
proofs of proximity for distribution testing
(Distribution testing – now with proofs!)

Tom Gur (UC Berkeley)
October 14, 2017
FOCS 2017 Workshop: Frontiers in Distribution Testing

Joint work with Alessandro Chiesa (UC Berkeley)

proofs of proximity?

what and why?

What?

Proofs of Proximity are proof systems for property testing
[EKR04, BGH+06]

Many flavors: NP, IP, PCP, MA, and more...

The key difference: approximate
decision problems

Why?

Theory: understanding the power and limitations of proofs

Theory application: while many properties can be tested efficiently
many other natural properties require a lot of samples

Application: delegation of computation

2

what and why?

What?

Proofs of Proximity are proof systems for property testing
[EKR04, BGH+06]

Many flavors: NP, IP, PCP, MA, and more...

The key difference: approximate
decision problems

Why?

Theory: understanding the power and limitations of proofs

Theory application: while many properties can be tested efficiently
many other natural properties require a lot of samples

Application: delegation of computation

2

what and why?

What?

Proofs of Proximity are proof systems for property testing
[EKR04, BGH+06]

Many flavors:

NP, IP, PCP, MA, and more...

The key difference: approximate
decision problems

Why?

Theory: understanding the power and limitations of proofs

Theory application: while many properties can be tested efficiently
many other natural properties require a lot of samples

Application: delegation of computation

2

what and why?

What?

Proofs of Proximity are proof systems for property testing
[EKR04, BGH+06]

Many flavors: NP

, IP, PCP, MA, and more...

The key difference: approximate
decision problems

Why?

Theory: understanding the power and limitations of proofs

Theory application: while many properties can be tested efficiently
many other natural properties require a lot of samples

Application: delegation of computation

2

what and why?

What?

Proofs of Proximity are proof systems for property testing
[EKR04, BGH+06]

Many flavors: NP, IP

, PCP, MA, and more...

The key difference: approximate
decision problems

Why?

Theory: understanding the power and limitations of proofs

Theory application: while many properties can be tested efficiently
many other natural properties require a lot of samples

Application: delegation of computation

2

what and why?

What?

Proofs of Proximity are proof systems for property testing
[EKR04, BGH+06]

Many flavors: NP, IP, PCP

, MA, and more...

The key difference: approximate
decision problems

Why?

Theory: understanding the power and limitations of proofs

Theory application: while many properties can be tested efficiently
many other natural properties require a lot of samples

Application: delegation of computation

2

what and why?

What?

Proofs of Proximity are proof systems for property testing
[EKR04, BGH+06]

Many flavors: NP, IP, PCP, MA, and more...

The key difference: approximate
decision problems

Why?

Theory: understanding the power and limitations of proofs

Theory application: while many properties can be tested efficiently
many other natural properties require a lot of samples

Application: delegation of computation

2

what and why?

What?

Proofs of Proximity are proof systems for property testing
[EKR04, BGH+06]

Many flavors: NP, IP, PCP, MA, and more...

The key difference: approximate
decision problems

Why?

Theory: understanding the power and limitations of proofs

Theory application: while many properties can be tested efficiently
many other natural properties require a lot of samples

Application: delegation of computation

2

what and why?

What?

Proofs of Proximity are proof systems for property testing
[EKR04, BGH+06]

Many flavors: NP, IP, PCP, MA, and more...

The key difference: approximate
decision problems

Why?

Theory: understanding the power and limitations of proofs

Theory application: while many properties can be tested efficiently
many other natural properties require a lot of samples

Application: delegation of computation

2

what and why?

What?

Proofs of Proximity are proof systems for property testing
[EKR04, BGH+06]

Many flavors: NP, IP, PCP, MA, and more...

The key difference: approximate
decision problems

Why?

Theory: understanding the power and limitations of proofs

Theory application: while many properties can be tested efficiently
many other natural properties require a lot of samples

Application: delegation of computation

2

what and why?

What?

Proofs of Proximity are proof systems for property testing
[EKR04, BGH+06]

Many flavors: NP, IP, PCP, MA, and more...

