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The story so far...

» Test whether p = g versus £{(p,q) = ¢
* Domain of [n]
* Success probability > 2/3
* Goal: Strongly sublinear sample complexity
« O0(n'77) forsomey >0

* |dentity testing (samples from p, known q)
e O(yn/e?) samples
« [BFFKR’01, P’08, VV’14]
* Closeness testing (samples from p, g)
e O(max{n?/3/e*/3,\n/?}) samples
« [BFRSW’00, V’11, CDVV’14]

o

0<t1(pq) <c¢




Generalize: Different Distances

sp=qorti(p,q) = ¢€?

*di(p,q) < g ordy(p,q) = &?




Generalize: Different Distances

~di(p,q) < & ordy(p,q) = &7
* Are pand q g1-closeind(.,.), or ex-farind,(.,.)?
* Distances of interest: £1,¢,, x?, KL, Hellinger

* Classic identity testing: e, = 0,d, = ¥,

e Can we characterize sample complexity for each pair of distances?
* Which distribution distances are sublinearly testable? [DKW’18]

* Wait, but... why?



Wait, but... why?

3. Tolerance for model misspecification

2. Useful as a proxy in classical testing problems
* d; as y? distance is useful for composite hypothesis testing
* Monotonicity, independence, etc. [ADK’15]

3. Other distances are natural in certain testing settings

* d, as Hellinger distance is sometimes natural in multivariate settings
* Bayes networks, Markov chains [DP’17,DDG’17]
* Costis’ talk
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Tolerance

~|s p equal to g, or are they far
from each other?

* But why do we know g exactly?

* Models are inexact
* Measurement errors
* Imprecisions in nature
* », g may be “philosophically”
equal, but not literally equal

* When can we test d{(p,q) < &
versus £,(p,q) = €?

ideal

modeéll
CLT approximations...

Read data point wrong...

observed
model



Tolerance

“d(p,q) <& vs.£{(p,q) = <?
i What d]_—') How about '81?

*01(0,q) < €/2vs. £1(p,q) = €7
* No! O(n/logn) samples [VV'10]

* Chill out, relax...
(Pi—qi)°

» x*-distance: x*(p, @) = Yiex
* Cauchy-Schwarz: y?(p,q) = £2(p, q)

c x*(p,q) < €%/4vs. £,(p,q) = &?
* Yes! O(y/n/*) samples [ADK’15]

di

¥ (0, q) > &°/2
t1(p,q) <¢

t1(p,q) > ¢




Details for a y“-Tolerant Tester

2

¢ Goal: Distinguish (i) x%(p,q) < %versus (i) €5 (p, q) = &2

* Draw Poisson(m) samples from p (“Poissonization”)
* N;: number of appearances of symbol i
* N; ~ Poisson(m - p;)
* N;’s are now independent!
(Nj-m-q;)*=N;
m-q;

e Statistic: Z = )jey

Acharya, Daskalakis, K. Optimal Testing for Properties of Distributions. NIPS
2015



Details for a y“-Tolerant Tester

2
¢ Goal: Distinguish (i) x*(p,q) < % versus (i) €5 (p, q) = €2

(Nj-m-q;)*=N;

o i I * — »
* Pearson’s y*-test uses

* N;: # of appearances of i; m: # of samples

L. (Nj=m-q;)?
o E[Z] =m-y (p, q) statistic );; —
2 . i
e (I):E[Z]<m- -5, (i) E[Z] = m - €2 subtiacting N injEhe
2 . numerator gives an
 Can bound variance of Z with some work unbiased estimator and

* Need to avoid low prob. elements of g importantly may hugely

2 .
1. Eitherignorei suchthat q; < —; or decrease va:rlance
10m « [Zelterman’87]

2. Mix lightly (0 (%)) with uniform distribution (also in [G’16]) . [VV’14, CDVV’14, DKN'15]
* Apply Chebyshev’s inequality

Acharya, Daskalakis, K. Optimal Testing for Properties of Distributions. NIPS
2015



Tolerant Identity Testing

Harder

drv(p,q) > €

(%E) [Pan08]

Q
O (‘/_) Theorem 1]

( ) [Theorem §|
2)

0w

[Corollary 3]

© (g) [Theorem 2]

(Implicit in [DK’16])

Daskalakis, K., Wright. Which Distribution Distances are Sublinearly Testable? SODA 2018.



