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Quantum. Why should you care?
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1. Practically relevant problems
at the vanguard of computing

2. You get to do it all again

3. The math is (even more) beautiful
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Quantum teleportation, July 2017
Jian-Wei Pan et al.
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What is classical Probability Density Testing?
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Maybe x € {0,1} is a guess as to whether p is uniformly random.

Maybe x is an estimate of Dist(q,p) for some hypothesis q.

Maybe x is an estimate of Entropy(p).
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Example:

You have a hope that p = 1/n, the uniform distribution.
You want to estimate Dist(1/n, p),
where “Dist” € {TV, HeIIingerz, Chi-Squared, , ...} E%

Latter two are the same here, so let’'s choose them.
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Example:

You have a hope that p = 1/n, the uniform distribution.

n
You want to estimate -Dist(él /n, p) _ Z(pi — 1/n)?
=1

N
=2 P —/n
=1
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You basically want to estimate > p?  (the “collision probability”)
=1

Say m = 2. What should Algorithm X be?

2

Algorithm X: Given sample (a,b) ~ p““, output

ex1=>p @
I=1

1 ifa=Db,
0 else.

Var[X] = large e
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You basically want to estimate > p?
=1

Say m > 2. What should Algorithm X be?

m
Algorithm X: Average the m=2 algorithm over all pa'(s. )

2
Elx1=>p? @
=1

Var[X] = (tedious but straightforward)
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E[X] = Z o} Var[X] = (tedious but straightforward)
=1

Chebyshev = m = O(+/naamples suffice to distinguish

-Disg§1/n, p) < .99¢€%/n
VS. -Dist(1ﬁ§, p) = €/n  whp.
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=1

Chebyshev = m = O(+/naamples suffice to distinguish

-Disl/n, p) < .99¢%/n
vs. TV-Dist(1/n,p) = € whp.
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source of randomness p
Remember two things:

1. The algorithm: Average, over all transpositions T € S, of
0/1 indicator that 1 leaves samples unchanged

2. Any alg. is just a random variable, based on randomness p™™
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Classical probability density testing picture, m=1:
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Classical probability density testing picture, m=1:

N
p is an n-dim ensional vegtor p = 0, >Tp;
=1

X IS an n-dimensional vector

E[XI=(pX)= > PiX

E D= (X = > pix2



Changing the picture: Classical — Quantum

Replace “vector” with “symmetric matrix” everywhere.
(Hermitian)
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Quantum probability density testing picture, m=1:
N
p is an n-dim. symm. matrix, p = 0, ﬁ o
i=1

X Is an n-dim. symm. matrix

E [X] = (p,X) = > PijXi Ep[Xz] =(p.X = > Pyj(X?)
; ;
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Quantum probability density testing picture:
N
p is an n-dim. symm. matrix, p = 0, ﬁ o
i=1

X is an n-dim. symm. matrix

E [X] = (p,X) = > PijXi Ep[Xz] =(p.X = > Pyj(X?)
; ;



Changing the picture: Quantum — Classical

Let p and X be diagonal matrices.
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Quantum probability density testing picture:
N
p is an n-dim. symm. matrix, p = 0, ﬁ o
i=1

X is an n-dim. symm. matrix

E [X] = (p,X) = > PijXi Ep[Xz] =(p.X = > Pyj(X?)
; ;



What’s going on, physically?

I’\ I‘\ “\ l‘\
p = “state” of a particle-system k‘/’, 0&1/7 0{5’., ‘k‘f’, '4
\v’ \v’ \v’ \OI

e.d., 4 polarized photons

n = # “basic outcomes”; 2 for a “qubit”, 16 for 4 photons

X = “observable” = measuring device : X
(quantum circuit) ‘ READOUT




What’s going on, physically?

W, TN SN S
p = "state” of a particle-system V - ‘V - 4;‘ - ‘V - ‘
\v’ \v’ \v’ \OI

e.d., 4 polarized photons

n = # “basic outcomes”; 2 for a “qubit”, 16 for 4 photons

X = “observable” = measuring device : X
(quantum circuit) ‘ 0.03




What’s going on, physically?

p = “state” of a particle-system

-

Don’t read this:

Readout is A with probability  (¢i, o¢;)
wher@Ai, ¢i) are the eigvals/vecs of X.

