Distribution testing in the 21^{1/2th} century

Ryan O'Donnell Carnegie Mellon University

based on joint work with Costin Bădescu (CMU) & John Wright (MIT)

Slide 1, in which I get defensive

Quantum.

Why should you care?

Quantum Distribution Testing: Why care?

1. Practically relevant problems at the vanguard of computing

2. You get to do it all again

3. The math is (even more) beautiful

Quantum Distribution Testing: Why care?

1. Practically relevant problems at the vanguard of computing

2. You get to do it all again

3. The math is (even more) beautiful

Quantum teleportation, July 2017 Jian-Wei Pan et al.

Quantum teleportation, July 2017 Jian-Wei Pan et al.

in state ρ^{\uparrow}

Quantum teleportation, July 2017 Jian-Wei Pan مع عا

Quantum teleportation, July 2017 Jian-Wei Pan مع ما

Quantum Distribution Testing: Why care?

1. Practically relevant problems at the vanguard of computing

2. You get to do it all again

3. The math is (even more) beautiful

Quantum Distribution Testing: Why care?

1. Practically relevant problems at the vanguard of computing

2. You get to do it all again

3. The math is (even more) beautiful

What is classical Probability Density Testing?

Maybe $x \in \{0,1\}$ is a guess as to whether p is uniformly random. Maybe x is an estimate of Dist(q,p) for some hypothesis q. Maybe x is an estimate of Entropy(p).

Example:

You have a hope that $p \equiv 1/n$, the uniform distribution. You want to estimate Dist(1/n, p), where "Dist" \in {TV, Hellinger², Chi-Squared, ,...} ℓ_2^2

Latter two are the same here, so let's choose them.

Example:

You have a hope that $p \equiv 1/n$, the uniform distribution.

You want to estimate

$$= \sum_{i=1}^{n} (p_i - 1/n)^2$$
$$= \sum_{i=1}^{n} p_i^2 - 1/n$$

You basically want to estimate

(the "collision probability")

Say m = 2. What should Algorithm X be?

Algorithm X: Given sample (a,b) ~ $p^{\otimes 2}$, output

1 if a = b, 0 else.

Var[X] = large

 $\mathbf{E}[\mathbf{X}] = \sum_{i=1}^{n} \mathbf{p}_{i}^{2}$

You basically want to estimate

Say m > 2. What should Algorithm X be?

20

Algorithm X: Average the m=2 algorithm over all

Var[X] = (tedious but straightforward)

$$\mathbf{E}[X] = \sum_{i=1}^{n} p_i^2$$

Var[X] = (tedious but straightforward)

XER

Chebyshev \Rightarrow m = O(\sqrt{n} samples suffice to distinguish

$$-\text{Dis}_{2}[\ell_{2}^{2}]/n, p) \leq .99\epsilon^{2}/n$$
vs.
$$-\text{Dist}(1\ell_{2}^{2}, p) \geq \epsilon^{2}/n \text{ whp.}$$

$$\mathbf{E}[X] = \sum_{i=1}^{n} p_i^2$$

Var[X] = (tedious but straightforward)

XER

Chebyshev \Rightarrow m = O (\sqrt{n} samples suffice to distinguish

$$-\text{Dis}_{2}^{2}(n, p) \leq .99\epsilon^{2}/n$$

vs. TV-Dist(1/n, p) $\geq \epsilon$ whp.

Remember two things:

1. The algorithm: Average, over all transpositions $\tau \in S_m$, of 0/1 indicator that τ leaves samples unchanged

2. Any alg. is just a random variable, based on randomness $p^{\otimes m}$

Classical probability density testing picture, m=1:

Classical probability density testing picture, m=1:

p is an n-dim ensional vector $p \ge 0$,

X is an n-dimensional vector

$$\mathbf{E}_{p}[X] = \langle p, X \rangle = \sum_{i} p_{i} X_{i}$$

$$\mathbf{E}_{p}[X^{2}] = \langle \mathbf{p}, X^{2} \rangle \stackrel{"}{=} \sum_{i} p_{i} \rangle$$