Tolerant Testing Takeaways

3. Can handle £, or y* tolerance at no additional cost
e O(yn/e?) samples

2. KL, Hellinger, or £4 tolerance are expensive
* O(n/logn) samples
* KL result based off hardness of entropy estimation

3. Closeness testing (¢ unknown): Even y* tolerance is costly!
* O(n/logn) samples
* Only ¢, tolerance is free
* Proven via hardness of £;-tolerant identity testing
e Since g is unknown, x? is no longer a polynomial



Application: Testing for Structure

~ Composite hypothesis testing

* Test against a class of distributions!
* p € Cversus £1(p,C) > ¢

| miné: (p.q) |

* Example: C = all monotone distributions

* p;’s are monotone non-increasing

e Others: unimodality, log-concavity, monotone hazard rate, independence
* All can be tested in @(y/n/&%) samples [ADK’15]

* Same complexity as vanilla uniformity testing!



Testing by Learning

% Goal: Distinguish p € C from £,(p,C) > ¢

e Learn-then-Test:

1. Learn hypothesis g € C such that
c pEC > y*(p,q) <€%/2 (needs cheap “proper learner” in x?)
e £1(p,C)>e=>4L1(p,q) > ¢ (automatic since g € C)
2. Perform “tolerant testing”
* Given sample access to p and description of g, distinguish
x*(p,q) < €?/2 from £,(p,q) > ¢
* Tolerant testing (step 2) is 0(\Yn/&?)

* Naive approach (using #; instead of %) would require (n/log n)

* Proper learners in x? (step 1)?
e Claim: Thisis cheap



Hellinger Testing

» Change d, instead of d;
. . 1 2
* Hellinger distance: H*(p, q) = Ezie[n](\/ﬁ — /@)

* Between linear and quadratic relationship with £
* H*(p,q) < 41(p,q) < H(p, )

* Natural distance when considering a collection of iid samples
* Comes up in some multivariate testing problems (Costis @ 2:55)

* Testingp = qvs. H(p,q) = €7

* Trivial results via £ testing
e Identity: 0(y/n/e*) samples
* Closeness: O(max{n?/3/e8/3 \n/e*}) samples



Hellinger Testing

»Testingp = qvs. H(p,q) = &?

* Trivial results via £ testing
e Identity: 0(y/n/e*) samples
* Closeness: O(max{n?/3/&8/3,\n/e*}) samples
* But you can do better!
* Identity: O(y/n/e?%) samples
* No extra cost for £, or xy? tolerance either!
* Closeness: ©@(min{n?/3/£8/3,n3/* /£2}) samples
* LBand previous UB in [DK'16]
 Similar chi-squared statistics as [ADK’15] and [CDVV’14]
* Some tweaks and more careful analysis to handle Hellinger

Daskalakis, K., Wright. Which Distribution Distances are Sublinearly Testable? SODA 2018.



Miscellanea

sp=qvs.KL(p,q) = &?
* Trivially impossible, due to ratio between p; and g;
* pi=5rqi=0r5_)0

* Upper bounds for 0(n/logn) testing problems?
* i.e., KL(p,q) < &?/4vs. £1(p,q) = &?
* Use estimators mentioned in Jiantao’s talk



Thanks!

2V/2

dry(p.q) > ¢ du(p,q) > ¢/V2 dxi(p,q) > & dyz(p,q) > €°
p=gq Q ( %QH_ ) [Pan08] Untestable [Theorem 7]
dy2(p,q) < €%/4 0 (g)[Theorem 1]
dgr(p,q) < €%/4 0 (bgn)[Themcm 8]
du(p,q) < e/2V2
drv(p,q) < £/2 or 2/44 (]% “)[Corollary 3]
Table 1: Identity Testing
drv(p,q) > ¢ dy(p,q) > E/\/E dxi(p, q) > €° d\2(p,q) = g2
p=gq o) Emax }—1;, E:/: {) [CDVV14] | O (111111 £ “, ":j: [Theorem 5] | Untestable [Theorem 7]
Q (max { i, 272 )[CDW14] Q (111111 {—;—l -E—;/v—;-}) [DK16]
dy2(p,q) < €%/4 Q (logn) [Theorem 9]
dkL(p.q) < /4
du(p,q) <€

drv(p,q) <e/2 or e2/4*

@) (log - ) [Corollary 3]

Table 2: Equivalence Testing



