Testing with Alternative Distances

Gautam “G” Kamath
FOCS 2017 Workshop: Frontiers in Distribution Testing
October 14, 2017

Based on joint works with

Jayadev Acharya
Cornell

Constantinos Daskalakis
MIT

John Wright
MIT
The story so far...

- Test whether \(p = q \) versus \(\ell_1(p, q) \geq \varepsilon \)
 - Domain of \([n]\)
 - Success probability \(\geq 2/3 \)
 - Goal: Strongly sublinear sample complexity
 - \(O(n^{1-\gamma}) \) for some \(\gamma > 0 \)
- Identity testing (samples from \(p \), known \(q \))
 - \(\Theta(\sqrt{n}/\varepsilon^2) \) samples
 - [BFFKR’01, P’08, VV’14]
- Closeness testing (samples from \(p, q \))
 - \(\Theta(\max\{n^{2/3}/\varepsilon^{4/3}, \sqrt{n}/\varepsilon^2\}) \) samples
 - [BFRSW’00, V’11, CDVV’14]
Generalize: Different Distances

- \(p = q \) or \(\ell_1(p, q) \geq \varepsilon \)?

- \(d_1(p, q) \leq \varepsilon_1 \) or \(d_2(p, q) \geq \varepsilon_2 \)?
Generalize: Different Distances

- $d_1(p, q) \leq \varepsilon_1$ or $d_2(p, q) \geq \varepsilon_2$?
 - Are p and q ε_1-close in $d_1(., .)$, or ε_2-far in $d_2(., .)$?
 - Distances of interest: $\ell_1, \ell_2, \chi^2, KL, Hellinger$

- Classic identity testing: $\varepsilon_1 = 0, d_2 = \ell_1$

- Can we characterize sample complexity for each pair of distances?
 - Which distribution distances are sublinearly testable? [DKW’18]

- Wait, but... why?
Wait, but... why?

1. Tolerance for model misspecification
2. Useful as a proxy in classical testing problems
 • d_1 as χ^2 distance is useful for composite hypothesis testing
 • Monotonicity, independence, etc. [ADK’15]
3. Other distances are natural in certain testing settings
 • d_2 as Hellinger distance is sometimes natural in multivariate settings
 • Bayes networks, Markov chains [DP’17, DDG’17]
 • Costis’ talk
Wait, but... why?

1. **Tolerance for model misspecification**

2. Useful as a proxy in classical testing problems
 - d_1 as χ^2 distance is useful for composite hypothesis testing
 - Monotonicity, independence, etc. [ADK’15]

3. Other distances are natural in certain testing settings
 - d_2 as Hellinger distance is sometimes natural in multivariate settings
 - Bayes networks, Markov chains [DP’17,DDG’17]
 - Costis’ talk
Tolerance

• Is p equal to q, or are they far from each other?
 • But why do we know q exactly?

• Models are inexact
 • Measurement errors
 • Imprecisions in nature

• p, q may be “philosophically” equal, but not literally equal

• When can we test $d_1(p, q) \leq \varepsilon_1$ versus $\ell_1(p, q) \geq \varepsilon$?
Tolerance

- \(d_1(p, q) \leq \varepsilon_1 \) vs. \(\ell_1(p, q) \geq \varepsilon \)?
 - What \(d_1 \)? How about \(\ell_1 \)?
- \(\ell_1(p, q) \leq \varepsilon / 2 \) vs. \(\ell_1(p, q) \geq \varepsilon \)?
 - No! \(\Theta(n / \log n) \) samples [VV’10]
- Chill out, relax...
- \(\chi^2 \)-distance: \(\chi^2(p, q) = \sum_{i \in \Sigma} \frac{(p_i - q_i)^2}{q_i} \)
 - Cauchy-Schwarz: \(\chi^2(p, q) \geq \ell_1^2(p, q) \)
- \(\chi^2(p, q) \leq \varepsilon^2 / 4 \) vs. \(\ell_1(p, q) \geq \varepsilon \)?
 - Yes! \(O(\sqrt{n}/\varepsilon^2) \) samples [ADK’15]
Details for a χ^2-Tolerant Tester

• Goal: Distinguish (i) $\chi^2(p, q) \leq \frac{\varepsilon^2}{2}$ versus (ii) $\ell_1(p, q) \geq \varepsilon^2$

• Draw $\text{Poisson}(m)$ samples from p ("Poissonization")
 • N_i: number of appearances of symbol i
 • $N_i \sim \text{Poisson}(m \cdot p_i)$
 • N_i’s are now independent!

