:{0,1}" > {0,1}™s.t 8%, d(C(x),y) <I/4) recover x, by reading g bits (whp).

Tradeoff b/w q and m ? Is g=0(1) possible with m=O(n) ??

Claim: for g=1, impossible (intuition: some bit j 2 [m] must convey info on €2,(n) x/s)

e q=2 ? Possible with m =2":

To Encode x 2 {0,1}", store 8 T u [n] C(x)1:= O, rx, (m=2") T

To Decode x; from y, pick T2;[n] & query y; © y,

Pr..ndom T[DOth V1 & Y1 uncorrupted] %4 -2+ ©

LB on tradeoff b/w q and m ? Is g=0O(/) possible with m=0O(n) ? T

Thm [KatzTrevisan’00] : 8 gq-LDC, m , ~Q,(n'*!q)

* Proof: For g-LDC C, the query graph G; of C is the g-hypergraph containing possible
g-tuples from which x, can be recovered (|G;|=m) .

* “Smoothness”: Intuitively, q-edges of G; are 4 uniformly distributed: No vertex j 2 G, has
(weighted) degree ¢ > g/=m (o.w adversary can corrupt it. Avg deg = g/m (Markov)).

G.

* Corollary: 8 q-LDC, G, contains Matching [M,| , £m/q?.

* Proof : Max |Matching(G)| in g-hypergraph
, Min |[VC(G))| / q (any VC must pick | v from max matching)

, ¢ ¢ (1/q) (each vertex covers - ¢ “mass”)

, 1/ (qég/£m) >=+m/q* (max-deg ¢ <qg/+m)

* Use LDC to compress input (via Cell-Sampling) :
* Alice builds C(x), samples 8 j 2 [m] w.p p:= n/I0m =» E[S] = m*p = n/I0 bits.

 8i2[n] Prg[Bob can recover x] , Pro[U., . “e survives”

= Yoo Prs[“esurvives”] (disjoint events since M. = matching !)

=|M|| ¢ p3 =|xm/q? ¢(n/I10m)3< % |for >n/2 i’s (o.w. recover n/2 x.’s from < n/10 bits!)

, m3¥' & ni/q® , Q,(n'*)

Matrix Rigidity

Matrix Rigidity M+#A+ B
~ ~~
t-sparse rk <en
 Def: A matrix M2 F™ js t-Rigid if decreasing
its rank n = n/2 requires modifying , t entries in some row.

* M “t-far” from any low-rank matrix . (assume m=poly(n))

1 x, xg o

1 % =x C
 Thm: n2£n Vandermonde matrix is (g n)-Rigid. 1 :
 Cell-Sampling + Subadditivity of Rank : 1%, X X

» Sketch: Sample 8 column of A w.p 1/10 (call it S) => If every row is < Ig(n)/100
sparse = 9 n rows R s.t |S|=n/10 “covers” all I’s in these rows = rk(Ag + Bg) -
rk(Ag) + rk(Bg) - n/10 + n/2 <n. But every submatrix of V is also full rank (n) !

Limits of Cell Sampling

* Cell Sampling relies on simple fact : In every graph of size n with m
edges, there is a small set (~pn) containing “nontrivial” (~m/2P) edges.

* Tight for expanders... (any o(lg n) subset contains o(n) edges)

*) log(n) is a fundamental limit of cell sampling &

 Still very useful technique, that unifies/explains current barrier in complexity
holy-grails (LDC/Rigidity/DS...)

Thanks!

Cell Sampling: Time-Space LBs via Compression

= Assume for contradiction that a “too-good-to-be-true” DS exists for PolyEval
with t < Ig n and linear space (s=O(n)).

\ | — / — — (§
) ' 3
| (— IR\ = Pl
= S .{/)B= Random Deg-n polynom..’.

n-letter text T w. random symbols : P(i) = T)).

= Use magic data structure to encode and decode the input set using less than y
symbols. A contradiction!

