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Applications in computer science

Many extensions discovered in the context of algorithmic problems.

1. Invariance principle [Mossel-O’Donnell-Oleskiewicz] –
numerous applications in hardness of approximation,
derandomization and social choice.

2. Multidimensional central limit theorems
[Daskalakis-Papadimtriou, Daskalakis-Kamath-Tzamos,
Valiant-Valiant] – many extensions and applications in
algorithmic game theory and lower bounds in statistics.
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Why is central limit theorem useful?

Central limit theorem: Even if X1, . . . ,Xn are unwieldy random
variables, their sum X1 + . . .+ Xn is nice.

In some applications, the precise convergence to the Gaussian
distribution is important.

In others, the fact that a Gaussian can be parameterized by two
parameters is sufficient.
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Berry-Esséen theorem

Theorem
Let X1, . . . ,Xn be n independent centered random variables such
that Var(Xi ) = σ2

i and E[|Xi |3] = β3,i . Define S =
∑

Xi ,
σ2 = Var(S) and β3 =

∑
β3,i . Then,

dK (S ,N (0, σ2)) = O(1) · β3

σ3
.

dK (X ,Y ) = sup
z∈R

∣∣Pr[X ≤ z ]− Pr[Y ≤ z ]
∣∣.



Corollary of the Berry-Esséen theorem

Corollary

Let X1, . . . ,Xn be n independent identical centered random
variables such that Var(Xi ) = σ2

∗ and E[|Xi |3] = β3,∗ (for all
1 ≤ i ≤ n). Define S =

∑
i Xi . Then,

dK (S ,N (0, nσ2
∗)) = O

(
1√
n

)
· β3,∗
σ3
∗
.
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Let us assume that the random variable Xi is hypercontractive – in
other words, there is a constant C > 0 such that

E[|Xi |3] ≤ C ·
(
E[|Xi |2]

)3/2
.

This implies that β3,∗/σ
3
∗ ≤ C . Thus, the error term in

Berry-Esséen theorem is now

dK (S ,N (0, nσ2
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(
C√
n

)
.



Corollary of the Berry-Esséen theorem
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Berry–Esséen for non identical random variables

Continue to assume that X1, . . . ,Xn are all C -hypercontractive.

Suppose maxi σ
2
i ≤ ε2 · (

∑n
j=1 σ

2
j ).

Then, the error term in Berry–Esséen becomes

β3

σ3
≤ C ·

∑
j σ

3
j

(
∑

j σ
2
j )1.5

≤ C · ε.

Thus, as long as none of the individual variances are too large, the
sum

∑
Xi converges to a Gaussian.
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How do you prove Berry–Esséen?

There are many known techniques used to prove “central limit
theorems”.

1. Lindeberg exchange method (hybrid method) – used by MOO
in their proof of the invariance principle.

2. Stein’s method – based on constructing an operator of which
the Gaussian is a fixed point.

3. Characteristic functions – aka Fourier analysis, the original
method of Esséen.
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We will only prove (at a high level) this for i.i.d. random variables.

Assume that X1, . . . ,Xn are i.i.d. with common distribution X.
Further, E[X] = 0, E[X2] = 1 and E[X4] ≤ 10. In fact, for
simplicity, assume that all the moments of X exist.

Goal: Show that S = X1+...+Xn√
n

satisfies

dK (S ,N (0, 1)) = O

(
1√
n

)
.



Characteristic functions

For any ξ ∈ R and real-valued random variable W, we define

Ŵ(ξ) = E[e iξW].

Observe that Ŵ(0) = 1 for any W. When X1, . . . ,Xn are
independent, then

Ŝ(ξ) =
n∏

i=1

X̂i (ξ/
√
n) = (X̂(ξ/

√
n))n.

Characteristic functions are nothing but the Fourier transform of
random variables.
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High level proof idea of Berry-Esséen theorem

1. Let Z = N (0, 1).

2. Goal: Show that S is close to Z is Kolmogorov distance.

3. First show that Ŝ(ξ) is close to Ẑ(ξ) where Z = N (0, 1).

4. Perform an approximate Fourier inversion to show that S is
close to Z.
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Approximate Fourier inversion

What is meant by approximate Fourier inversion?

Exact Fourier inversion:

Pr[S ≤ x ]− Pr[Z ≤ x ] = lim
T→∞

1

2π

∫ ξ=T

ξ=−T
e−iξx

Ŝ(ξ)− Ẑ(ξ)

iξ
dξ

Approximate Fourier inversion

Pr[S ≤ x ]− Pr[Z ≤ x ] ≤ 1

2π

∫ ξ=T

ξ=−T

|Ŝ(ξ)− Ẑ(ξ)|
|ξ|

dξ + O

(
1

T

)
.
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Strategy to prove the Berry-Eséeen theorem
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Choose T ≈
√
n. We will bound |Ŝ(ξ)− Ẑ(ξ)| for |ξ| ≤ T .
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Showing Ŝ(ξ) is close to Ẑ(ξ)

Let us start with Ẑ(ξ) . Recall Z = N (0, 1). It easily follows that

Ẑ(ξ) =

∫
x

1√
2π

e−
x2

2 e iξxdx = e−
ξ2

2 .

