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Avering, Bucketing, and Investing arguments
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Suppose you have a : X → [0,1] such that

E[a(x)] ≥ ε .

(Let’s say you already proved that.) We think of a(x) as the
quality of x, and “using” it has cost cost(a(x)).

For instance, a population of coins, each with their own bias. The expected
bias is ε; for any given coin, checking bias 0 vs. bias α takes 1/α2 tosses.
Goal: find a biased coin.
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How. . .
to convert this into a useful thing? How to find an x with small cost?

That is,
can we get

Pr
x

[ a(x) ≥ blah(ε) ] ≥ bluh(ε)

for some “good” functions blah, bluh?
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“By a standard averaging argument. . . ”
First attempt: Markov

Lemma (Markov)
We have

Pr
x

[
a(x) ≥ ε

2

]
≥ ε

2
. (1)

Proof.

ε≤ E[a(x)] ≤ ε

2
·Pr

x

[
a(x) < ε

2

]
≤1

+1 ·Pr
x

[
a(x) ≥ ε

2

]
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“By a standard averaging argument. . . ”
First attempt: Markov

Strategy

Sample O(1/ε) x’s to find a “good” one; for each, pay cost(ε/2).

Yes, but. . .
Typically, at least quadratic total cost in ε as cost(α) =Ω(1/α).

We should not pay the worst of both worlds.
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“By a standard bucketing argument. . . ”
Second attempt: my bucket list

Lemma (Bucketing)

There exists 1 ≤ j ≤ dlog(2/ε)e := L s.t.

Pr
x

[
a(x) ≥ 2− j

]
≥ 2 jε

4L
. (2)

Proof.
Define buckets B0 := {x : a(x) ≤ ε/2},

B j := {x : 2− j ≤ a(x) ≤ 2− j+1},1 ≤ j ≤ L
Then

ε≤ E[a(x)] ≤ ε

2
·Pr[ x ∈ B0 ]

≤1

+
L∑

j=1
2− j+1 ·Pr

[
x ∈ B j

]

so (averaging!) there exists j∗ s.t. 2− j+1 ·Pr
[

x ∈ B j
]≥ ε/(2L).
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“By a standard bucketing argument. . . ”
Second attempt: my bucket list

Strategy

For each j ∈ [L], in case it’s the good bucket:

Ï sample O(log(1/ε)/(2 jε)) x’s to find a “good” one in B j ;

Ï for each such x, pay cost(2− j ).

Total cost (examples):

L∑
j=1

log(1/ε)

2 jε
·cost(2− j ) =


log2(1/ε)

ε if cost(α) ³ 1/α

log(1/ε)
ε2 if cost(α) ³ 1/α2

Yes, but. . .
we lose log factors. Do we have to lose log factors?
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“By a refined averaging argument. . . ”
Third (and last) attempt: strategic investment

Assume that cost(α) is superlinear, e.g., cost(α) = 1/α2.

Lemma (Levin’s Economical Work Investment Strategy)

There exists 1 ≤ j ≤ dlog(2/ε)e := L s.t.

Pr
x

[
a(x) ≥ 2− j

]
≥ 2 jε

8(L+1− j )2 . (3)

Proof.
By contradiction:

E[a(x)] ≤ ε

2
+

L∑
j=1

2− j+1 ·Pr
[

x ∈ B j
]≤ ε

2
+

L∑
j=1

2− j+1 ·Pr
[

a(x) ≥ 2− j
]

< ε

2
+

L∑
j=1

2− j+1 · 2 jε

8(L+1− j )2 = ε

2
+ ε

4

L∑
`=1

1

`2 < ε

2
+ ε

4

∞∑
`=1

1

`2 < ε

“Oops.”
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“By a refined averaging argument. . . ”
Third (and last) attempt: strategic investment

Strategy

For each j ∈ [L]:

Ï sample O((L+1− j )2/(2 jε)) x’s to find a “good” one in B j ;

Ï for each such x, pay cost(2− j ) ³ 22 j .

Total cost:

L∑
j=1

(L+1− j )2

2 jε
·22 j = 1

ε

L∑
j=1

(L+1− j )2 ·2 j = 2L+1

ε

L∑
`=1

`2 ·2−`

< 4

ε2

∞∑
`=1

`2 ·2−`

O(1)

(It’s 6.)

Yes, but. . .
No, actually, nothing. Works for any cost(α) À 1/α1+δ.

For cost(α) ³ 1/α, not so easy, but some stuff exists.
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Thomas’ Favorite Lemma
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Kullback–Leibler Divergence

Recall the definition of Kullback–Leibler divergence (a.k.a. relative
entropy) between two discrete distributions p, q :

D(p‖q) =∑
ω

p(ω) log
p(ω)

q(ω)

It has some issues (symmetry, triangle inequality), yes, but it is
everywhere (for a reason). It also has many nice properties.
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Kullback–Leibler Divergence
The dual characterization

Theorem (First)
For every q ¿ p,

D(p‖q) = sup
f

(
Ex∼p

[
f (x)

]− logEx∼q

[
e f (x)

])
(4)

Theorem (Second)
For every q ¿ p, and every λ

logEx∼p

[
eλx

]
= max

q¿p

(
λEx∼q [x]−D(q‖p)

)
(5)

Known as: Gibbs variational principle (1902?), Donsker-Varadhan (1975),
special case of Fenchel duality, . . .
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An application

Theorem
Suppose p is subgaussian on Rd . For every function a : Rd → [0,1]
(with α := Ex∼p [a(x)] > 0),

‖Ex∼p [xa(x)]‖2 ≤Cpα

√
log

1

α
(6)

(constant Cp depends on subgaussian parameter, not on d).

The proof that follows was communicated to me by Himanshu Tyagi.
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An application (and its proof, Gaussian case)

Setting z = xi and q ¿ p as d q
d q (x) = a(x)

Ep [a(x)] , we get

λEq [xi ] ≤ logEp

[
eλxi

]
+D(qi‖pi ) = λ2

2
+D(qi‖pi ),

Optimizing for λ, Eq [xi ] ≤√
2D(qi‖pi ), i.e., Eq [xi ]2 ≤ 2D(qi‖pi ).

Summing both sides over 1 ≤ i ≤ d ,

‖Eq [x]‖2
2 ≤ 2

d∑
i=1

D(qi‖pi ) .

and playing with nice properties of (conditional) relative entropy
(chain rule, etc.) this is at most

d∑
i=1

Ex i−1

[
D(qxi |x i−1‖pxi

]= D(q‖p) = Ep
[
a(x) log a(x)

]
Ep [a(x)]︸ ︷︷ ︸

≤0

+ log
1

Ep [a(x)]
,

which completes the proof.
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I guess I’m done.
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