X = “observable” = measuring device

(Quantum circuit)

X

IEXE
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Quantum probability density testing picture:
N
p is an n-dim. symm. matrix, p = 0, ﬁ o
i=1

X Is an n-dim. symm. matrix

E [X] = (p,X) = > PijXi Ep[Xz] =(p.X = > Pyj(X?)
; ;
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Baseline: Learning p

P IS an n-dim. symm. matrix

X is an n-dim. symm. matrix

E [X] = (p.X) = Z, Pij Xi

.I',..,. -
fo

&

Algorithm
X

("quantum tomography”)
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Baseline: Learning p Naive method:
. : . Use X’s like
P IS an n-dim. symm. matrix
1 0 0 O 0 .5 0
(o 0 0 o) 5 0 0
. o . 0 0 0 O 0O 0 O
X is an n-dim. symm. matrix S @00 o 0 0

to learn each o separately.

E [X]={p.X) = ZJ: PijXij O(n*) samples.

eololoNo)
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Baseline: Learning p ﬂl’heorem: [HHJWY15,0W15]\

It is necessary &
sufficient to have

P IS an n-dim. symm. matrix

m = O(n?/e%) samples
to learn p to e-accuracy

- e . 7
Ep[X] = (0.X) = Zpijxij \ln trace (£1) distance /
J

X is an n-dim. symm. matrix




A better way to think about the scenario
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Quantum probability density testing picture:
N
p is an n-dim. symm. matrix, p = 0, ﬁ o
i=1

X is an n-dim. symm. matrix

E [X] = (p,X) = > PijXi Ep[Xz] =(p.X = > Pyj(X?)
; ;
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Quantum probability density testing picture:

N
p is an n-dim. symm. matrix, p >0, >T 0ij
i=)
0 is PSD /trace(p) =1

& p’s eigenvalues are =2 0 & p’s eigenvalues sum to 1

& p’s eigenvalues form a probability distribution! Callitp., ..., p_
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Quantum probability density testing picture:

p's eigenvalues form a probability distribution! Callitp., ..., p_
“Over” p’s orthonormal eigenvectors in G". Call them Vg aaey Y
Think of p as emitting v. with probability p..

Exercise: Conditioned on v,, E[X] = (Xv, v)).
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Quantum probability density testing picture:

p's eigenvalues form a probability distribution! Callitp., ..., p_

“Over” p’s orthonormal eigenvectors in G". Call them Vg aaey Y

Think of p as emitting V. with probabillity o

Also: p®5 emits V4OV, VOV, OV with probability P3P, Py PP,



Classical World

(Pys -5 Py)
PP
no analogue

support-size(p) = # nonzero p.’s

Entropy(p) = > pilog(1/pi)

uniform distribution, p = 1/n
total variation distance

HeIIinger2 distance

l% -distance

Quantum World

no analogue

Py, P}

V,, ...,V

1’ n

rank(p) = # nonzero p.'s

vN-Entropy(p) = > pilog(1/pi)
i

maximally mixed state, p = I/n
trace distance
infidelity

Frobenius?-distance
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Estimatingg -distance between p and I/n
(AKA testing if p is the maximally mixed state)

[Badescu-O-Wright'17]

N
[|/n = p|||:2 = Z pi2 —1/n  (Same as in classical case!)
=1



Estimatingg -distance between p and I/n

N
You basically want to estimate > p?  (the “quantum purity’)
=1

Say m = 2. What should Algorithm X be?

p emits v_ov,_E (@”)®2 with probability p_-p,

b

The “algorithm” should be an operator X on (G")*

Doesn’t know Vg waey Vs but does understand “tensor structure”

Let X act by swapping tensor components: X e_%e =e ®e_

— ® = X
Xva V, = V8V



Estimatingg -distance between p and I/n

N
You basically want to estimate Z pi2
=1

Say m = 2. What should Algorithm X be?

