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Quantum. Why should you care?



1. Practically relevant problems
at the vanguard of computing

2. You get to do it all again

3. The math is (even more) beautiful
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Quantum teleportation, July 2017
Jian-Wei Pan et al.
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Quantum teleportation, July 2017
Jian-Wei Pan et al.

           in state ρ

               ∙∙∙      in state ρ⊗911

(quantum-) Hellinger2-Dist(ρ,ρ) = 0.21 ±.01
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What is classical Probability Density Testing?



Unknown n-outcome
source of randomness ρ



Unknown n-outcome
source of randomness p

m samples

p⊗m

Algorithm
X

x ∈ ℝ

Maybe x ∈ {0,1} is a guess as to whether p is uniformly random.

Maybe x is an estimate of Dist(q,p) for some hypothesis q.

Maybe x is an estimate of Entropy(p).



Unknown n-outcome
source of randomness p

m samples

p⊗m

Algorithm
X

x ∈ ℝ

Example:
You have a hope that p ≡ 1/n, the uniform distribution.

You want to estimate Dist(1/n, p),  

where “Dist” ∈ { TV, Hellinger2, Chi-Squared,     , …}

Latter two are the same here, so let’s choose them.



Unknown n-outcome
source of randomness p

m samples

p⊗m

Algorithm
X

x ∈ ℝ

Example:
You have a hope that p ≡ 1/n, the uniform distribution.

You want to estimate     -Dist(1/n, p) 



Unknown n-outcome
source of randomness p

m samples

p⊗m

Algorithm
X

x ∈ ℝ

You basically want to estimate

Say m = 2.  What should Algorithm X be?

Algorithm X:  Given sample (a,b) ~ p⊗2, output 

Var[X] =   large

(the “collision probability”)



Unknown n-outcome
source of randomness p

m samples

p⊗m

Algorithm
X

x ∈ ℝ

You basically want to estimate

Say m > 2.  What should Algorithm X be?

Algorithm X:  Average the m=2 algorithm over all          pairs.

Var[X] = (tedious but straightforward)



Unknown n-outcome
source of randomness p

m samples

p⊗m

Algorithm
X

x ∈ ℝ

Var[X] = (tedious but straightforward)

                                                 samples suffice to distinguish

to distinguish      -Dist(1/n, p) ≤ .99ϵ2/n 

vs.         -Dist(1/n, p) ≥     ϵ2/n whp.

Chebyshev   ⇒



Unknown n-outcome
source of randomness p

m samples

p⊗m

Algorithm
X

x ∈ ℝ

Var[X] = (tedious but straightforward)

                                                 samples suffice to distinguish

to distinguish      -Dist(1/n, p) ≤ .99ϵ2/n 

vs.      TV-Dist(1/n, p) ≥ ϵ  whp.

Chebyshev   ⇒



Unknown n-outcome
source of randomness p

m samples

p⊗m

Algorithm
X

x ∈ ℝ

Remember two things:

1. The algorithm:  Average, over all transpositions τ ∈ Sm, of
     0/1 indicator that τ leaves samples unchanged

2. Any alg. is just a random variable, based on randomness p⊗m



Unknown n-outcome
source of randomness p

m samples

p⊗m

Algorithm
X

x ∈ ℝ

  Classical probability density testing picture, m=1:  



Unknown n-outcome
source of randomness p

sample Algorithm
X

x ∈ ℝ

  Classical probability density testing picture, m=1:  

p is an n-dim. symm. matrix,       p ≥ 0,                  = 1 p

X is an n-dimensional vector

Ep[X] = 〈p,X〉 = p Ep[X2] = 〈p,X2〉 = p

ensional vector

“   ”



Changing the picture:  Classical → Quantum

Replace “vector” with “symmetric matrix” everywhere.
(Hermitian)



Unknown n-outcome
source of randomness p

sample Algorithm
X

x ∈ ℝ

  Classical probability density testing picture, m=1:  

p is an n-dim. symm. matrix,       p ≥ 0,                  = 1 p

X is an n-dimensional vector

Eρ[X] = 〈p,X〉 = p Ep[X2] = 〈p,X2〉 = p

ensional vector

“   ”