Changing the picture: Classical \rightarrow Quantum Replace "vector" with "symmetric matrix" everywhere. (Hermitian)

Classical probability density testing picture, m=1:

p is an n-dim ensional vector $p \ge 0$,

X is an n-dimensional vector

$$\mathbf{E}_{\rho}[X] = \langle p, X \rangle = \sum_{i} p_{i} X_{i}$$

$$\mathbf{E}_{p}[X^{2}] = \langle \mathbf{p}, X^{2} \rangle \stackrel{"}{=} \sum_{i} \mathbf{p}_{i} \rangle$$

Quantum probability density testing picture, m=1:

ρ is an n-dim. symm. matrix, ρ ≥ 0, $1ρ − ρ_{ii}$

X is an n-dim. symm. matrix

$$\mathbf{E}_{\rho}[X] = \langle \rho, X \rangle = \sum_{ij} \rho_{ij} X_{ij}$$

$$\mathbf{E}_{\rho}[X^{2}] = \langle \rho, X^{2} \rangle = \sum_{ij} \rho_{ij}(X^{2})_{ij}$$

i=1

Quantum probability density testing picture:

X is an n-dim. symm. matrix

$$\mathbf{E}_{\rho}[X] = \langle \rho, X \rangle = \sum_{ij} \rho_{ij} X_{ij}$$

$$\mathbf{E}_{\rho}[X^{2}] = \langle \rho, X^{2} \rangle = \sum_{ij} \rho_{ij}(X^{2})_{ij}$$

i=1

Changing the picture: Quantum \rightarrow Classical Let ρ and X be diagonal matrices.

Quantum probability density testing picture:

X is an n-dim. symm. matrix

$$\mathbf{E}_{\rho}[X] = \langle \rho, X \rangle = \sum_{ij} \rho_{ij} X_{ij}$$

$$\mathbf{E}_{\rho}[X^{2}] = \langle \rho, X^{2} \rangle = \sum_{ij} \rho_{ij}(X^{2})_{ij}$$

i=1

What's going on, physically?

p = "state" of a particle-system

n = # "basic outcomes"; 2 for a "qubit", 16 for 4 photons

X = "observable" = measuring device (quantum circuit)

What's going on, physically?

p = "state" of a particle-system

n = # "basic outcomes"; 2 for a "qubit", 16 for 4 photons

X = "observable" = measuring device (quantum circuit)

What's going on, physically?

p = "state" of a particle-system

Don't read this:

Readout is λ_i with probability $\langle \phi_i, \rho \phi_i \rangle$ wher (λ_i, ϕ_i) are the eigvals/vecs of X.

X = "observable" = measuring device (quantum circuit)

Quantum probability density testing picture:

ρ is an n-dim. symm. matrix, ρ ≥ 0, ∮

X is an n-dim. symm. matrix

$$\mathbf{E}_{\rho}[X] = \langle \rho, X \rangle = \sum_{ij} \rho_{ij} X_{ij}$$

$$\mathbf{E}_{\rho}[X^{2}] = \langle \rho, X^{2} \rangle = \sum_{ij} \rho_{ij}(X^{2})_{ij}$$

i=1

Baseline: Learning p

ρ is an n-dim. symm. matrix

X is an n-dim. symm. matrix

 $\mathbf{E}_{\rho}[X] = \langle \rho, X \rangle = \sum_{ii} \rho_{ij} X_{ij}$

("quantum tomography")

Baseline: Learning p

ρ is an n-dim. symm. matrix

X is an n-dim. symm. matrix

$$\mathbf{E}_{\rho}[X] = \langle \rho, X \rangle = \sum_{ij} \rho_{ij} X_{ij}$$

Naive method:

 $O(n^4)$ samples.

