
Lower Bounds via the Cell-Sampling Method

OmriWeinstein
Columbia 



Locality in TCS

• Locality/Sparsity is central to TCS and Math: 

• PCP Theorems  
• Locally-Decodable Codes (LDCs)  
• Data Structures
• Derandomization (expanders, k-wise independence)  
• Matrix Rigidity
• Compressed sensing
• Graph decompositions (LLL)  
• ...



Limits of Local Computation ?

• Typically, locality comes at price (e.g. blowup in size of input) 

• This Tutorial: 

“Cell Sampling”: A simple & unified technique. Proves highest 
known unconditional lower bounds in various computational models.

• How can we prove lower bounds on this tradeoff? 



Plan 

1) Time-Space Tradeoffs in Data Structures  (near-neighbor search)

III) Matrix Rigidity (sparsity vs. rank)

• Cell-Sampling technique 

II) LB for Locally Decodable Codes (rate vs. locality) 

• Limits of cell-sampling method

• Applications: 



Captures how “unpredictable” X is – E.g., H(Ber(½)) = 1 bit,    H(Unifn) = lg(n) bits . 

Thm (Shannon ’48): E¹[cost of sending X] ¸ H¹(X)  bits .   (tight by Huffman code)  

X	» ¹
M

¹

• Conditional Entropy :  H¹(X|Y) := Ey[H¹(X |Y=y)]    

• Entropy :   For random variable X  » ¹ ,   

H¹(X) := åx2 X ¹(x) lg(1/¹(x)) = EX[lg 1/¹(X)]

Information Theory 101



Cell Sampling
• LBs on “locality” via compression argument. 

• High-level idea: 
Too-good-to-be-true “local” Algorithm è impossible compression of input.

(Typically not enough by itself – need to combine argument with extra features/ 
structure of problem, e.g., geometric/ combinatorial etc – more on this soon) 

• Let’s exemplify this method by proving time-space tradeoffs for data structures.



• DS = “compact” representation of info in database, so that queries about data can 
be answered quickly.

Data Structures LBs  (“Cell-Probe” model)

• Data Structure LBs: Is there anything in between ?  Study time-space tradeoffs (s vs. t). 

Data Structure 1: Precompute and 
store  all answers in lookup table. 
(t = 1  ,    s = 2d )

q

• NNS :  Data = n pts in   {0,1}d

Data Structure 2: Store raw DB. 
Read entire DB when given query. 
(t = n ,    s = n)

• Static Data Structures: Given data X of n elements in advance (e.g., graph, string, 
set of pts, etc.), preprocess it into small memory s so that 8 query q 2 Q can be      
computed fast with t memory accesses (computations free of charge!).  

q      
t

s
w



• PolyEval:
• Input: Random degree-n polynomial P 2R Fm (m = n2).
• Query: Element x 2 Fm è Return P(x).  
• H(P) = (n+1)lg(m) (n+1 random coeff 2 Fm , word size w=lg m)

Ex: Polynomial Evaluation 

• Trivial:  s= n+1 , t = n+1 (read all coefficients)

Thm : Any D with space s=O(n) must have query time t ¸ W(lg n).  



• Alice Encodes P :
• Build DS D on P.
• Alice picks a random sample C of mem cells:
• Include each cell w.p p := 1/100.

• Sends Bob C (addresses + contents).
§ E[message length] = (s /100) 2w < 10n 3lgn/100 < (n+1)lg(m) bits = H(P) ! 

222		j41				If...		Else		389			j4#					$y				j13

|D(P)|=10n (words)

Proof  (via cell-sampling)

• Assume toward contradiction 9 D with space s=10n and query
time t=o(lg n).  (recall word-size w=lg m). 

) Use data structure to encode P using less than (n+1)lgm bits (!)

P
C



§ Expected cost < H(P) bits.

§ Decoding P :
§ Bob iterates through all x 2 Fm:

§ Run query algorithm of DS on x:
§ If read outside C, discard x.

§ Probability recover answer to fixed x = pt = (1/100)t

§ EC[# surviving queries x] = m¢ (1/100)t= £(n2 ¢ 2-t) = n2-o(1) 

But every n+1 queries determine P, hence Bob learns H(P) ~n¢lgm bits of info 
from <n¢lgm bits of CC (!)

t=o(lg n).

) t=W(lg n).

?? 222		?? If...				?? 389				j4#					?? ?? ??

t           

DS(P)

x 2 Fm

• Special property of polynomials:  Any large enough set of answers recovers entire 
input (“n-wise independence”).  Most natural problems don’t have this feature.. 