Unknown n-outcome
source of randomness ρ

sample Algorithm
X

x ∈ ℝ

Quantum probability density testing picture, m=1:

ρ is an n-dim. symm. matrix,       ρ ≥ 0,                  = 1 ρ

X is an n-dim. symm. matrix

Eρ[X] = 〈ρ,X〉 = ρ Eρ[X2] = 〈ρ,X2〉 = ρ



Unknown n-outcome
source of randomness ρ

Algorithm
X

x ∈ ℝ

Quantum probability density testing picture: m=1:

ρ is an n-dim. symm. matrix,       ρ ≥ 0,                  = 1 ρ

X is an n-dim. symm. matrix

Eρ[X] = 〈ρ,X〉 = ρ Eρ[X2] = 〈ρ,X2〉 = ρ

m samples

ρ⊗m



Changing the picture:  Quantum → Classical

Let ρ and X be diagonal matrices.



Unknown n-outcome
source of randomness ρ

Algorithm
X

x ∈ ℝ

Quantum probability density testing picture: m=1:

ρ is an n-dim. symm. matrix,       ρ ≥ 0,                  = 1 ρ

X is an n-dim. symm. matrix

Eρ[X] = 〈ρ,X〉 = ρ Eρ[X2] = 〈ρ,X2〉 = ρ

m samples

ρ⊗m



What’s going on, physically?

ρ = “state” of a particle-system

e.g., 4 polarized photons

n = # “basic outcomes”;    2 for a “qubit”,    16 for 4 photons

X = “observable” = measuring device X

READOUT(quantum circuit)



n = # “basic outcomes”;    2 for a “qubit”,    16 for 4 photons

(quantum circuit)

ρ = “state” of a particle-system

X = “observable” = measuring device

e.g., 4 polarized photons

What’s going on, physically?

X

READOUT0.03



(quantum circuit)

ρ = “state” of a particle-system

X = “observable” = measuring device

What’s going on, physically?

X

READOUT0.03

Don’t read this:
Readout is λi with probability            d  

where             are the eigvals/vecs of X. 



Unknown n-outcome
source of randomness ρ

Algorithm
X

x ∈ ℝ

Quantum probability density testing picture: m=1:

ρ is an n-dim. symm. matrix,       ρ ≥ 0,                  = 1 ρ

X is an n-dim. symm. matrix

Eρ[X] = 〈ρ,X〉 = ρ Eρ[X2] = 〈ρ,X2〉 = ρ

sample



Unknown n-outcome
source of randomness ρ

Algorithm
X

x ∈ ℝ

Baseline:     Learning ρ

ρ is an n-dim. symm. matrix

X is an n-dim. symm. matrix

Eρ[X] = 〈ρ,X〉 = ρ

sample

 (“quantum tomography”)



Unknown n-outcome
source of randomness ρ

Algorithm
X

x ∈ ℝ

ρ is an n-dim. symm. matrix

X is an n-dim. symm. matrix

Eρ[X] = 〈ρ,X〉 = ρ

sample

Baseline:     Learning ρ Naive method:

Use X’s like

to learn each ρij separately. 

O(n4) samples.



Unknown n-outcome
source of randomness ρ

Algorithm
X

x ∈ ℝ

ρ is an n-dim. symm. matrix

X is an n-dim. symm. matrix

Eρ[X] = 〈ρ,X〉 = ρ

sample

Theorem:  [HHJWY15,OW15]

It is necessary &
sufficient to have

m = Θ(n2/ϵ2) samples
to learn ρ to ϵ-accuracy
in “trace (l1) distance”.