Baseline: Learning p

ρ is an n-dim. symm. matrix

X is an n-dim. symm. matrix

 $E_{\rho}[X] = \langle \rho, X \rangle = \sum \rho_{ij} X_{ij}$

XER

Algorithm

X

A better way to think about the scenario

Quantum probability density testing picture:

X is an n-dim. symm. matrix

$$\mathbf{E}_{\rho}[X] = \langle \rho, X \rangle = \sum_{ij} \rho_{ij} X_{ij}$$

$$\mathbf{E}_{\rho}[X^{2}] = \langle \rho, X^{2} \rangle = \sum_{ij} \rho_{ij}(X^{2})_{ij}$$

i=1

Quantum probability density testing picture:

ρ's eigenvalues form a probability distribution! Call it $p_1, ..., p_n$ "Over" ρ's orthonormal eigenvectors in \mathbb{G}^n . Call them $v_1, ..., v_n$ Think of ρ as emitting v_i with probability p_i .

 $\mathbf{X} \in \mathbb{R}$

<u>Exercise</u>: Conditioned on v_i , $E[X] = \langle Xv_i, v_i \rangle$.

Quantum probability density testing picture:

ρ's eigenvalues form a probability distribution! Call it $p_1, ..., p_n$ "Over" ρ's orthonormal eigenvectors in \mathbb{G}^n . Call them $v_1, ..., v_n$ Think of ρ as emitting v_i with probability p_i .

 $\mathbf{X} \in \mathbb{R}$

Also: $\rho^{\otimes 5}$ emits $v_3 \otimes v_1 \otimes v_4 \otimes v_1 \otimes v_n$ with probability $p_3 \cdot p_1 \cdot p_4 \cdot p_1 \cdot p_n \dots$

Classical World $(p_1, ..., p_n)$ $\{p_1, ..., p_n\}$ no analogue support-size(p) = # nonzero p's Entropy(p) = $\sum p_i \log(1/p_i)$ uniform distribution, p = 1/ntotal variation distance Hellinger² distance ℓ_2^2 -distance

Quantum World no analogue {p₁, ..., p_n} V₁, ..., V_n $rank(\rho) = # nonzero p_i's$ vN-Entropy(ρ) = $\sum p_i \log(1/p_i)$ maximally mixed state, $\rho = I/n$ trace distance infidelity Frobenius²-distance

Quantum Distribution Testing: Why care?

1. Practically relevant problems at the vanguard of computing

2. You get to do it all again

3. The math is (even more) beautiful

Quantum Distribution Testing: Why care?

1. Practically relevant problems at the vanguard of computing

2. You get to do it all again

3. The math is (even more) beautiful

Estimating²₂ -distance between ρ and I/n (AKA testing if ρ is the maximally mixed state)

[Bădescu-O-Wright'17]

$$||I/n - \rho||_{F}^{2} = \sum_{i=1}^{n} p_{i}^{2} - 1/n$$

(Same as in classical case!)

Say m = 2. What should Algorithm X be?

 ρ emits $v_a \otimes v_b \in (\mathbb{C}^n)^{\otimes 2}$ with probability $p_a \cdot p_b$

The "algorithm" should be an operator X on $(\mathbb{C}^n)^{\otimes 2}$

Doesn't know v_1, \ldots, v_n , but does understand "tensor structure"

Let X act by swapping tensor components: X $e_a \otimes e_b = e_b \otimes e_a$ $\Rightarrow X v_a \otimes v_b = v_b \otimes v_a$

You basically want to estimate

Say m = 2. What should Algorithm X be?