[ More generally :  
t ¸ W(lg(n)/lg(s/n)) ]



Time-Space Lower Bounds 
for Near-Neighbor Search



Nearest-Neighbor Search 

Data Structure 2:
Store DB (graph) as is. Read entire
DB when given query (linear scan). 

(t = n ,    s = n)

Data Structure 1:
Precompute and store  all 
answers in lookup table. 

(t = 1  ,    s = 2d = n100)

• Better time-space tradeoffs (s vs. t) ? 

q

• NNS: Preprocess dataset X = x1,…, xn in metric space (say Rd with l1 norm), s.t given 
a query q 2 Rd, closest point in X to q can be retrieved as fast as possible. 

{0,1}d (d = 100¢lg(n) )

• Probably not… (“Curse of dimensionality”) 



Approximate NNS  

• “Robust” version has dramatic consequences (LSH) :
s = n1+²,  t = O(n²) for c=(1/²)-apx. (l1, l2 [IM98, Pan06, AR15..])

• (c,r)-ANN: Relaxed requirement: Given radius r and apx parameter c > 1, if 
9 xi s.t |q - xi| < r, return xj s.t |q - xi| · c¢r.  

• Is this optimal? Can we get near-linear space an t = no(1)? q

{0,1}d

r
cr

• Thm [PTW’10, LMWY’19] :  
8 DS D for (1/²)-ANN over d-dim Hamming space,   

t ¸ W(d / lg(dw)) for s = O(n) space. 

• For d = £(lg n) à W(lg n/lglg n). 



S

Proof
• Consider X = x1,…xn » U(2d)  , d = 10¢lg(n)  (whp, B2²d(xi) are all unique)

2d =	n10

• Isoperimetric Fact : 8 |S| = 2(1-²  )d ) ¡²(S) ¸ 2d-1

(Harper’s Inequality: least-expanding subset of hypercube = ball)

2

(*)  Cor: 8 fixed subset of |S| & 2(1-²  )d r-ANN queries (r=²d), Pr x_i » U [xi 2 ¡²(S)] ¸ ½ 2

) n/4 data points xi fall into any such S whp.  

• Consider (0-err) D solving ANN with s=10n space (say), t = o(²2d / lg w) query time.

• D è too good to be true (rand) compression scheme  
for encoding n/8 xi’s using o(n¢d) = o(n lg n) bits !

t           

D(x)

q

222		j41				If...		Else		389			j4#					$y				j13
• Alice samples 8 cell c 2 D(x) iid wp p := 1/100w.        

²d



• Alice sends Bob contents + addresses of sampled cells 
E[|C|¢ w] = 2psw < n/10 bits  (recall p = 1/100w)

2d

• EC,X[# surviving queries Q] = 2d¢ PrC,X[D(q) ½ C] = 2d¢pt

• If it were the case that Q ? X  (i.e., (X|Q) » U(2d)) ) By (*) (¡²(Q) ¸ 2d-1), 
Bob would have been able to recover n/4 (say)  xi’s just from C à contradiction! 

• But D is adaptive à surviving queries heavily depend on content of 
cells (function of X) è Surviving set Q = Q(X) correlated with X! 

• In principle, all xi’s could all fall into :¡²(Q) (even though 
it has covers ½ the space). D(x)

222		j41				If...		Else		389			j4#					$y				j13

& 2d ¢ (1/100w)o(²2 d/lg w) > 2d – o(²2 d) > 2(1– ²2)d              (p = 1/100w)



• Obs:  Q(X) determined by only |C|w < o(n) bits   (actually n/10 but good enough)

• Formalize this using simple “geometric packing” argument: Suppose fsoc
that > n/4 xi’s fall outside ¡² (Q) è these pts are (essentially) (d-1)-dim. 

è Can save 1 bit for their encoding, already gives impossible compression…

• So may assume > n/4 xi’s indeed fall into ¡²(Q) as desired, in which case prev “naiive” 
analysis goes through.  

2d(DPI) H(X|¡²(Q(X))) > nd – o(n) bits : X is still “close” to U(2d)…

• Cell-Sampling also used in highest (~lg^2 n) dynamic data structure 
lower bounds… [Lar12, LWY18]



Lower Bounds on 
Locally Decodable Codes



Error Correcting Codes

• But decoding requires reading entire codeword C(x), even if just want xi . 

• For ± = ¼ (say), 9 ECCs with constant rate m = O(n).

