Testing with Alternative Distances

Gautam "G" Kamath

FOCS 2017 Workshop: Frontiers in Distribution Testing

October 14, 2017

Based on joint works with

Jayadev Acharya Cornell

Constantinos Daskalakis MIT

John Wright MIT

The story so far...

- Test whether p = q versus $\ell_1(p,q) \ge \varepsilon$
 - Domain of [n]
 - Success probability $\geq 2/3$
 - Goal: Strongly sublinear sample complexity
 - $O(n^{1-\gamma})$ for some $\gamma > 0$
- Identity testing (samples from p, known q)
 - $\Theta(\sqrt{n}/\varepsilon^2)$ samples
 - [BFFKR'01, P'08, VV'14]
- Closeness testing (samples from p, q)
 - $\Theta(\max\{n^{2/3}/\varepsilon^{4/3}, \sqrt{n}/\varepsilon^2\})$ samples
 - [BFRSW'00, V'11, CDVV'14]

Generalize: Different Distances

•
$$p = q$$
 or $\ell_1(p,q) \ge \varepsilon$?

•
$$d_1(p,q) \le \varepsilon_1$$
 or $d_2(p,q) \ge \varepsilon_2$?

Generalize: Different Distances

- $d_1(p,q) \le \varepsilon_1$ or $d_2(p,q) \ge \varepsilon_2$?
 - Are p and q ε_1 -close in $d_1(.,.)$, or ε_2 -far in $d_2(.,.)$?
 - Distances of interest: ℓ_1 , ℓ_2 , χ^2 , KL, Hellinger
- Classic identity testing: $\varepsilon_1=0$, $d_2=\ell_1$
- Can we characterize sample complexity for each pair of distances?
 - Which distribution distances are sublinearly testable? [DKW'18]
- Wait, but... why?

Wait, but... why?

- 1. Tolerance for model misspecification
- 2. Useful as a proxy in classical testing problems
 - d_1 as χ^2 distance is useful for composite hypothesis testing
 - Monotonicity, independence, etc. [ADK'15]
- 3. Other distances are natural in certain testing settings
 - d_2 as Hellinger distance is sometimes natural in multivariate settings
 - Bayes networks, Markov chains [DP'17,DDG'17]
 - Costis' talk

Wait, but... why?

- 1. Tolerance for model misspecification
- 2. Useful as a proxy in classical testing problems
 - d_1 as χ^2 distance is useful for composite hypothesis testing
 - Monotonicity, independence, etc. [ADK'15]
- 3. Other distances are natural in certain testing settings
 - d_2 as Hellinger distance is sometimes natural in multivariate settings
 - Bayes networks, Markov chains [DP'17,DDG'17]
 - Costis' talk

Tolerance

- Is p equal to q, or are they far from each other?
 - But why do we know q exactly?
- Models are inexact
 - Measurement errors
 - Imprecisions in nature
- p, q may be "philosophically" equal, but not literally equal
- When can we test $d_1(p,q) \le \varepsilon_1$ versus $\ell_1(p,q) \ge \varepsilon$?

Tolerance

- $d_1(p,q) \le \varepsilon_1 \text{ vs. } \ell_1(p,q) \ge \varepsilon$?
 - What d_1 ? How about ℓ_1 ?
- $\ell_1(p,q) \le \varepsilon/2$ vs. $\ell_1(p,q) \ge \varepsilon$?
 - No! $\Theta(n/\log n)$ samples [VV'10]
- Chill out, relax...
- χ^2 -distance: $\chi^2(p,q) = \sum_{i \in \Sigma} \frac{(p_i q_i)^2}{q_i}$
 - Cauchy-Schwarz: $\chi^2(p,q) \ge \ell_1^2(p,q)$
- $\chi^2(p,q) \le \varepsilon^2/4 \text{ vs. } \ell_1(p,q) \ge \varepsilon$?
 - Yes! $O(\sqrt{n}/\varepsilon^2)$ samples [ADK'15]

Details for a χ^2 -Tolerant Tester

- Goal: Distinguish (i) $\chi^2(p,q) \leq \frac{\varepsilon^2}{2}$ versus (ii) $\ell_1^2(p,q) \geq \varepsilon^2$
- Draw Poisson(m) samples from p ("Poissonization")
 - N_i : number of appearances of symbol i
 - $N_i \sim Poisson(m \cdot p_i)$
 - N_i 's are now independent!
- Statistic: $Z = \sum_{i \in \Sigma} \frac{(N_i m \cdot q_i)^2 N_i}{m \cdot q_i}$

