
Ryan O’Donnell
Carnegie Mellon University

based on joint work with Costin Bădescu (CMU) & John Wright (MIT)

Distribution testing
in the 21

1/2

th century

Slide 1, in which I get defensive

Quantum. Why should you care?

1. Practically relevant problems
at the vanguard of computing

2. You get to do it all again

3. The math is (even more) beautiful

Quantum Distribution Testing: Why care?

1. Practically relevant problems
at the vanguard of computing

2. You get to do it all again

3. The math is (even more) beautiful

Quantum Distribution Testing: Why care?

Quantum teleportation, July 2017
Jian-Wei Pan et al.

Ngari, Tibet

Micius satellite, space

Quantum teleportation, July 2017
Jian-Wei Pan et al.

 in state ρ

 in state ρ

Fidelity(ρ,ρ)?

Quantum teleportation, July 2017
Jian-Wei Pan et al.

 in state ρ

 in state ρ

(quantum-) Hellinger2-Dist(ρ,ρ) = ?21±.01

Quantum teleportation, July 2017
Jian-Wei Pan et al.

 in state ρ

 ∙∙∙ in state ρ⊗911

(quantum-) Hellinger2-Dist(ρ,ρ) = ?21±.01

Quantum teleportation, July 2017
Jian-Wei Pan et al.

 in state ρ

 ∙∙∙ in state ρ⊗911

(quantum-) Hellinger2-Dist(ρ,ρ) = 0.21 ±.01

1. Practically relevant problems
at the vanguard of computing

2. You get to do it all again

3. The math is (even more) beautiful

Quantum Distribution Testing: Why care?

1. Practically relevant problems
at the vanguard of computing

2. You get to do it all again

3. The math is (even more) beautiful

Quantum Distribution Testing: Why care?

What is classical Probability Density Testing?

Unknown n-outcome
source of randomness ρ

Unknown n-outcome
source of randomness p

m samples

p⊗m

Algorithm
X

x ∈ ℝ

Maybe x ∈ {0,1} is a guess as to whether p is uniformly random.

Maybe x is an estimate of Dist(q,p) for some hypothesis q.

Maybe x is an estimate of Entropy(p).

Unknown n-outcome
source of randomness p

m samples

p⊗m

Algorithm
X

x ∈ ℝ

Example:
You have a hope that p ≡ 1/n, the uniform distribution.

You want to estimate Dist(1/n, p),

where “Dist” ∈ { TV, Hellinger2, Chi-Squared, , …}

Latter two are the same here, so let’s choose them.

Unknown n-outcome
source of randomness p

m samples

p⊗m

Algorithm
X

x ∈ ℝ

Example:
You have a hope that p ≡ 1/n, the uniform distribution.

You want to estimate -Dist(1/n, p)

Unknown n-outcome
source of randomness p

m samples

p⊗m

Algorithm
X

x ∈ ℝ

You basically want to estimate

Say m = 2. What should Algorithm X be?

Algorithm X: Given sample (a,b) ~ p⊗2, output

Var[X] = large

(the “collision probability”)

Unknown n-outcome
source of randomness p

m samples

p⊗m

Algorithm
X

x ∈ ℝ

You basically want to estimate

Say m > 2. What should Algorithm X be?

Algorithm X: Average the m=2 algorithm over all pairs.

Var[X] = (tedious but straightforward)

Unknown n-outcome
source of randomness p

m samples

p⊗m

Algorithm
X

x ∈ ℝ

Var[X] = (tedious but straightforward)

 samples suffice to distinguish

to distinguish -Dist(1/n, p) ≤ .99ϵ2/n

vs. -Dist(1/n, p) ≥ ϵ2/n whp.

Chebyshev ⇒

Unknown n-outcome
source of randomness p

m samples

p⊗m

Algorithm
X

x ∈ ℝ

Var[X] = (tedious but straightforward)

 samples suffice to distinguish

to distinguish -Dist(1/n, p) ≤ .99ϵ2/n

vs. TV-Dist(1/n, p) ≥ ϵ whp.