Let X act by swapping tensor components: X e_ee_=e %e_

= XV ®y, =V, 0V
a b b "a

Conditioned on p emitting v_ev, _, E[X] = (X V_8V,, va®vb>

n = <Vb®va’ Va®Vb>
BN 30 @) (e
=1 -

0O else.



Estimatingg -distance between p and I/n

Let X act by swapping tensor components: X e_®e_=e _%e_

= XV 8V, =V oV
EXI = S p?
2" @
Var[X] = E[X?] - E[X]?

Conditioned on p emitting v_ev, E[X?] = (X? V8V, va®vb>

..Var[X] = extra large 6 =




Estimatingg -distance between p and I/n
N
. . 2
You basically want to estimate le p:
=
Say m > 2. What should Algorithm X be?

X =avg { R(1) : transpositions T € S_}

where, in general, R(1r) acts on (G")"™ by
permuting tensor components according to 1

n
EX1= >'p7 @)  ForVar[X], need to compute X°
I=1



Estimatingg -distance between p and I/n
N
You basically want to estimate Z pi2
=1

X =avg { R(T) : transpositions T € S _}

X* = avg {R(0) R(7) : transpositions 0,1 € S_}

=avg{ R(oT) :transpositions 0,1 € S_}

R:S — {Matrices acting on (C")™}
IS a group representation!



Estimatingg -distance between p and I/n

N
You basically want to estimate Z pi2
=1

X =avg { R(T) : transpositions T € S _}

X* = avg {R(0) R(7) : transpositions 0,1 € S_}
=avg{ R(oT) :transpositions 0,1 € S_}

= c,avg{ R(m) : cycleType(m) = (1) }
+ ¢, avg { R(1) : cycleType(m) = (2,2) }
+ ¢, avg { R(1) : cycleType(m) = (3) }

for some straightforward but slightly annoying

to compute coefficients c,, c.,, C

17 72° 73



Estimatingg -distance between p and I/n

You basically want to estimate Z pi2

E[XZ] = c,avg{ R(m) : cycleType(m) = (1) }
+ ¢, avg { R(m) : cycleType(m) = (2,2) }
+ ¢, avg { R() : cycleType(m) = (3) }

for some straightforward but slightly annoying

to compute coefficients c., c,, C,

Exercise: Let A(7, 42)= @vg { R(T) : cycleType(tr) =(7,4,2) }.




Estimatingg -distance between p and I/n

. . 2
You basically want to estimate Z p:

/ Can now compute the variance, \
bound it asymptotically,
use Chebyshev, etc. etc.,
just like in the classical case.

\ (It's actually somewhat cleaner.) /

Exercise: Let A(7,4’2) = avg { R{1r) - cycleType(m) = (7,4,2) }.




Estimatingg -distance between p and I/n

Long story short:
m = O(n/€2) samples suffice to distinguish

-Dis@/n, p) < .99€¢%/n
VS. -Dist(I/d1p) = € whp.

Also in [Badescu-O-Wright'17]:
Same for distinguishing closeness of two unknown p, Q

[O-Wright'15]: m = Q(n/e?) samples needed for testing “p = I/n”



Estimatingg -distance between p and I/n

You basically want to estimate > p?
g leT = (1
| promised you (e )yp?Z(ﬂz)); (1)}
'IT —_
“pbeautiful math”... ’
(m) =(3) }

\_
for some straightforward but glightly annoying

to compute coefficients c., c,, C,

Exercise: Let A(7, 42)= @vg { R(T) : cycleType(tr) =(7,4,2) }.
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Free Probability!
Tracy-Widom Distributions!
Donald Knuth!
Geometric Complexity Theory!
Longest Increasing Subsequences!
Sorting Networks!
Queueing Theory!

Traffic Models!

For more: www.cs.cmu.edu/~odonnell/papers/tomography-survey.pdf
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For more: www.cs.cmu.edu/~odonnell/papers/tomography-survey.pdf