• If interested in decoding only xi , can hope to read few (ideally O(1)) bits of C(x) ?

x

{0,1}m

• q-LDC C : {0,1}n! {0,1}m s.t 8x,y |C(x) – y| < ± ) recover xi by reading only q bits of y.

q           

y = C(x) + ±m “noise”

xi

1     0 0 1     1    1     0     0     1    0

± = (frac) distance of C

• ECC  C : Fn! Fm (m > n) s.t 8x,y |C(x) – y| < ± ) x recovered from y.   y



Locally-Decodable Codes

• q-LDC C : {0,1}n! {0,1}m s.t 8x, d(C(x),y) <1/4 ) recover xi by reading q bits (whp).

• Tradeoff b/w q and m ? Is q=O(1) possible with m=O(n) ??

• Claim: for q=1, impossible (intuition: some bit j 2 [m] must convey info on W±(n) xi’s)

• q=2  ?   Possible with m = 2n : 

• LB on tradeoff b/w q and m ? Is q=O(1) possible with m=O(n) ??

• To Encode x 2 {0,1}n,  store 8 T µ [n]  C(x)T := ©i2T xi (m = 2n)

• To Decode xi from y, pick T2R[n] & query  yT © yT©i

• Prrandom T[both yT & yT©i uncorrupted] ¼ 1-2± J

T

T©i

LDCs must randomize!



• Proof:  For q-LDC C, the query graph Gi of C is the q-hypergraph containing possible 
q-tuples from which xi can be recovered (|Gi|=m) .

• “Smoothness”: Intuitively, q-edges of Gi are ¼ uniformly distributed: No vertex j 2 Gi has 
(weighted) degree ¢ > q/±m  (o.w adversary can corrupt it. Avg deg = q/m (Markov)).

• Proof :  Max |Matching(Gi)|       in q-hypergraph
¸ Min |VC(Gi)| / q          (any VC must pick 1 v from max matching)

Thm [KatzTrevisan’00] :  8 q-LDC , m ¸ ~W±(n1+1/q)

Gi
• Corollary: 8 q-LDC, Gi contains Matching |Mi| ¸ ±m/q2 .

¸ 1/¢ ¢ (1/q)             (each vertex covers · ¢ “mass”)             

¸ 1 / (q¢q/±m) > ±m/q2 (max-deg ¢ <q/±m)



• Use LDC to compress input  (via Cell-Sampling) : 

, m q-1 & nq / q2 ,   W± (n1+1/q)

• Alice builds C(x), samples 8 j 2 [m] w.p p:=  n/10m è E[S] = m*p = n/10 bits.

q           

C(x)

1     0 0 1     1    1     0     0     1     
0

• 8 i 2 [n] PrS[Bob can recover xi]   ¸ PrS [ "e 2 Mi “e survives”]

=   åe 2 Mi PrS [“e survives”]    (disjoint events since Mi = matching !)

= |Mi| ¢ pq =  ±m/q2 ¢(n/10m)q< ¾ for >n/2 i’s (o.w. recover n/2 xi’s from < n/10 bits!)

x 2R {0,1}n
S



Matrix Rigidity



Matrix Rigidity 

• Thm: n2£n Vandermonde matrix is W(lg n)-Rigid. 

• Cell-Sampling + Subadditivity of Rank : 

• Sketch: Sample 8 column of A w.p 1/10 (call it S) è If every row is < lg(n)/100 
sparse è 9 n rows R s.t |S|=n/10 “covers” all 1’s in these rows è rk(AR + BR) ·
rk(AR) + rk(BR) · n/10 + n/2 <n.   But every submatrix of V is also full rank (n) !

• M “t-far” from any low-rank matrix .  (assume m=poly(n))

• Def: A matrix M 2 Fmxn is t-Rigid if decreasing 
its rank n à n/2 requires modifying ¸ t entries in some row.



Limits of Cell Sampling

• Tight for expanders… (any o(lg n) subset contains o(n) edges)

• Cell Sampling relies on simple fact : In every graph of size n with m
edges, there is a small set (~pn) containing “nontrivial” (~m/2p) edges. 

• ) log(n) is a fundamental limit of cell sampling L

• Still very useful technique, that unifies/explains current barrier in complexity 
holy-grails (LDC/Rigidity/DS…) 



Thanks!



§ Assume for contradiction that a “too-good-to-be-true” DS exists for PolyEval
with t < lg n and linear space (s=O(n)).

§ Suppose input DB= Random Deg-n polynomial P (equiv to 
n-letter text T w. random symbols : P(i) = Ti).  

§ Use magic data structure to encode and decode the input set using less than y
symbols. A contradiction!

Cell Sampling:  Time-Space LBs via Compression


