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1. Invariance principle [Mossel-O'Donnell-Oleskiewicz] —
numerous applications in hardness of approximation,
derandomization and social choice.

2. Multidimensional central limit theorems
[Daskalakis-Papadimtriou, Daskalakis-Kamath-Tzamos,
Valiant-Valiant] — many extensions and applications in
algorithmic game theory and lower bounds in statistics.
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Applications in computer science

Many extensions discovered in the context of algorithmic problems.

3 Moment matching theorems [P. Valiant,
Gopalan-Klivans-Meka] —lower bounds in statistics, learning
theory.

4 Central limit theorems for low-degree polynomials / polytopes
[Harsha-Klivans-Meka, De-Servedio] — Derandomization.

5 Discrete central limit theorems [Chen-Goldstein-Shao] —
computational learning theory.
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Why is central limit theorem useful?

Central limit theorem: Even if X1,..., X, are unwieldy random
variables, their sum X7 + ...+ X, is nice.

In some applications, the precise convergence to the Gaussian
distribution is important.

In others, the fact that a Gaussian can be parameterized by two
parameters is sufficient.



Berry-Esséen theorem

Theorem

Let Xi,...,X, be n independent centered random variables such
that Var(X;) = 0? and E[|X;|3] = B3;. Define S =3 X;,

02 = Var(S) and 3 = B3,. Then,

(S, N(0,02)) = 0(1) - 2

o3’

dk (X, Y) =sup |PrX < z] — Pr[Y < Z]|.
zeR



Corollary of the Berry-Esséen theorem

Corollary

Let Xi,...,X, be n independent identical centered random
variables such that Var(X;) = o2 and E[|X;|3] = B3 (for all
1<i<n). DefineS =7, X;. Then,

1\ Bax
dk(S,N(0, no?)) = o<ﬁ> : 033 .
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Corollary of the Berry-Esséen theorem

Let us assume that the random variable X; is hypercontractive — in
other words, there is a constant C > 0 such that

E[X;P] < C - (E[1X;2)*>.

This implies that [337*/0;2’ < C. Thus, the error term in
Berry-Esséen theorem is now

Ak (S, N(0, no?)) = o(\;).
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Berry—Esséen for non identical random variables

Continue to assume that Xi, ..., X, are all C-hypercontractive.

Suppose max; 0% < €2 - (> 012).

Then, the error term in Berry—Esséen becomes

B3
2B <c.
o3 ¢

= (ZJ 012)1.5 =

Thus, as long as none of the individual variances are too large, the
sum > X; converges to a Gaussian.
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How do you prove Berry—Esséen?

There are many known techniques used to prove “central limit
theorems” .

1. Lindeberg exchange method (hybrid method) — used by MOO
in their proof of the invariance principle.

2. Stein's method — based on constructing an operator of which
the Gaussian is a fixed point.

3. Characteristic functions — aka Fourier analysis, the original
method of Esséen.



We will only prove (at a high level) this for i.i.d. random variables.
Assume that Xi,..., X, are i.i.d. with common distribution X.
Further, E[X] = 0, E[X?] = 1 and E[X*] < 10. In fact, for

simplicity, assume that all the moments of X exist.

Goal: Show that S = L\/;X" satisfies

dic(S,N(0,1)) = o(\%).
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Characteristic functions

For any £ € R and real-valued random variable W, we define

W(¢) = E[e"W].

Observe that W(O) =1 for any W. When Xj,..., X, are
independent, then

S(¢) = [] Xie/v/n) = (X(&/vm))".
i=1

Characteristic functions are nothing but the Fourier transform of
random variables.
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High level proof idea of Berry-Esséen theorem

. Let Z = N(0,1).
. Goal: Show that S is close to Z is Kolmogorov distance.
. First show that S(¢) is close to Z(¢) where Z = N/(0,1).

. Perform an approximate Fourier inversion to show that S is
close to Z.
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Approximate Fourier inversion

What is meant by approximate Fourier inversion?

Exact Fourier inversion:

=T ()73
Pr[S < x] —Pr[Z < x] = Th—r>noo % L ei£xs(f)igz(§)d

§

Approximate Fourier inversion

=T §(¢)— 2
Pr[S§X]—Pr[Z§x]§217r/€:T|S(§)|€|Z(§)|d§+o(;_>



Approximate Fourier inversion

Strategy to prove the Berry-Eséeen theorem

Approximate Fourier inversion
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Approximate Fourier inversion

Strategy to prove the Berry-Eséeen theorem

Approximate Fourier inversion

=T 1§(6)— 2
Pr[ng]—Pr[ng]g217T/€__T|S(§)|g|z(£)|d5+0<;_>.