Details for a χ^2 -Tolerant Tester

- Goal: Distinguish (i) $\chi^2(p,q) \leq \frac{\varepsilon^2}{2}$ versus (ii) $\ell_1^2(p,q) \geq \varepsilon^2$
- Statistic: $Z = \sum_{i \in [n]} \frac{(N_i m \cdot q_i)^2 N_i}{m \cdot q_i}$
 - N_i : # of appearances of i; m: # of samples
 - $E[Z] = m \cdot \chi^2(p,q)$
 - (i): $E[Z] \le m \cdot \frac{\varepsilon^2}{2}$, (ii): $E[Z] \ge m \cdot \varepsilon^2$
 - Can bound variance of Z with some work
 - Need to avoid low prob. elements of q
 - 1. Either ignore i such that $q_i \leq \frac{\varepsilon^2}{10n}$; or
 - 2. Mix lightly $(O(\varepsilon^2))$ with uniform distribution (also in [G'16])
 - Apply Chebyshev's inequality

Side-Note:

- Pearson's χ^2 -test uses statistic $\sum_i \frac{(N_i m \cdot q_i)^2}{m \cdot a_i}$
- Subtracting N_i in the numerator gives an unbiased estimator and importantly may hugely decrease variance
- [Zelterman'87]
- [VV'14, CDVV'14, DKN'15]

Tolerant Identity Testing

	$d_{\mathrm{TV}}(p,q) \ge \varepsilon$	
p = q	$\Omega\left(\frac{\sqrt{n}}{\varepsilon^2}\right)[\text{Pan}08]$	
$d_{\chi^2}(p,q) \le \varepsilon^2/4$	$O\left(\frac{\sqrt{n}}{\varepsilon^2}\right)$ [Theorem 1]	
$d_{\mathrm{KL}}(p,q) \le \varepsilon^2/4$	$\Omega\left(\frac{n}{\log n}\right)$ [Theorem 8]	
$d_{\mathrm{H}}(p,q) \leq \varepsilon/2\sqrt{2}$		
$d_{\mathrm{TV}}(p,q) \le \varepsilon/2 \text{ or } \varepsilon^2/4^4$	$O\left(\frac{n}{\log n}\right)$ [Corollary 3]	

$$d_{\ell_2}(p,q) \le \frac{\varepsilon}{\sqrt{n}} \text{ vs } d_{\text{TV}}(p,q) \ge \varepsilon \quad \Theta\left(\frac{\sqrt{n}}{\varepsilon^2}\right) \text{ [Theorem 2]}$$

Daskalakis, K., Wright. Which Distribution Distances are Sublinearly Testable? SODA 2018.

(Implicit in [DK'16])

Tolerant Testing Takeaways

- **1**. Can handle ℓ_2 or χ^2 tolerance at no additional cost
 - $\Theta(\sqrt{n}/\varepsilon^2)$ samples
- 2. KL, Hellinger, or ℓ_1 tolerance are expensive
 - $\Theta(n/\log n)$ samples
 - KL result based off hardness of entropy estimation
- 3. Closeness testing (q unknown): Even χ^2 tolerance is costly!
 - $\Theta(n/\log n)$ samples
 - Only ℓ_2 tolerance is free
 - Proven via hardness of ℓ_1 -tolerant *identity* testing
 - Since q is unknown, χ^2 is no longer a polynomial

Application: Testing for Structure

- Composite hypothesis testing
- Test against a class of distributions!
 - $p \in C$ versus $\ell_1(p,C) > \varepsilon$

- Example: C = all monotone distributions
 - p_i 's are monotone non-increasing
 - Others: unimodality, log-concavity, monotone hazard rate, independence
 - All can be tested in $\Theta(\sqrt{n}/\varepsilon^2)$ samples [ADK'15]
 - Same complexity as vanilla uniformity testing!

Testing by Learning

- Goal: Distinguish $p \in C$ from $\ell_1(p,C) > \varepsilon$
- Learn-then-Test:
 - 1. Learn hypothesis $q \in C$ such that
 - $p \in C \Rightarrow \chi^2(p,q) \le \varepsilon^2/2$
 - $\ell_1(p,C) > \varepsilon \Rightarrow \ell_1(p,q) > \varepsilon$

(needs cheap "proper learner" in χ^2) (automatic since $q \in C$)

- 2. Perform "tolerant testing"
 - Given sample access to p and description of q, distinguish

$$\chi^2(p,q) \le \varepsilon^2/2 \text{ from } \ell_1(p,q) > \varepsilon$$

- Tolerant testing (step 2) is $O(\sqrt{n}/\varepsilon^2)$
 - Naïve approach (using ℓ_1 instead of χ^2) would require $\Omega(n/\log n)$
- Proper learners in χ^2 (step 1)?
 - Claim: This is cheap

