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Statistical properties

Disclaimer: Throughout this talk, n refers to the number of samples, S
refer to the alphabet size of a distribution.

@ Shannon entropy: H(P) £ Z;il —pilnp;.

Q@ Fu(P): Fu(P)2 X2, p% a > 0.

© KL divergence, x? divergence, L; distance, Hellinger distance
F(P,Q) £ X7, f(pi, qi) for
f(Xay) :XIn(X/y),(x—y)2/x, |X_.y|a(\f_ \/}7)2



Tolerant testing/learning/estimation

We focus on the question: how many samples are needed to achieve
accuracy e for estimating these properties from empirical data?
e Example: L1(P, Us), Us =(1/5,1/S,...,1/S), observe n i.i.d.
samples from P;

e (VV'11, VV'11): exist approach whose error is
S

S

nln - when

s S n <SS, no consistent estimator when n < InS’

o The MLE plug-in Ly(P,, Us) achieves error \/; when n 2 S.
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Effective sample size enlargement
Minimax rate-optimal with n samples <= MLE with nln n samples

@ Similar results also hold for Shannon entropy (VV'11, VV'11, VV'13,
WY'16, JVHW'15), power sum functional (JVHW'15), Rényi entropy
estimation (AOST'14), X2: Hellinger, and KL-divergence estimation
(HIJW'16, BZLV'16), L, norm estimation under Gaussian white noise model
(HIMW'17), L; distance estimation (JHW'16), etc. except for support size
(WY'16) 3/23




Effective sample size enlargement

Rminmax(F,P,n) = inf  sup E|F — F(P)|

F(X1,....Xn) PEP

Rougin(F, P, n) = sup E|F(P,) — F(P)|.
Pep
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Effective sample size enlargement

Divergence functions: here P, Q € Ms where we have m samples from p
and n samples from q. For the Kullback-Leibler and x? divergence
estimators we only consider (P, Q) € {(P, Q)|P, Q € Ms, %_ < u(S)}
where u(S) is some function of S.

F(P,Q) Rminmax(F, P, m, n) Rolug-in (F, P, m, n)
> s s
; lpi = ail min{m, n} log(min{m, n}) + min{m, n}
LS - v / > s
2= Pi gi min{m, n} log(min{m, n}) min{m, n}
s su(s)  log(u(S)) uS) | S su(S)  log(u(S)) u(S)
D(P|Q ;| == =0
(Pl = Zp °g< ) mlog(m) | nlog(n) | v/m Vi | m T TR
B s p? su(S)2 wu(S) u(S)3/? su($)2  u(S) u(S)3/?
GUCED b os(n)  Vm | /r AR
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Goal of this talk

Understand the mechanism behind the logarithmic sample size
enlargement.

@ For what functionals do we have this phenomenon?

@ What concrete algorithms achieve this phenomenon?

@ If there exist multiple approaches, what are their relative advantages
and disadvantages?



First approach: Approximation methodology

Is the enlargement phenomenon caused by the fact that the functionals are
permutation invariant (symmetric)?




First approach: Approximation methodology

Is the enlargement phenomenon caused by the fact that the functionals are
permutation invariant (symmetric)?

Nope. :) \

Literature on approximation methodology
VV'11 (linear estimator), WY'16, WY'16 JVHW'15, AOST'14, HJW'16,
BZLV'16, HIMW'16, JHW'16




Example: L; distance estimation

Given Q = (q1,92,-..,9s), we estimate L1(P, Q) given i.i.d. samples

from P.

Theorem (J., Han, Weissman'16)

Suppose InS <Inn <n (Ziszl Vai A givnln n) ,S >2. Then,

S
inf sup Ep]l:—Ll(P, Q)| XZG’:‘/\ 7

[ PeMs — ninn

For the MLE, we have

S
sup Ep|Li(Pr, @) — La(P, Q)| < > ai A/ L.




Confidence sets in binomial model: coverage probability

~1—nA

1
o —[0,1]
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Confidence sets in binomial model: coverage probability
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Confidence sets in binomial model: coverage probability

~1—nA

. Inn ~ 1/ BInn
n n
Inn
ue) |5 ue)
0 1
p<r p>lnn ©=10,1]

np ~ B(”a P)

Theorem (J., Han, Weissman'16)

Partition [0, 1] into finitely number of intervals I; = [x;, xj+1], xo =0,
X1 =< '”T” VXitl — /X X ,/'"T”. Then,

@ ifp € I;, then p € 2I; with probability 1 — n™*;

Q@ ifp € I;, then p € 2I; with probability 1 — n™*;

© Those intervals are of the shortest length.

y
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Algorithmic description of Approximation methodology

First conduct sampling splitting, get p;, g} i.i.d. with distribution
% -B(n/2, p;).
Suppose q; € I;. For each i do the following:

Q if p; € I;, compute best polynomial approximation in 2/;:

Pk (x; qi) = arg plin max 1z = qil = P(2)], (3)

and then estimate |p; — g;| by the unbiased estimator of Pk(pj; i)
using p};

Q if p; ¢ I;, estimate |p; — qi| by |p; — qil;

© sum everything up.