The key difference: approximate
decision problems

Why?

Theory: understanding the power and limitations of proofs

Theory application: while many properties can be tested efficiently

many other natural properties require a lot of samples

Application: delegation of computation

2

what and why?

What?

Proofs of Proximity are proof systems for property testing
[EKR04, BGH+06]

Many flavors: NP, IP, PCP, MA, and more...

The key difference: approximate
decision problems

Why?

Theory: understanding the power and limitations of proofs

Theory application: while many properties can be tested efficiently
many other natural properties require a lot of samples

Application: delegation of computation

2

what and why?

What?

Proofs of Proximity are proof systems for property testing
[EKR04, BGH+06]

Many flavors: NP, IP, PCP, MA, and more...

The key difference: approximate
decision problems

Why?

Theory: understanding the power and limitations of proofs

Theory application: while many properties can be tested efficiently
many other natural properties require a lot of samples

Application: delegation of computation
2

the standard setting: functions

For example, consider interactive proofs of proximity [RVW13]

∙ If x ∈ Π, ∃ prover strategy P such that ⟨P(x), Vx⟩(ε) = 1
∙ If x is ε-far from Π, ∀ prover strategy ⟨P∗, Vx⟩(ε) = 0 w.h.p.

3

the standard setting: functions

For example, consider interactive proofs of proximity [RVW13]

∙ If x ∈ Π, ∃ prover strategy P such that ⟨P(x), Vx⟩(ε) = 1
∙ If x is ε-far from Π, ∀ prover strategy ⟨P∗, Vx⟩(ε) = 0 w.h.p.

3

the standard setting: functions

For example, consider interactive proofs of proximity [RVW13]

∙ If x ∈ Π, ∃ prover strategy P such that ⟨P(x), Vx⟩(ε) = 1
∙ If x is ε-far from Π, ∀ prover strategy ⟨P∗, Vx⟩(ε) = 0 w.h.p.

3

the standard setting: functions

For example, consider interactive proofs of proximity [RVW13]

∙ If x ∈ Π, ∃ prover strategy P such that ⟨P(x), Vx⟩(ε) = 1

∙ If x is ε-far from Π, ∀ prover strategy ⟨P∗, Vx⟩(ε) = 0 w.h.p.

3

the standard setting: functions

For example, consider interactive proofs of proximity [RVW13]

∙ If x ∈ Π, ∃ prover strategy P such that ⟨P(x), Vx⟩(ε) = 1
∙ If x is ε-far from Π, ∀ prover strategy ⟨P∗, Vx⟩(ε) = 0 w.h.p.

3

an easy example

How can proofs help testing algorithms?

Tell us where one palindrome ends and the other starts! [FGL14]

“Concatenated palindromes” requires Ω(
√
n) queries [AKNS01]

However, a tiny proof of length log(n) reduces the queries to O(1)

4

an easy example

How can proofs help testing algorithms?

Tell us where one palindrome ends and the other starts! [FGL14]

“Concatenated palindromes” requires Ω(
√
n) queries [AKNS01]

However, a tiny proof of length log(n) reduces the queries to O(1)

4

an easy example

How can proofs help testing algorithms?

Tell us where one palindrome ends and the other starts! [FGL14]

“Concatenated palindromes” requires Ω(
√
n) queries [AKNS01]

However, a tiny proof of length log(n) reduces the queries to O(1)

4

an easy example

How can proofs help testing algorithms?

Tell us where one palindrome ends and the other starts! [FGL14]

“Concatenated palindromes” requires Ω(
√
n) queries [AKNS01]

However, a tiny proof of length log(n) reduces the queries to O(1)

4

an easy example

How can proofs help testing algorithms?

Tell us where one palindrome ends and the other starts! [FGL14]

“Concatenated palindromes” requires Ω(
√
n) queries [AKNS01]

However, a tiny proof of length log(n) reduces the queries to O(1)
4

now for distributions!

proofs of proximity for distribution testing

Same problem, different object

...and access

...and distance

Does it really make a difference?