Let X act by swapping tensor components: $X e_a \otimes e_b = e_b \otimes e_a$ $\Rightarrow X v_a \otimes v_b = v_b \otimes v_a$

 $\sum_{i=1}^{n} p_i^2$

 $Conditioned on \rho \text{ emitting } v_a \otimes v_b, \ \mathbf{E}[X] = \langle X \ v_a \otimes v_b, \ v_a \otimes v_b \rangle$ $= \langle v_b \otimes v_a, \ v_a \otimes v_b \rangle$ $= \begin{cases} 1 & \text{if } a = b, \\ 0 & \text{else}. \end{cases}$

Let X act by swapping tensor components: X $e_a \otimes e_b = e_b \otimes e_a$ $\Rightarrow X v_a \otimes v_b = v_b \otimes v_a$

$$E[X] = \sum_{i=1}^{n} p_i^2$$

$$Var[X] = E[X^2] - E[X]^2$$

Conditioned on ρ emitting $v_a \otimes v_b$, $\mathbf{E}[X^2] = \langle X^2 v_a \otimes v_b, v_a \otimes v_b \rangle$ = $\langle v_a \otimes v_b, v_a \otimes v_b \rangle$ $\therefore Var[X] = extra large$ \longleftrightarrow = 1

 $\sum_{i=1}^{n} p_{i}^{2}$

You basically want to estimate

X = avg { R(τ) : transpositions τ ∈ S_m } where, in general, R(π) acts on (\mathbb{C}^n)^{⊗m} by permuting tensor components according to π

$$E[X] = \sum_{i=1}^{n} p_i^2$$

You basically want to estimate

$$X = avg \{ R(\tau) : transpositions \tau \in S_m \}$$
$$X^2 = avg \{ R(\sigma) R(\tau) : transpositions \sigma, \tau \in S_m \}$$
$$= avg \{ R(\sigma\tau) : transpositions \sigma, \tau \in S_m \}$$

 $\sum_{i=1}^{n} p_i^2$

 $R: S_{m} \rightarrow \{\text{Matrices acting on } (\mathbb{C}^{n})^{\otimes m} \}$ is a group representation!

 $\sum_{i=1}^{n} p_{i}^{2}$

You basically want to estimate

 $X = avg \{ R(\tau) : transpositions \tau \in S_m \}$ X^2 = avg {R(σ) R(τ) : transpositions σ,τ \in S_m } = avg { $R(\sigma\tau)$: transpositions $\sigma,\tau \in S_m$ } = $c_1 \operatorname{avg} \{ R(\pi) : \operatorname{cycleType}(\pi) = (1) \}$ + $c_2 avg \{ R(\pi) : cycleType(\pi) = (2,2) \}$ + $c_3 avg \{ R(\pi) : cycleType(\pi) = (3) \}$ for some straightforward but slightly annoying to compute coefficients c_1, c_2, c_3

You basically want to estimate

 $\mathbf{E}[X^2] = c_1 \operatorname{avg} \{ R(\pi) : \operatorname{cycleType}(\pi) = (1) \}$ + $c_2 avg \{ R(\pi) : cycleType(\pi) = (2,2) \}$ + $c_3 avg \{ R(\pi) : cycleType(\pi) = (3) \}$ for some straightforward but slightly annoying to compute coefficients c_1, c_2, c_3 <u>Exercise</u>: Let $A_{(7,4,2)} = avg \{ R(\pi) : cycleType(\pi) = (7,4,2) \}.$ $\left(\sum_{i=1}^{n} p_{i}^{7}\right)\left(\sum_{i=1}^{n} p_{i}^{4}\right)\left(\sum_{i=1}^{n} p_{i}^{2}\right)$ Then $E[A_{(7,4,2)}] =$

Long story short:

m = O(n/ ϵ^2) samples suffice to distinguish -Dist $(1/6_1\rho) \le \epsilon$ whp.

Also in [Bădescu-O-Wright'17]: Same for distinguishing closeness of two unknown ρ, q

[O-Wright'15]: $m = \Omega(n/\epsilon^2)$ samples needed for testing " $\rho = I/n$ "

Free Probability! **Tracy-Widom Distributions! Donald Knuth!** Geometric Complexity Theory! Longest Increasing Subsequences! Sorting Networks! **Queueing Theory!** Traffic Models!

For more: www.cs.cmu.edu/~odonnell/papers/tomography-survey.pdf

тыапкы

For more: www.cs.cmu.edu/~odonnell/papers/tomography-survey.pdf