• Statistic: $Z = \sum_{i \in \Sigma} \frac{(N_i - m \cdot q_i)^2 - N_i}{m \cdot q_i}$
Details for a χ^2-Tolerant Tester

- Goal: Distinguish (i) $\chi^2(p, q) \leq \frac{\varepsilon^2}{2}$ versus (ii) $\ell_1^2(p, q) \geq \varepsilon^2$

- Statistic: $Z = \sum_{i \in [n]} \frac{(N_i - m \cdot q_i)^2 - N_i}{m \cdot q_i}$
 - N_i: # of appearances of i; m: # of samples
 - $E[Z] = m \cdot \chi^2(p, q)$
 - (i): $E[Z] \leq m \cdot \frac{\varepsilon^2}{2}$, (ii): $E[Z] \geq m \cdot \varepsilon^2$
 - Can bound variance of Z with some work
 - Need to avoid low prob. elements of q
 1. Either ignore i such that $q_i \leq \frac{\varepsilon^2}{10n}$; or
 2. Mix lightly ($O(\varepsilon^2)$) with uniform distribution (also in [G’16])
 - Apply Chebyshev’s inequality

Side-Note:
- Pearson’s χ^2-test uses statistic $\sum_{i} \frac{(N_i - m \cdot q_i)^2}{m \cdot q_i}$
- Subtracting N_i in the numerator gives an unbiased estimator and importantly may hugely decrease variance
 - [Zelterman’87]
 - [VV’14, CDVV’14, DKN’15]
Tolerant Identity Testing

<table>
<thead>
<tr>
<th>Distribution Distance</th>
<th>Testability</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p = q$</td>
<td>$\Omega\left(\frac{\sqrt{n}}{\varepsilon^2}\right)$ [Pan08]</td>
</tr>
<tr>
<td>$d_{\chi^2}(p, q) \leq \varepsilon^2/4$</td>
<td>$O\left(\frac{\sqrt{n}}{\varepsilon^2}\right)$ [Theorem 1]</td>
</tr>
<tr>
<td>$d_{KL}(p, q) \leq \varepsilon^2/4$</td>
<td>$\Omega\left(\frac{n}{\log n}\right)$ [Theorem 8]</td>
</tr>
<tr>
<td>$d_H(p, q) \leq \varepsilon/2\sqrt{2}$</td>
<td>$O\left(\frac{n}{\log n}\right)$ [Corollary 3]</td>
</tr>
<tr>
<td>$d_{TV}(p, q) \leq \varepsilon/2$ or $\varepsilon^2/4$</td>
<td>$O\left(\frac{n}{\log n}\right)$ [Corollary 3]</td>
</tr>
</tbody>
</table>

ℓ_2-distance versus TV-distance:

$\ell_2(p, q) \leq \frac{\varepsilon}{\sqrt{n}}$ vs $d_{TV}(p, q) \geq \varepsilon$

$\Theta\left(\frac{\sqrt{n}}{\varepsilon^2}\right)$ [Theorem 2]

(Daskalakis, K., Wright. Which Distribution Distances are Sublinearly Testable? SODA 2018.)
Tolerant Testing Takeaways

1. Can handle ℓ_2 or χ^2 tolerance at no additional cost
 - $\Theta(\sqrt{n}/\epsilon^2)$ samples

2. KL, Hellinger, or ℓ_1 tolerance are expensive
 - $\Theta(n/\log n)$ samples
 - KL result based off hardness of entropy estimation

3. Closeness testing (q unknown): Even χ^2 tolerance is costly!
 - $\Theta(n/\log n)$ samples
 - Only ℓ_2 tolerance is free
 - Proven via hardness of ℓ_1-tolerant identity testing
 - Since q is unknown, χ^2 is no longer a polynomial
Application: Testing for Structure

• Composite hypothesis testing
• Test against a class of distributions!
 • \(p \in \mathcal{C} \) versus \(\ell_1(p, \mathcal{C}) > \varepsilon \)
 \[
 \min_{q \in \mathcal{C}} \ell_1(p, q)
 \]
• Example: \(\mathcal{C} = \) all monotone distributions
 • \(p_i \)'s are monotone non-increasing
 • Others: unimodality, log-concavity, monotone hazard rate, independence
 • All can be tested in \(\Theta(\sqrt{n}/\varepsilon^2) \) samples [ADK'15]
 • Same complexity as vanilla uniformity testing!
Testing by Learning

• Goal: Distinguish $p \in C$ from $\ell_1(p, C) > \epsilon$

• Learn-then-Test:
 1. Learn hypothesis $q \in C$ such that
 • $p \in C \Rightarrow \chi^2(p, q) \leq \epsilon^2 / 2$ (needs cheap “proper learner” in χ^2)
 • $\ell_1(p, C) > \epsilon \Rightarrow \ell_1(p, q) > \epsilon$ (automatic since $q \in C$)
 2. Perform “tolerant testing”
 • Given sample access to p and description of q, distinguish $\chi^2(p, q) \leq \epsilon^2 / 2$ from $\ell_1(p, q) > \epsilon$

• Tolerant testing (step 2) is $O(\sqrt{n} / \epsilon^2)$
 • Naïve approach (using ℓ_1 instead of χ^2) would require $\Omega(n / \log n)$

• Proper learners in χ^2 (step 1)?
 • Claim: This is cheap
Hellinger Testing

- Change d_2 instead of d_1

- Hellinger distance: $H^2(p, q) = \frac{1}{2} \sum_{i \in [n]} (\sqrt{p_i} - \sqrt{q_i})^2$
 - Between linear and quadratic relationship with ℓ_1
 - $H^2(p, q) \leq \ell_1(p, q) \leq H(p, q)$

- Natural distance when considering a collection of iid samples
 - Comes up in some multivariate testing problems (Costis @ 2:55)

- Testing $p = q$ vs. $H(p, q) \geq \varepsilon$?