Choose T = /n. We will bound |S(¢) — Z(¢)| for |¢| < T.



Showing g(f) is close to 2(5)

Let us start with 2({) . Recall Z = N(0,1). It easily follows that

=~ 1 _ﬁ i€x _ﬁ
Z(f):/\/ﬂe 2e'dx = e 2



Showing §(§) is close to 2(5)

Let us start with 2(5) . Recall Z = N(0,1). It easily follows that

'52

1 2
= e Tedx =e 7.
/X 2T

On the other hand,

5(6) - (X(¢/VR)" @+§:”ﬁ”]@)”

ni/2

59 = (1- 5 +olel/m)
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Showing §(§) is close to 2(5)

Note: Taylor expansion of X(&/1/n) is valid only if [¢] is small.

Claim: For [£| < 1‘& we have

866~ 20] = o LlePe <),

Plugging this back into approximate Fourier inversion (with

T = \/n/100),

pris <x]_Priz<x< L [P o2
r[ _X]— r[ _X]_27r/§__-,—\/ﬁ £+ <T>



~ ~

Showing S(§) is close to Z(§)

Note: Taylor expansion of X(£/1/n) is valid only if |¢] is small.

n

Claim: For || < 175, we have

866~ 2] = o LlePe <P,



Showing §(§) is close to 2(5)

Note: Taylor expansion of X(£/1/n) is valid only if |¢] is small.

Claim: For [£| < %, we have

866~ 2] = o LlePe <P,

Proof technique: Split || into the high |£| regime and the low |¢]
regime. In particular, define

MNow = {&: [¢] < né} and Mhigh = {¢ : n%/100 > |&| > n%}



~ ~

Showing S(§) is close to Z(§)

Note: Taylor expansion of )?(g/ﬁ) is valid only if [£] is small.

Claim: For [{| < %, we have

869 - 20| = 0 JrlePe ).



Showing §(§) is close to 2(5)

Note: Taylor expansion of )A((E/ﬁ) is valid only if [£] is small.

Claim: For [{| < %, we have

S@—2@M=OQ;M%*%)

Proof technique: When £ € I',,,, then we apply Taylor's expansion

Proof s S0~ (1- &+ at/o)
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Showing §(§) is close to 2(5)

Note: Taylor expansion of X(£/1/n) is valid only if || is small.

Claim: For [£| < %, we have

866~ 29)] = o LlePe ).

Proof technique: On the other hand, it is not difficult to show that

~ 2 N 2
IS(¢)] < e 5 Using the fact that |Z(§)| = e~ . When
& € Thigh, this is enough
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Finishing the proof of Berry-Esséen

For all [¢] < Vo 255, we have

8- 2] = o LlePe<P).

Plugging this back into the approximate Fourier inversion formula
(which is)

1 [T S - Z(9)| 1
|Pr[S§x]—Pr[Z§x]|§2/__Tm d£+O<T>,

I £=

we get Pr[S < x] — Pr[Z < x]| = O(n~Y/?).
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Application of the Berry-Esséen theorem

Stochastic knapsack

Suppose you have n items, each with a profit ¢; and a stochastic
weight X; where each X; is a positive valued random variable.

Goal: Given a knapsack with capacity 8 and error tolerance
probability p, pack a subset S of items such that

Pr) X;<6]>1-p,
Jjes

so that the profit Zjes ¢j is maximized.



Berry-Esséen theorem for stochastic knapsack

Stochastic knapsack

Suppose you have n items, each with a profit ¢; and a stochastic
weight X; where each X; is of the form

X,' _ Wy W.p.

Wh,i W.p.

Here all wy; € [1,...,M/4] and wy,; € [3M/4,..., M] where
M = poly(n). Further, all profits ¢; € [1,..., M].

NI= N



Algorithmic result for stochastic knapsack

Result: There is an algorithm which for any error parameter ¢ > 0,
runs in time poly(M, nl/ez) and outputs a set S, such that

P X <fl21-p—c
JESK

such that } ;s ¢; = OPT.
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Algorithmic result for stochastic knapsack

Result: There is an algorithm which for any error parameter ¢ > 0,
runs in time poly(M, nl/ez) and outputs a set S, such that

P X <fl21-p—c
JESK

such that } ;s ¢; = OPT.