Chebyshev ⇒

Unknown n-outcome
source of randomness p

m samples

p⊗m

Algorithm
X

x ∈ ℝ

Remember two things:

1. The algorithm: Average, over all transpositions τ ∈ Sm, of
 0/1 indicator that τ leaves samples unchanged

2. Any alg. is just a random variable, based on randomness p⊗m

Unknown n-outcome
source of randomness p

m samples

p⊗m

Algorithm
X

x ∈ ℝ

 Classical probability density testing picture, m=1:

Unknown n-outcome
source of randomness p

sample Algorithm
X

x ∈ ℝ

 Classical probability density testing picture, m=1:

p is an n-dim. symm. matrix, p ≥ 0, = 1 p

X is an n-dimensional vector

Ep[X] = 〈p,X〉 = p Ep[X2] = 〈p,X2〉 = p

ensional vector

“ ”

Changing the picture: Classical → Quantum

Replace “vector” with “symmetric matrix” everywhere.
(Hermitian)

Unknown n-outcome
source of randomness p

sample Algorithm
X

x ∈ ℝ

 Classical probability density testing picture, m=1:

p is an n-dim. symm. matrix, p ≥ 0, = 1 p

X is an n-dimensional vector

Eρ[X] = 〈p,X〉 = p Ep[X2] = 〈p,X2〉 = p

ensional vector

“ ”

Unknown n-outcome
source of randomness ρ

sample Algorithm
X

x ∈ ℝ

Quantum probability density testing picture, m=1:

ρ is an n-dim. symm. matrix, ρ ≥ 0, = 1 ρ

X is an n-dim. symm. matrix

Eρ[X] = 〈ρ,X〉 = ρ Eρ[X2] = 〈ρ,X2〉 = ρ

Unknown n-outcome
source of randomness ρ

Algorithm
X

x ∈ ℝ

Quantum probability density testing picture: m=1:

ρ is an n-dim. symm. matrix, ρ ≥ 0, = 1 ρ

X is an n-dim. symm. matrix

Eρ[X] = 〈ρ,X〉 = ρ Eρ[X2] = 〈ρ,X2〉 = ρ

m samples

ρ⊗m

Changing the picture: Quantum → Classical

Let ρ and X be diagonal matrices.

Unknown n-outcome
source of randomness ρ

Algorithm
X

x ∈ ℝ

Quantum probability density testing picture: m=1:

ρ is an n-dim. symm. matrix, ρ ≥ 0, = 1 ρ

X is an n-dim. symm. matrix

Eρ[X] = 〈ρ,X〉 = ρ Eρ[X2] = 〈ρ,X2〉 = ρ

m samples

ρ⊗m

What’s going on, physically?

ρ = “state” of a particle-system

e.g., 4 polarized photons

n = # “basic outcomes”; 2 for a “qubit”, 16 for 4 photons

X = “observable” = measuring device X

READOUT(quantum circuit)

n = # “basic outcomes”; 2 for a “qubit”, 16 for 4 photons

(quantum circuit)

ρ = “state” of a particle-system

X = “observable” = measuring device

e.g., 4 polarized photons

What’s going on, physically?

X

READOUT0.03

(quantum circuit)

ρ = “state” of a particle-system

X = “observable” = measuring device

What’s going on, physically?

X

READOUT0.03

Don’t read this:
Readout is λi with probability d

where are the eigvals/vecs of X.

Unknown n-outcome
source of randomness ρ

Algorithm
X

x ∈ ℝ

Quantum probability density testing picture: m=1:

ρ is an n-dim. symm. matrix, ρ ≥ 0, = 1 ρ

X is an n-dim. symm. matrix

Eρ[X] = 〈ρ,X〉 = ρ Eρ[X2] = 〈ρ,X2〉 = ρ

sample

Unknown n-outcome
source of randomness ρ

Algorithm
X

x ∈ ℝ

Baseline: Learning ρ

ρ is an n-dim. symm. matrix

X is an n-dim. symm. matrix

Eρ[X] = 〈ρ,X〉 = ρ

sample

 (“quantum tomography”)

Unknown n-outcome
source of randomness ρ

Algorithm
X

x ∈ ℝ

ρ is an n-dim. symm. matrix

X is an n-dim. symm. matrix

Eρ[X] = 〈ρ,X〉 = ρ

sample

Baseline: Learning ρ Naive method:

Use X’s like

to learn each ρij separately.

O(n4) samples.