On the other hand,

Ŝ(ξ) = (X̂(ξ/
√
n))n =

(
1 +

∞∑
j=1

ij · E[Xj ]

j!

ξj

nj/2

)n

Ŝ(ξ) =

(
1− ξ2

2n
+ o(|ξ|2/n)

)n

.
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Showing Ŝ(ξ) is close to Ẑ(ξ)

Note: Taylor expansion of X̂(ξ/
√
n) is valid only if |ξ| is small.

Claim: For |ξ| ≤
√
n

100 , we have

∣∣Ŝ(ξ)− Ẑ(ξ)
∣∣ = O

(
1√
n
|ξ|3e−ξ2/3

)
.

Plugging this back into approximate Fourier inversion (with
T =

√
n/100),

Pr[S ≤ x ]− Pr[Z ≤ x ] ≤ 1

2π

∫ ξ=T

ξ=−T

|ξ|2e−ξ2/3

√
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|ξ|3e−ξ2/3

)
.

Proof technique: Split |ξ| into the high |ξ| regime and the low |ξ|
regime. In particular, define

Γlow = {ξ : |ξ| ≤ n
1
6 } and Γhigh = {ξ : n

1
2 /100 ≥ |ξ| > n

1
6 }.
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|Ŝ(ξ)| ≤ e−
2ξ2

3 . Using the fact that |Ẑ(ξ)| = e−
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ξ2

2 . When
ξ ∈ Γhigh, this is enough



Finishing the proof of Berry-Esséen

For all |ξ| ≤
√
n

100 , we have

∣∣Ŝ(ξ)− Ẑ(ξ)
∣∣ = O

(
1√
n
|ξ|3e−ξ2/3

)
.

Plugging this back into the approximate Fourier inversion formula
(which is)

|Pr[S ≤ x ]− Pr[Z ≤ x ]| ≤ 1

2π

∫ ξ=T

ξ=−T

|Ŝ(ξ)− Ẑ(ξ)|
|ξ|

dξ + O

(
1

T

)
,

we get Pr[S ≤ x ]− Pr[Z ≤ x ]| = O(n−1/2).
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∣∣ = O

(
1√
n
|ξ|3e−ξ2/3

)
.

Plugging this back into the approximate Fourier inversion formula
(which is)

|Pr[S ≤ x ]− Pr[Z ≤ x ]| ≤ 1

2π

∫ ξ=T

ξ=−T
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Application of the Berry-Esséen theorem

Stochastic knapsack

Suppose you have n items, each with a profit ci and a stochastic
weight Xi where each Xi is a positive valued random variable.

Goal: Given a knapsack with capacity θ and error tolerance
probability p, pack a subset S of items such that

Pr[
∑
j∈S

Xj ≤ θ] ≥ 1− p,

so that the profit
∑

j∈S cj is maximized.
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Berry-Esséen theorem for stochastic knapsack

Stochastic knapsack

Suppose you have n items, each with a profit ci and a stochastic
weight Xi where each Xi is of the form

Xi =

{
w`,i w.p. 1

2

wh,i w.p. 1
2

Here all w`,i ∈ [1, . . . ,M/4] and wh,i ∈ [3M/4, . . . ,M] where
M = poly(n). Further, all profits ci ∈ [1, . . . ,M].



Algorithmic result for stochastic knapsack

Result: There is an algorithm which for any error parameter ε > 0,
runs in time poly(M, n1/ε2

) and outputs a set S∗ such that

Pr[
∑
j∈S∗

Xj ≤ θ] ≥ 1− p − ε,

such that
∑

j∈S∗ cj = OPT.

Key feature: We do not relax the knapsack capacity θ. See paper
in SODA 2018 for the most general version of results.
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Main idea behind the algorithm

Observation I: If we “center” random variable Xi , i.e,
Yi = Xi − E[Xi ], then it satisfies

E[|Yi |3] ≤
(
E[|Yi |2]

)3/2
.

Thus, we can potentially apply Berry-Esséen to a sum of Xi .

Observation II: Consider any subset of items S with |S | ≥ 100/ε2.
Then,

max
i

Var(Xi ) ≤ ε2 · (
∑
j∈S

Var(Xj)).
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Algorithmic idea

Step 1: Either the optimum solution Sopt is such that
|Sopt| ≤ 100/ε2. In this case, we can brute-force search for Sopt.

Running time is nΘ(1/ε2).