Key feature: We do not relax the knapsack capacity 6. See paper
in SODA 2018 for the most general version of results.
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Main idea behind the algorithm

Observation I: If we “center” random variable X;, i.e,
Y; = X; — E[X]], then it satisfies

3/2
E[Y;’] < (E[Y:P)*”.
Thus, we can potentially apply Berry-Esséen to a sum of X;.

Observation |I: Consider any subset of items S with |S| > 100/¢2.
Then,
maxVar(X ZVar
JjES
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Step 1: Either the optimum solution Syp: is such that
|Sopt| < 100/¢€2. In this case, we can brute-force search for Sopt-
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Algorithmic idea

Step 1: Either the optimum solution Syp: is such that
|Sopt| < 100/¢€2. In this case, we can brute-force search for Sopt-

Running time is n®@/e),

Step 2: Otherwise, |Sopt| > 100/€2. In this case, define fiopt, agpt
and Copt as (i) popt = Zjesopt E[X;]; (ii) ngt = Zjesopt Var(X;);
(i) Copt = X jes,y G-
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Algorithmic idea

Consequence of Berry-Esséen theorem:

P> X, <01 =P > X;<0]—e

JES« jesopt

This is because by Berry-Esséen, the distribution of Zjes* X; and

Zjesopt X; follows essentially Gaussian (and their means and

variances match).
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General algorithmic result for stochastic optimization

Suppose the item sizes {X; 7, are all hypercontractive — i.e.,
E[IX;[*] < O(1) - (E[|X;[?])*2.

Theorem: When item sizes are hypercontractive, then there is an

algorithm running in time n9(/€) such that the output set S,
satisfies

L. Zjes* G=>(1-¢)- (ngsopt G)-
2. P} jes, Xj < 0] = Pr[}jcs, X < 0] —e.

Read SODA 2018 paper for more details.
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Central limit theorems: Citius, Altius, Fortius

Let's do Altius — as in higher degree polynomials.

Berry-Esséen says that sums of independent random variables
under mild conditions converges to a Gaussian.

What if we replace the sum by a polynomial? Let us think of the
easy case when the degree is 2.
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Central limit theorem for low-degree polynomials

Consider p(x) = (L\/;X”)Z As n — o0, Xx1,...,Xp are i.i.d.
copies of unbiased +1 random variables, the distribution of p(x)
goes to a \? distribution.

In fact, suppose p(x) is of degree-2 and of the following form:
p(x) =X £2(x) + q(x)m

where ¢(x) is a linear form and A = E[p(x) - £?(x)]. If X is large,
then p(x) is very far from a Gaussian.



Central limit theorem for quadratic polynomials

Theorem

Let p(x) : R" — R such that Var(p(x)) =1 and E[p(x)] = u.
Express p(x) = x" Ax + (b, x) + ¢ where A € R™" and b € R".
Let ||Allop < € and ||b||ss < €. Suppose, x ~ {—1,1}". Then,

dk (p(x), N (11, 1)) = O(Ve).

If p(x) is not correlated with product of two linear forms, then it is
distributed as a Gaussian.
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Central limit theorem for higher degree polynomials

Corresponding to any multilinear polynomial p : R” — R of
degree-d, we have a sequence of tensors (Ag, ..., Ag) where
A; € R™ is a tensor of order i.

For a tensor A; (where i > 1), we use omax(A;) to denote the
“maximum singular value” obtained by a non-trivial flattening.

Theorem

Let p: R" — R be a degree-d polynomial with Var(p(x)) =1 and
E[p(x)] = p. Let (Ag,...,Ao) denote the tensors corresponding
to p. Then,

dK(p(x)vN(Mv 1)) = Od(\/g),

where x ~ {—1,1}". Here € > maxj>1 omax(A;) and € > || Ag||oo-
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Features of the central limit theorem

. Qualitatively tight: in particular, for a polynomial if
max;j>1 omax(A;) is large, then the distribution of p(x) does
not look like a Gaussian.

. Maxj>1 0max(A;)) is essentially capturing correlation of p(x)
with product of two lower degree polynomials.

. Condition for convergence to normal is efficiently checkable.
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Proof of the central limit theorem

® The first step is to go from x ~ {—1,1}" to x ~ N"(0,1).
Accomplished via the invariance principle.