10/23



© Suppose p; € l;. No matter what we use to estimate, one can always
assume that p; € 2/;;

@ The bias of the MLE is approximately (Strukov and Timan'77)
A - qi
sup I — ol ~ Elps — il = a1/ % (@)
p,‘€2/j n

@ The bias of the Approximation methodology is approximately (Ditzian
and Totik'87)

a
sup lpi — qil = Px(pii i)l =< qi Ay [ — —. (5)
pi€2l; ninn

@ Permutation invariance does not play a role since we are doing symbol
by symbol bias correction;

© The bias dominates in high dimensions (measure concentration
phenomenon).

11/23



Properties of the Approximation Methodology

@ Applies to essentially any functional

@ Applies to a wide range of statistical models (binomial, Poisson,
Gaussian, etc)

© Near-linear complexity
@ Explicit polynomial approximation for each different functional

© Need to tune parameters in practice

12/23



Second approach: Local moment matching methodology

Does there exist a single plug-in estimator that can replace the
Approximation methodology?
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Motivation

Does there exist a single plug-in estimator that can replace the
Approximation methodology?

| \

Answer

No. For any plug-in rule P, there exists a fixed Q such that L;(P, Q)
requires n > S samples to consistently estimate L;1(P, Q), while the
optimal method requires at most n > %
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Second approach: Local moment matching methodology

Motivation

Does there exist a single plug-in estimator that can replace the
Approximation methodology?

Answer

| A\

No. For any plug-in rule P, there exists a fixed @ such that L1(P, Q)
requires n > S samples to consistently estimate L;1(P, Q), while the
optimal method requires at most n > >s.

Weakened goal

What about we only consider permutation invariant functionals?

Literature on the local moment matching methodology
VV'11 (linear programming), HJW'17

13/23



Local moment matching methodology

Theorem (Han, J., Weissman'17)

There exists a single estimator P, efficiently computable, and achieves the
optimal phase transitions for ALL the permutation invariant functionals
mentioned above.

In particular, it solves the minimax problem

inf sup E||P — P||; < > + (@(n_1/3) A \/E) ) (6)
P PeMs ninn n

where P = (p(1), P2)s - - -+ P(s)) P(i) < P(i+1)-

14 /23



A simple example

Assume for all i, p; < '”T”, pi < '"T” Consider the Shannon entropy
functional H(P) = Zle f(pi), f(x) = xIn(1/x).

Theorem (VV'11, Wu and Yang'16 J. et al'l5)

Optimal error in estimating H is while MLE error is §

nInn’
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Suppose we use the plug-in rule Z 1 f(qi) to estimate H(P), where
gi <M1 Then, for any Px(x) € PonK,K In n,

H—Zf(q,) = Z(f ,D: PK(pI +Z 'DK P: PK(qI))
+Z PK ql - l))

<2S§- gl’fxergalin] |f(x) — Px(x)| + Z(PK(PI) — Pk(qi))
<2 S (Pl — Plan))

i

i

15/23



Local moment matching

We showed for any plug-in rule Q,
S

ninn

H — Z f(ai) < + Z(PK(P:') — Pk(qi))- (7)

Why MLE is bad?

The MLE is bad because

E

> (Px(pi) - PK(Q:‘))]

i

It suffices to reduce the bias of Pk(g;) in estimating Pk (p;).

16/23



Local moment matching

Ideal situation

Suppose for each 0 < k < Inn,
Z ka = Z qf‘, (9)
J J

we immediately have

E Y (P(pi) — Pr(a))| = 0. (10)

1
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Algorithmic description of local moment matching

For each interval /;, collect A = {i: p; € I;}. Then, for each 0 < k <Inn,
we solve @ such that

Zq,k — (unbiased estimates of Zp,k) SNtk a, (11)
icA icA
here
o .. . . k
ok 4 = standard deviation of unbiased estimates of Zpi . (12)
icA

Existence of solution

The solution exists with overwhelming probability since the true
distribution P satisfies these inequalities with overwhelming probability.

18/23



Properties of the Local moment matching Methodology

© Applies only to permutation invariant functionals

@ Applies to a wide range of statistical models (binomial, Poisson,
Gaussian, etc)

© Polynomial complexity
@ Implicit polynomial approximation, just need to compute once

© Need to tune parameters in practice

19/23



Third approach: the profile maximum likelihood

methodology (PML)

Properties Approximation | Local MM PML
Permutation invariant No Yes Yes
Statistical model Broad Broad (Conjectured) Broad
Complexity Near-linear Polynomial Unclear
Functional dependent Yes No No
Parameter tuning Yes Yes No
Thank you!
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