Step 2: Otherwise, |Sopt| > 100/ε2. In this case, define µopt, σ
2
opt

and Copt as (i) µopt =
∑

j∈Sopt
E[Xj ]; (ii) σ2

opt =
∑

j∈Sopt
Var(Xj);

(iii) Copt =
∑

j∈Sopt
cj .
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Algorithmic idea

Observe that µopt, σ
2
opt and Copt are all integral multiples of 1/4

bounded by M2.

We use dynamic programming to find S∗ such that Copt = C∗,
µopt = µ∗ and σ2

opt = σ2
∗.

Consequence of Berry-Esséen theorem:

Pr[
∑
j∈S∗

Xj ≤ θ] ≥ Pr[
∑
j∈Sopt

Xj ≤ θ]− ε.
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Algorithmic idea

Consequence of Berry-Esséen theorem:

Pr[
∑
j∈S∗

Xj ≤ θ] ≥ Pr[
∑
j∈Sopt

Xj ≤ θ]− ε.

This is because by Berry-Esséen, the distribution of
∑

j∈S∗ Xj and∑
j∈Sopt

Xj follows essentially Gaussian (and their means and

variances match).



General algorithmic result for stochastic optimization

Suppose the item sizes {Xi}ni=1 are all hypercontractive – i.e.,
E[|Xi |3] ≤ O(1) · (E[|Xi |2])3/2.

Theorem: When item sizes are hypercontractive, then there is an
algorithm running in time nO(1/ε2) such that the output set S∗
satisfies

1.
∑

j∈S∗ cj ≥ (1− ε) · (
∑

j∈Sopt
cj).

2. Pr[
∑

j∈S∗ Xj ≤ θ] ≥ Pr[
∑

j∈Sopt
Xj ≤ θ]− ε.

Read SODA 2018 paper for more details.
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Central limit theorems: Citius, Altius, Fortius

Let’s do Altius – as in higher degree polynomials.

Berry-Esséen says that sums of independent random variables
under mild conditions converges to a Gaussian.

What if we replace the sum by a polynomial? Let us think of the
easy case when the degree is 2.
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Central limit theorem for low-degree polynomials

Consider p(x) =
(
x1+...+xn√

n

)2
. As n→∞, x1, . . . , xn are i.i.d.

copies of unbiased ±1 random variables, the distribution of p(x)
goes to a

χ2 distribution.

In fact, suppose p(x) is of degree-2 and of the following form:

p(x) = λ · `2(x) + q(x)m

where `(x) is a linear form and λ = E[p(x) · `2(x)]. If λ is large,
then p(x) is very far from a Gaussian.
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Central limit theorem for quadratic polynomials

Theorem
Let p(x) : Rn → R such that Var(p(x)) = 1 and E[p(x)] = µ.
Express p(x) = xTAx + 〈b, x〉+ c where A ∈ Rn×n and b ∈ Rn.
Let ‖A‖op ≤ ε and ‖b‖∞ ≤ ε. Suppose, x ∼ {−1, 1}n. Then,

dK (p(x),N (µ, 1)) = O(
√
ε).

If p(x) is not correlated with product of two linear forms, then it is
distributed as a Gaussian.



Central limit theorem for higher degree polynomials

Corresponding to any multilinear polynomial p : Rn → R of
degree-d , we have a sequence of tensors (Ad , . . . ,A0) where

Ai ∈ Rn×i
is a tensor of order i .

For a tensor Ai (where i > 1), we use σmax(Ai ) to denote the
“maximum singular value” obtained by a non-trivial flattening.
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E[p(x)] = µ. Let (Ad , . . . ,A0) denote the tensors corresponding
to p. Then,

dK (p(x),N (µ, 1)) = Od(
√
ε),

where x ∼ {−1, 1}n. Here ε ≥ maxj>1 σmax(Aj) and ε ≥ ‖A0‖∞.
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Features of the central limit theorem

1. Qualitatively tight: in particular, for a polynomial if
maxj>1 σmax(Aj) is large, then the distribution of p(x) does
not look like a Gaussian.

2. maxj>1 σmax(Aj) is essentially capturing correlation of p(x)
with product of two lower degree polynomials.

3. Condition for convergence to normal is efficiently checkable.
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Proof of the central limit theorem

• The first step is to go from x ∼ {−1, 1}n to x ∼ N n(0, 1).
Accomplished via the invariance principle.

• Once in the Gaussian domain, the question is
when does a polynomial of a Gaussian look like a Gaussian?

• Proof technique: Stein’s method + Malliavin calculus.
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Central limit theorem – application in derandomization

• Derandomization – fertile ground both for applications and
discovery of central limit theorems (in computer science)

• Why is central limit theorem useful for derandomization?