- Trivial results via ℓ_1 testing
 - Identity: $O(\sqrt{n}/\varepsilon^4)$ samples
 - Closeness: $O(\max\{n^{2/3}/\varepsilon^{8/3}, \sqrt{n}/\varepsilon^4\})$ samples
Hellinger Testing

- Testing $p = q$ vs. $H(p, q) \geq \epsilon$?
- Trivial results via ℓ_1 testing
 - Identity: $O(\sqrt{n}/\epsilon^4)$ samples
 - Closeness: $O(\max\{n^{2/3}/\epsilon^{8/3}, \sqrt{n}/\epsilon^4\})$ samples
- But you can do better!
 - Identity: $\Theta(\sqrt{n}/\epsilon^2)$ samples
 - No extra cost for ℓ_2 or χ^2 tolerance either!
 - Closeness: $\Theta(\min\{n^{2/3}/\epsilon^{8/3}, n^{3/4}/\epsilon^2\})$ samples
 - LB and previous UB in [DK’16]
- Similar chi-squared statistics as [ADK’15] and [CDVV’14]
 - Some tweaks and more careful analysis to handle Hellinger

Daskalakis, K., Wright. Which Distribution Distances are Sublinearly Testable? SODA 2018.
Miscellanea

• $p = q$ vs. $KL(p, q) \geq \varepsilon$?
 • Trivially impossible, due to ratio between p_i and q_i
 • $p_i = \delta, q_i = 0, \delta \to 0$

• Upper bounds for $\Omega(n / \log n)$ testing problems?
 • i.e., $KL(p, q) \leq \varepsilon^2 / 4$ vs. $\ell_1(p, q) \geq \varepsilon$?
 • Use estimators mentioned in Jiantao’s talk
Thanks!

Table 1: Identity Testing

<table>
<thead>
<tr>
<th>$p = q$</th>
<th>$d_{TV}(p,q) \geq \epsilon$</th>
<th>$d_{H}(p,q) \geq \epsilon/\sqrt{2}$</th>
<th>$d_{KL}(p,q) \geq \epsilon^2$</th>
<th>$d_{\chi^2}(p,q) \geq \epsilon^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d_{*2}(p,q) \leq \epsilon^2/4$</td>
<td>$O\left(\frac{n^{\frac{3}{4}}}{\epsilon^{2/3}}\right)$ [Pan08]</td>
<td>$O\left(\frac{n^{\frac{1}{2}}}{\epsilon^{2/3}}\right)$ [Theorem 1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d_{KL}(p,q) \leq \epsilon^2/4$</td>
<td>$\Omega\left(\frac{n}{\log n}\right)$ [Theorem 8]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d_{H}(p,q) \leq \epsilon/2\sqrt{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d_{TV}(p,q) \leq \epsilon/2$ or $\epsilon^2/4$</td>
<td>$O\left(\frac{n}{\log n}\right)$ [Corollary 3]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Equivalence Testing

<table>
<thead>
<tr>
<th>$p = q$</th>
<th>$d_{TV}(p,q) \geq \epsilon$</th>
<th>$d_{H}(p,q) \geq \epsilon/\sqrt{2}$</th>
<th>$d_{KL}(p,q) \geq \epsilon^2$</th>
<th>$d_{\chi^2}(p,q) \geq \epsilon^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d_{*2}(p,q) \leq \epsilon^2/4$</td>
<td>$O\left(\max\left{n^{1/3},\frac{n^{1/2}}{\epsilon^{2/3}}\right}\right)$ [CDVV14]</td>
<td>$O\left(\min\left{n^{1/4},\frac{n^{2/3}}{\epsilon^{2/3}}\right}\right)$ [Theorem 5]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d_{KL}(p,q) \leq \epsilon^2/4$</td>
<td>$\Omega\left(\frac{n}{\log n}\right)$ [Theorem 9]</td>
<td>$\Omega\left(\min\left{n^{3/4},\frac{n^{7/6}}{\epsilon^{2/3}}\right}\right)$ [DK16]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d_{H}(p,q) \leq \epsilon/2\sqrt{2}$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$d_{TV}(p,q) \leq \epsilon/2$ or $\epsilon^2/4$</td>
<td>$O\left(\frac{n}{\log n}\right)$ [Corollary 3]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>