Unknown n-outcome
source of randomness ρ

Algorithm
X

x ∈ ℝ

ρ is an n-dim. symm. matrix

X is an n-dim. symm. matrix

Eρ[X] = 〈ρ,X〉 = ρ

sample

Theorem: [HHJWY15,OW15]

It is necessary &
sufficient to have

m = Θ(n2/ϵ2) samples
to learn ρ to ϵ-accuracy
in “trace (l1) distance”.

Baseline: Learning ρ

A better way to think about the scenario

Unknown n-outcome
source of randomness ρ

Algorithm
X

x ∈ ℝ

Quantum probability density testing picture: m=1:

ρ is an n-dim. symm. matrix, ρ ≥ 0, = 1 ρ

X is an n-dim. symm. matrix

Eρ[X] = 〈ρ,X〉 = ρ Eρ[X2] = 〈ρ,X2〉 = ρ

m samples

ρ⊗m

Unknown n-outcome
source of randomness ρ

Algorithm
X

x ∈ ℝ

ρ is an n-dim. symm. matrix, ρ ≥ 0, = 1 ρ

ρ is PSD
⇔ ρ’s eigenvalues are ≥ 0

trace(ρ) = 1
⇔ ρ’s eigenvalues sum to 1

⇔ ρ’s eigenvalues form a probability distribution! Call it p1, …, pn

m samples

ρ⊗m

Quantum probability density testing picture: m=1:

Unknown n-outcome
source of randomness ρ

Algorithm
X

x ∈ ℝ

ρ’s eigenvalues form a probability distribution! Call it p1, …, pn

m samples

ρ⊗m

Quantum probability density testing picture: m=1:

“Over” ρ’s orthonormal eigenvectors in ℂn. Call them v1, …, vn

Think of ρ as emitting vi with probability pi.

Exercise: Conditioned on vi, E[X] = 〈Xvi, vi〉.

Unknown n-outcome
source of randomness ρ

Algorithm
X

x ∈ ℝ

ρ’s eigenvalues form a probability distribution! Call it p1, …, pn

m samples

ρ⊗m

Quantum probability density testing picture: m=1:

“Over” ρ’s orthonormal eigenvectors in ℂn. Call them v1, …, vn

Think of ρ as emitting vi with probability pi.

Also: ρ⊗5 emits v3⊗v1⊗v4⊗v1⊗vn with probability p3·p1·p4·p1·pn…

Classical World Quantum World

(p1, …, pn)

{p1, …, pn}

no analogue

{p1, …, pn}

no analogue v1, …, vn

support-size(p) = # nonzero pi’s rank(ρ) = # nonzero pi’s

Entropy(p) = vN-Entropy(ρ) =

uniform distribution, p = 1/n maximally mixed state, ρ = I/n

total variation distance trace distance

Hellinger2 distance infidelity

L-distance Frobenius2-distance

1. Practically relevant problems
at the vanguard of computing

2. You get to do it all again

3. The math is (even more) beautiful

Quantum Distribution Testing: Why care?

1. Practically relevant problems
at the vanguard of computing

2. You get to do it all again

3. The math is (even more) beautiful

Quantum Distribution Testing: Why care?

Estimating L-distance between ρ and I/n
(AKA testing if ρ is the maximally mixed state)

[Bădescu-O-Wright’17]

||I/n − ρ||F
2 (Same as in classical case!)

Estimating L-distance between ρ and I/n

You basically want to estimate

Say m = 2. What should Algorithm X be?

(the “quantum purity”)

ρ emits va⊗vb ∈ (ℂn)⊗2 with probability pa·pb

The “algorithm” should be an operator X on (ℂn)⊗2

Doesn’t know v1, …, vn, but does understand “tensor structure”

Let X act by swapping tensor components: X ea⊗eb = eb⊗ea
 ⇒ X va⊗vb = vb⊗va

Estimating L-distance between ρ and I/n

You basically want to estimate

Say m = 2. What should Algorithm X be?