• Example: Suppose we are given a halfspace
f : {−1, 1}n → {−1, 1} where f (x) = sign(

∑n
i=1 wixi − θ).

Deterministically compute Prx∈{−1,1}n [f (x) = 1].
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Derandomizing halfspaces

• For f (x) = sign(
∑n

i=1 wixi − θ), exactly computing
Prx∈{−1,1}n [f (x) = 1] is #P-hard.

• Computing Prx∈{−1,1}n [f (x) = 1] to additive error ε is trivial
using randomness.

• What can we do deterministically? or how are CLTs going to
be useful?

• [Servedio 2007]: Suppose all the |wi | ≤ ε/100 (where
‖w‖2 = 1).
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Berry-Esséen in action

Pr
x∈{−1,1}n

[ n∑
i=1

wixi − θ ≥ 0
]
≈ε Pr

g∼N (0,1)

[
g − θ ≥ 0

]

• However, Prg∼N (0,1)

[
g − θ ≥ 0

]
can be computed in Oε(1)

time.

• Thus, when |wi | ≤ ε/100, Prx∈{−1,1}n
[∑n

i=1 wixi − θ ≥ 0
]

can be computed to ±ε in Oε(1) · poly(n) time.
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What if max |wi | ≥ ε/100?

• Suppose |w1| ≥ ε/100. We recurse on the variable x1.

fx1=1 = sign(
n∑

i=2

wixi−θ+w1); fx1=−1 = sign(
n∑

i=2

wixi−θ−w1)

• Observe that it suffices to compute

1

2
·
(

Pr
x∈{−1,1}n−1

[fx1=1(x) = 1] + Pr
x∈{−1,1}n−1

[fx1=−1(x) = 1]

)
.
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Berry-Esséen in recursive action

• Either maxj≥2 |wj | ≤ (ε/100) ·
√∑n

i=2 w
2
i .

• If yes, we can apply the Berry-Esséen theorem.

• Else, we restrict w2. Note: every time we restrict a variable,
we capture an ε-fraction of the remaining `2 mass.

• Suppose the process goes on for j iterations. Either
j ≤ ε−1 log(1/ε) or j > ε−1 log(1/ε).



Berry-Esséen in recursive action

• Either maxj≥2 |wj | ≤ (ε/100) ·
√∑n

i=2 w
2
i .

• If yes, we can apply the Berry-Esséen theorem.
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Berry-Esséen in recursive action

• If j ≤ ε−1 log(1/ε), then this reduces the problem to exp(1/ε)
subproblems – each of which can be solved using
Berry-Esséen.

• If j > ε−1 log(1/ε), we simply stop at j = ε−1 log(1/ε).

• The top ε−1 log(1/ε) weights capture most of the `2 mass.

• Non-trivial: Since ε−1 log(1/ε) weights capture most of the
mass of the vector w , we can just consider the halfspace over
these variables.
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Finishing the proof

• Thus if j ≥ ε−1 log(1/ε), then we have reduced it to a
ε−1 log(1/ε)-dimensional problem.

• Meta idea: If the condition of CLT is met, apply.

• If it is not met, then restrict a variable and recurse.

• Meta-idea repeated in several works in derandomization which
use limit theorems.
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Central limit theorem:Fortius

• So far, we have seen central limit theorems which provide
convergence in Kolmogorov distance.

• In other words, we choose a threshold x and compare
Pr[S ≤ x ] with Pr[Z ≤ x ].

• It is possible to sometimes get convergence in stronger
metrics.
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Central limit theorem:Fortius

Theorem (Chen-Goldstein-Shao)

Let X1, X2, . . . ,Xn be independent Bernoulli random variables
such that S =

∑
Xi has mean µ and variance σ2. Then,

‖S−Ndisc(µ, σ2)‖1 = O(σ−1).

Discrete CLTs have found many applications in derandomization
and learning.
Also check out the new discrete CLTs proven by Valiant-Valiant,
Daskalakis-Kamath-Tzamos and many others.
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Central limit theorem:Citius

• Recall: Sum of n-i.i.d. random variables converges to a
Gaussian at a rate of O(n−1/2).

• Without more conditions, not possible to beat O(n−1/2).

• However, if the limiting distribution can include non-Gaussian
distributions, we can get better than n−1/2 convergence rate.
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• Gaussians are parameterized by two parameters (i.e., two
moments).

• By allowing richer families, say parameterized by k moments,
one can get convergence rates of n−k/2.

• However, conditions required are a little more delicate.

• Referred to as “asymptotic expansions” (see FOCS 2015
paper for a ‘computer science’ introduction).
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Summary

• Central limit theorem(s) can be used to summarize statistics
such as sums and low-degree polynomial of independent
random variables.

• Many applications in learning theory, game theory, algorithms
and complexity.

• May be there are even CS inspired CLTs waiting to be
discovered?
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