Baseline:     Learning ρ



A better way to think about the scenario



Unknown n-outcome
source of randomness ρ

Algorithm
X

x ∈ ℝ

Quantum probability density testing picture: m=1:

ρ is an n-dim. symm. matrix,       ρ ≥ 0,                  = 1 ρ

X is an n-dim. symm. matrix

Eρ[X] = 〈ρ,X〉 = ρ Eρ[X2] = 〈ρ,X2〉 = ρ

m samples

ρ⊗m



Unknown n-outcome
source of randomness ρ

Algorithm
X

x ∈ ℝ

ρ is an n-dim. symm. matrix,       ρ ≥ 0,                  = 1 ρ

ρ is PSD
⇔ ρ’s eigenvalues are ≥ 0

trace(ρ) = 1
⇔ ρ’s eigenvalues sum to 1

⇔ ρ’s eigenvalues form a probability distribution!  Call it p1, …, pn

m samples

ρ⊗m

Quantum probability density testing picture: m=1:



Unknown n-outcome
source of randomness ρ

Algorithm
X

x ∈ ℝ

ρ’s eigenvalues form a probability distribution!  Call it p1, …, pn

m samples

ρ⊗m

Quantum probability density testing picture: m=1:

“Over” ρ’s orthonormal eigenvectors in ℂn.  Call them v1, …, vn

Think of ρ as emitting vi with probability pi.

Exercise:  Conditioned on vi, E[X] = 〈Xvi, vi〉.



Unknown n-outcome
source of randomness ρ

Algorithm
X

x ∈ ℝ

ρ’s eigenvalues form a probability distribution!  Call it p1, …, pn

m samples

ρ⊗m

Quantum probability density testing picture: m=1:

“Over” ρ’s orthonormal eigenvectors in ℂn.  Call them v1, …, vn

Think of ρ as emitting vi with probability pi.

Also:  ρ⊗5 emits v3⊗v1⊗v4⊗v1⊗vn with probability p3·p1·p4·p1·pn…



Classical World Quantum World

(p1, …, pn)

{p1, …, pn}

no analogue

{p1, …, pn}

no analogue v1, …, vn

support-size(p) = # nonzero pi’s rank(ρ) = # nonzero pi’s

Entropy(p) = vN-Entropy(ρ) = 

uniform distribution, p = 1/n maximally mixed state, ρ = I/n 

total variation distance trace distance

Hellinger2 distance infidelity

L-distance Frobenius2-distance



1. Practically relevant problems
at the vanguard of computing

2. You get to do it all again

3. The math is (even more) beautiful
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Estimating  L-distance between ρ and I/n
(AKA testing if ρ is the maximally mixed state)

[Bădescu-O-Wright’17]

||I/n − ρ||F
2 (Same as in classical case!)



Estimating  L-distance between ρ and I/n

You basically want to estimate

Say m = 2.  What should Algorithm X be?

(the “quantum purity”)

ρ emits va⊗vb ∈ (ℂn)⊗2 with probability pa·pb

The “algorithm” should be an operator X on (ℂn)⊗2 

Doesn’t know v1, …, vn, but does understand “tensor structure”

Let X act by swapping tensor components:  X ea⊗eb = eb⊗ea  
   ⇒ X va⊗vb = vb⊗va   



Estimating  L-distance between ρ and I/n

You basically want to estimate

Say m = 2.  What should Algorithm X be?

Let X act by swapping tensor components:  X ea⊗eb = eb⊗ea  
⇒ X va⊗vb = vb⊗va    

Conditioned on ρ emitting va⊗vb, E[X] = 〈X va⊗vb, va⊗vb〉
=     〈vb⊗va, va⊗vb〉

= 
∴E[X] = 



Estimating  L-distance between ρ and I/n

Let X act by swapping tensor components:  X ea⊗eb = eb⊗ea  
⇒ X va⊗vb = vb⊗va    

Conditioned on ρ emitting va⊗vb, E[X2] = 〈X2 va⊗vb, va⊗vb〉
=  〈va⊗vb, va⊗vb〉
= 1 

∴E[X] = 

Var[X] = E[X2] − E[X]2

∴Var[X] = extra large 



X = avg { R(τ) : transpositions τ ∈ Sm }

You basically want to estimate

Say m > 2.  What should Algorithm X be?