Hellinger Testing

- Change d_2 instead of d_1
- Hellinger distance: $H^2(p,q) = \frac{1}{2} \sum_{i \in [n]} (\sqrt{p_i} \sqrt{q_i})^2$
 - Between linear and quadratic relationship with ℓ_1
 - $H^2(p,q) \le \ell_1(p,q) \le H(p,q)$
- Natural distance when considering a collection of iid samples
 - Comes up in some multivariate testing problems (Costis @ 2:55)
- Testing p = q vs. $H(p,q) \ge \varepsilon$?
- Trivial results via ℓ_1 testing
 - Identity: $O(\sqrt{n}/\varepsilon^4)$ samples
 - Closeness: $O(\max\{n^{2/3}/\varepsilon^{8/3}, \sqrt{n}/\varepsilon^4\})$ samples

Hellinger Testing

- Testing p = q vs. $H(p,q) \ge \varepsilon$?
- Trivial results via ℓ_1 testing
 - Identity: $O(\sqrt{n}/\varepsilon^4)$ samples
 - Closeness: $O(\max\{n^{2/3}/\varepsilon^{8/3}, \sqrt{n}/\varepsilon^4\})$ samples
- But you can do better!
 - Identity: $\Theta(\sqrt{n}/\varepsilon^2)$ samples
 - No extra cost for ℓ_2 or χ^2 tolerance either!
 - Closeness: $\Theta(\min\{n^{2/3}/\varepsilon^{8/3}, n^{3/4}/\varepsilon^2\})$ samples
 - LB and previous UB in [DK'16]
- Similar chi-squared statistics as [ADK'15] and [CDVV'14]
 - Some tweaks and more careful analysis to handle Hellinger

Miscellanea

- p = q vs. $KL(p,q) \ge \varepsilon$?
 - Trivially impossible, due to ratio between p_i and q_i
 - $p_i = \delta$, $q_i = 0$, $\delta \rightarrow 0$
- Upper bounds for $\Omega(n/\log n)$ testing problems?
 - i.e., $KL(p,q) \le \varepsilon^2/4$ vs. $\ell_1(p,q) \ge \varepsilon$?
 - Use estimators mentioned in Jiantao's talk

Thanks!

	$d_{\mathrm{TV}}(p,q) \geq \varepsilon$	$d_{\mathrm{H}}(p,q) \geq \varepsilon/\sqrt{2}$	$d_{\mathrm{KL}}(p,q) \ge \varepsilon^2$	$d_{\chi^2}(p,q) \geq \varepsilon^2$
p = q	$\Omega\left(\frac{\sqrt{n}}{\varepsilon^2}\right)[\text{Pan08}]$		Untestable [Theorem 7]	
$d_{\chi^2}(p,q) \le \varepsilon^2/4$		$O\left(\frac{\sqrt{n}}{\varepsilon^2}\right)$ [Theorem 1]		
$d_{\mathrm{KL}}(p,q) \le \varepsilon^2/4$	$\Omega\left(\frac{n}{\log n}\right)$ [Theorem 8]			
$d_{\rm H}(p,q) \le \varepsilon/2\sqrt{2}$		2		
$d_{\mathrm{TV}}(p,q) \le \varepsilon/2 \text{ or } \varepsilon^2/4^4$		$O\left(\frac{n}{\log n}\right)$ [Corollary 3]		

Table 1: Identity Testing

	$d_{\mathrm{TV}}(p,q) \geq arepsilon$	$d_{\mathrm{H}}(p,q) \geq \varepsilon/\sqrt{2}$	$d_{\mathrm{KL}}(p,q) \ge \varepsilon^2$	$d_{\chi^2}(p,q) \geq \varepsilon^2$
p = q	$O\left(\max\left\{\frac{n^{1/2}}{\varepsilon^2}, \frac{n^{2/3}}{\varepsilon^{4/3}}\right\}\right) [\text{CDVV14}]$	$O\left(\min\left\{\frac{n^{3/4}}{\varepsilon^2}, \frac{n^{2/3}}{\varepsilon^{8/3}}\right\}\right)$ [Theorem 5]	Untestable [Theorem 7]	
	$\Omega\left(\max\left\{\frac{n^{1/2}}{\varepsilon^2},\frac{n^{2/3}}{\varepsilon^{4/3}}\right\}\right)$ [CDVV14]	$\Omega\left(\min\left\{\frac{n^{3/4}}{\varepsilon^2}, \frac{n^{2/3}}{\varepsilon^{8/3}}\right\}\right) [\text{DK16}]$		
$d_{\chi^2}(p,q) \le \varepsilon^2/4$	$\Omega\left(\frac{n}{\log n}\right)$ [Theorem 9]			
$d_{\mathrm{KL}}(p,q) \le \varepsilon^2/4$				
$d_{\mathrm{H}}(p,q) \leq \varepsilon/2\sqrt{2}$				
$d_{\mathrm{TV}}(p,q) \le \varepsilon/2 \text{ or } \varepsilon^2/4^4$		$O\left(\frac{n}{\log n}\right)$ [Corollary 3]		

Table 2: Equivalence Testing