Let X act by swapping tensor components: X ea⊗eb = eb⊗ea
⇒ X va⊗vb = vb⊗va

Conditioned on ρ emitting va⊗vb, E[X] = 〈X va⊗vb, va⊗vb〉
= 〈vb⊗va, va⊗vb〉

=
∴E[X] =

Estimating L-distance between ρ and I/n

Let X act by swapping tensor components: X ea⊗eb = eb⊗ea
⇒ X va⊗vb = vb⊗va

Conditioned on ρ emitting va⊗vb, E[X2] = 〈X2 va⊗vb, va⊗vb〉
= 〈va⊗vb, va⊗vb〉
= 1

∴E[X] =

Var[X] = E[X2] − E[X]2

∴Var[X] = extra large

X = avg { R(τ) : transpositions τ ∈ Sm }

You basically want to estimate

Say m > 2. What should Algorithm X be?

Estimating L-distance between ρ and I/n

where, in general, R(π) acts on (ℂn)⊗m by
permuting tensor components according to π

∴E[X] = For Var[X], need to compute X2.

X = avg { R(τ) : transpositions τ ∈ Sm }

You basically want to estimate

Estimating L-distance between ρ and I/n

X2 = avg {R(σ) R(τ) : transpositions σ,τ ∈ Sm }

= avg { R(στ) : transpositions σ,τ ∈ Sm }

R : Sm → {Matrices acting on (ℂn)⊗m}
is a group representation!

You basically want to estimate

Estimating L-distance between ρ and I/n

= + c1 avg { R(π) : cycleType(π) = (1) }
= + c2 avg { R(π) : cycleType(π) = (2,2) }
= + c3 avg { R(π) : cycleType(π) = (3) }

X = avg { R(τ) : transpositions τ ∈ Sm }

X2 = avg {R(σ) R(τ) : transpositions σ,τ ∈ Sm }

= avg { R(στ) : transpositions σ,τ ∈ Sm }

for some straightforward but slightly annoying
to compute coefficients c1, c2, c3

You basically want to estimate

Estimating L-distance between ρ and I/n

 E[X2] = + c1 avg { R(π) : cycleType(π) = (1) }
= + c2 avg { R(π) : cycleType(π) = (2,2) }
= + c3 avg { R(π) : cycleType(π) = (3) }

for some straightforward but slightly annoying
to compute coefficients c1, c2, c3

Exercise: Let A(7,4,2) = avg { R(π) : cycleType(π) = (7,4,2) }.

Then E[A(7,4,2)] =

You basically want to estimate

Estimating L-distance between ρ and I/n

 E[X2] = + c1 avg { R(π) : cycleType(π) = (1) }
= + c2 avg { R(π) : cycleType(π) = (2,2) }
= + c3 avg { R(π) : cycleType(π) = (3) }

for some straightforward but slightly annoying
to compute coefficients c1, c2, c3

Exercise: Let A(7,4,2) = avg { R(π) : cycleType(π) = (7,4,2) }.

Then E[A(7,4,2)] =

Can now compute the variance,
bound it asymptotically,

use Chebyshev, etc. etc.,
just like in the classical case.

(It’s actually somewhat cleaner.)

Estimating L-distance between ρ and I/n

Long story short:

m = O(n/ϵ2) samples suffice to distinguish

to distinguish -Dist(I/n, ρ) ≤ .99ϵ2/n
vs. TV-Dist(I/n, ρ) ≥ ϵ whp.

[O-Wright’15]: m = Ω(n/ϵ2) samples needed for testing “ρ = I/n”

Also in [Bădescu-O-Wright’17]:
Same for distinguishing closeness of two unknown ρ, q

You basically want to estimate

Estimating L-distance between ρ and I/n

 E[X2] = + c1 avg { R(π) : cycleType(π) = (1) }
= + c2 avg { R(π) : cycleType(π) = (2,2) }
= + c3 avg { R(π) : cycleType(π) = (3) }

for some straightforward but slightly annoying
to compute coefficients c1, c2, c3

Exercise: Let A(7,4,2) = avg { R(π) : cycleType(π) = (7,4,2) }.

Then E[A(7,4,2)] =

I promised you
“beautiful math”...

The right way to compute them involves
representation theory of Sm.

Which leads to stuff like…

Free Probability!

Tracy-Widom Distributions!

Donald Knuth!

Geometric Complexity Theory!

Longest Increasing Subsequences!

Sorting Networks!

Queueing Theory!

Traffic Models!

For more: www.cs.cmu.edu/~odonnell/papers/tomography-survey.pdf

Thanks!

For more: www.cs.cmu.edu/~odonnell/papers/tomography-survey.pdf