Estimating  L-distance between ρ and I/n

where, in general, R(π) acts on (ℂn)⊗m by
permuting tensor components according to π

∴E[X] = For Var[X], need to compute X2.



X = avg { R(τ) : transpositions τ ∈ Sm }

You basically want to estimate

Estimating  L-distance between ρ and I/n

X2 = avg {R(σ) R(τ) : transpositions σ,τ ∈ Sm }

= avg {    R(στ)    : transpositions σ,τ ∈ Sm }

R : Sm → {Matrices acting on (ℂn)⊗m}
is a group representation!



You basically want to estimate

Estimating  L-distance between ρ and I/n

= + c1 avg {  R(π) : cycleType(π) = (1) }
= + c2 avg {  R(π) : cycleType(π) = (2,2) }
= + c3 avg {  R(π) : cycleType(π) = (3) }

X = avg { R(τ) : transpositions τ ∈ Sm }

X2 = avg {R(σ) R(τ) : transpositions σ,τ ∈ Sm }

= avg {    R(στ)    : transpositions σ,τ ∈ Sm }

for some straightforward but slightly annoying
to compute coefficients c1, c2, c3



You basically want to estimate

Estimating  L-distance between ρ and I/n

 E[X2] = + c1 avg {  R(π) : cycleType(π) = (1) }
= + c2 avg {  R(π) : cycleType(π) = (2,2) }
= + c3 avg {  R(π) : cycleType(π) = (3) }

for some straightforward but slightly annoying
to compute coefficients c1, c2, c3

Exercise:  Let A(7,4,2) = avg { R(π) : cycleType(π) = (7,4,2) }.

Then E[A(7,4,2)] = 



You basically want to estimate

Estimating  L-distance between ρ and I/n

 E[X2] = + c1 avg {  R(π) : cycleType(π) = (1) }
= + c2 avg {  R(π) : cycleType(π) = (2,2) }
= + c3 avg {  R(π) : cycleType(π) = (3) }

for some straightforward but slightly annoying
to compute coefficients c1, c2, c3

Exercise:  Let A(7,4,2) = avg { R(π) : cycleType(π) = (7,4,2) }.

Then E[A(7,4,2)] = 

Can now compute the variance,
bound it asymptotically,

use Chebyshev, etc. etc.,
just like in the classical case.

(It’s actually somewhat cleaner.)



Estimating  L-distance between ρ and I/n

Long story short:

m = O(n/ϵ2) samples suffice to distinguish

to distinguish      -Dist(I/n, ρ) ≤ .99ϵ2/n 
vs.      TV-Dist(I/n, ρ) ≥ ϵ  whp.

[O-Wright’15]:  m = Ω(n/ϵ2) samples needed for testing “ρ = I/n”

Also in [Bădescu-O-Wright’17]:  
Same for distinguishing closeness of two unknown ρ, q



You basically want to estimate

Estimating  L-distance between ρ and I/n

 E[X2] = + c1 avg {  R(π) : cycleType(π) = (1) }
= + c2 avg {  R(π) : cycleType(π) = (2,2) }
= + c3 avg {  R(π) : cycleType(π) = (3) }

for some straightforward but slightly annoying
to compute coefficients c1, c2, c3

Exercise:  Let A(7,4,2) = avg { R(π) : cycleType(π) = (7,4,2) }.

Then E[A(7,4,2)] = 

I promised you
“beautiful math”...



The right way to compute them involves
representation theory of Sm.

Which leads to stuff like…



Free Probability!

Tracy-Widom Distributions!

Donald Knuth!

Geometric Complexity Theory!

Longest Increasing Subsequences!

Sorting Networks!

Queueing Theory!

Traffic Models!

For more:  www.cs.cmu.edu/~odonnell/papers/tomography-survey.pdf



Thanks!

For more:  www.cs.cmu.edu/~odonnell/papers/tomography-survey.pdf