® Once in the Gaussian domain, the question is
when does a polynomial of a Gaussian look like a Gaussian?

® Proof technique: Stein's method + Malliavin calculus.
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® Derandomization — fertile ground both for applications and
discovery of central limit theorems (in computer science)

® Why is central limit theorem useful for derandomization?

® Example: Suppose we are given a halfspace
f:{-1,1}" — {—1,1} where f(x) = sign(d>_7_; wix;i — 0).

Deterministically compute Pryc_1 130[f(x) = 1].
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Derandomizing halfspaces
For f(x) = sign(>_7_; wix; — 0), exactly computing
Pryc—1,13n[f(x) = 1] is #P-hard.

Computing Pryc(_1 130[f(x) = 1] to additive error € is trivial
using randomness.

What can we do deterministically? or how are CLTs going to
be useful?

[Servedio 2007]: Suppose all the |w;| < €/100 (where
[wll2 = 1).
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Berry-Esséen in action

xe{E){,l}" [; wixj — 0 > O] R, g~/\|?(r0,1) [g —60> 0]

* However, Pry_xr(0,1) [8 — 0 > 0] can be computed in O(1)
time.

® Thus, when |w;| < €/100, Preci—1,1) [Ele wix; — 6 > 0]
can be computed to £e in O(1) - poly(n) time.
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What if max |w;| > €/1007

® Suppose |wi| > €/100. We recurse on the variable x;.

n n
fu=1 = sign(z wixi—0+wy); fu=—1= sign(z wix;i—0—w)
i=2 i=2

® Observe that it suffices to compute

3 (P = P [ = 11).
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Berry-Esséen in recursive action

Either max;j>2 [wj| < (¢/100) - /> 7, w?.
If yes, we can apply the Berry-Esséen theorem.

Else, we restrict wp. Note: every time we restrict a variable,
we capture an e-fraction of the remaining /> mass.

Suppose the process goes on for j iterations. Either
j < e llog(1l/e) or j > e Llog(1/e).
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Berry-Esséen in recursive action

If j < e Llog(1/e), then this reduces the problem to exp(1/¢)
subproblems — each of which can be solved using
Berry-Esséen.

If j > e Llog(1/€), we simply stop at j = e Llog(1/e).
The top ¢! log(1/€) weights capture most of the £, mass.

Non-trivial: Since e !log(1/€) weights capture most of the
mass of the vector w, we can just consider the halfspace over
these variables.
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Finishing the proof

Thus if j > ¢ 1log(1/¢), then we have reduced it to a
¢ 1 log(1/¢)-dimensional problem.

Meta idea: If the condition of CLT is met, apply.
If it is not met, then restrict a variable and recurse.

Meta-idea repeated in several works in derandomization which
use limit theorems.
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® So far, we have seen central limit theorems which provide
convergence in Kolmogorov distance.

® |n other words, we choose a threshold x and compare
Pr[S < x] with Pr[Z < x].

® |t is possible to sometimes get convergence in stronger
metrics.
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Central limit theorem: Fortius

Theorem (Chen-Goldstein-Shao)

Let X1, Xo, ..., X, be independent Bernoulli random variables
such that S = ) X; has mean p and variance 2. Then,

”S _Ndisc(,ua U2)||1 = O(U_l).

Discrete CLTs have found many applications in derandomization
and learning.

Also check out the new discrete CLTs proven by Valiant-Valiant,
Daskalakis-Kamath-Tzamos and many others.



Central limit theorem: Citius

® Recall: Sum of n-i.i.d. random variables converges to a
Gaussian at a rate of O(n~%/2).



Central limit theorem: Citius

® Recall: Sum of n-i.i.d. random variables converges to a
Gaussian at a rate of O(n~%/2).

 Without more conditions, not possible to beat O(n~1/2).

® However, if the limiting distribution can include non-Gaussian
distributions, we can get better than n~1/2 convergence rate.
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Gaussians are parameterized by two parameters (i.e., two
moments).

By allowing richer families, say parameterized by kK moments,
one can get convergence rates of n—k/2.

However, conditions required are a little more delicate.

Referred to as “asymptotic expansions” (see FOCS 2015
paper for a ‘computer science’ introduction).
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Summary

e Central limit theorem(s) can be used to summarize statistics
such as sums and low-degree polynomial of independent
random variables.

® Many applications in learning theory, game theory, algorithms
and complexity.

® May be there are even CS inspired CLTs waiting to be
discovered?



Thanks