The setting:

Known domain (here [n] = {1, . . . ,n})
x is now a distribution, let’s call it D ∈ ∆([n])
Property Π ⊆ ∆([n]), proximity parameter ε ∈ (0, 1]
Sample access to D

Decide with high probability:

Is D ∈ Π, or δTV(D,Π) > ε?

6

proofs of proximity for distribution testing

Same problem, different object

...and access

...and distance

Does it really make a difference?

The setting:

Known domain (here [n] = {1, . . . ,n})
x is now a distribution, let’s call it D ∈ ∆([n])
Property Π ⊆ ∆([n]), proximity parameter ε ∈ (0, 1]
Sample access to D

Decide with high probability:

Is D ∈ Π, or δTV(D,Π) > ε?

6

proofs of proximity for distribution testing

Same problem, different object

...and access

...and distance

Does it really make a difference?

The setting:

Known domain (here [n] = {1, . . . ,n})
x is now a distribution, let’s call it D ∈ ∆([n])
Property Π ⊆ ∆([n]), proximity parameter ε ∈ (0, 1]
Sample access to D

Decide with high probability:

Is D ∈ Π, or δTV(D,Π) > ε?

6

proofs of proximity for distribution testing

Same problem, different object

...and access

...and distance

Does it really make a difference?

The setting:

Known domain (here [n] = {1, . . . ,n})
x is now a distribution, let’s call it D ∈ ∆([n])
Property Π ⊆ ∆([n]), proximity parameter ε ∈ (0, 1]
Sample access to D

Decide with high probability:

Is D ∈ Π, or δTV(D,Π) > ε?

6

proofs of proximity for distribution testing

Same problem, different object

...and access

...and distance

Does it really make a difference?

The setting:

Known domain (here [n] = {1, . . . ,n})

x is now a distribution, let’s call it D ∈ ∆([n])
Property Π ⊆ ∆([n]), proximity parameter ε ∈ (0, 1]
Sample access to D

Decide with high probability:

Is D ∈ Π, or δTV(D,Π) > ε?

6

proofs of proximity for distribution testing

Same problem, different object

...and access

...and distance

Does it really make a difference?

The setting:

Known domain (here [n] = {1, . . . ,n})
x is now a distribution, let’s call it D ∈ ∆([n])

Property Π ⊆ ∆([n]), proximity parameter ε ∈ (0, 1]
Sample access to D

Decide with high probability:

Is D ∈ Π, or δTV(D,Π) > ε?

6

proofs of proximity for distribution testing

Same problem, different object

...and access

...and distance

Does it really make a difference?

The setting:

Known domain (here [n] = {1, . . . ,n})
x is now a distribution, let’s call it D ∈ ∆([n])
Property Π ⊆ ∆([n]), proximity parameter ε ∈ (0, 1]

Sample access to D

Decide with high probability:

Is D ∈ Π, or δTV(D,Π) > ε?

6

proofs of proximity for distribution testing

Same problem, different object

...and access

...and distance

Does it really make a difference?

The setting:

Known domain (here [n] = {1, . . . ,n})
x is now a distribution, let’s call it D ∈ ∆([n])
Property Π ⊆ ∆([n]), proximity parameter ε ∈ (0, 1]
Sample access to D

Decide with high probability:

Is D ∈ Π, or δTV(D,Π) > ε?

6

proofs of proximity for distribution testing

Same problem, different object

...and access

...and distance

Does it really make a difference?

The setting:

Known domain (here [n] = {1, . . . ,n})
x is now a distribution, let’s call it D ∈ ∆([n])
Property Π ⊆ ∆([n]), proximity parameter ε ∈ (0, 1]
Sample access to D

Decide with high probability:

Is D ∈ Π, or δTV(D,Π) > ε?

6

proofs of proximity for distribution testing

Same problem, different object

...and access

...and distance

Does it really make a difference?

The setting:

Known domain (here [n] = {1, . . . ,n})
x is now a distribution, let’s call it D ∈ ∆([n])
Property Π ⊆ ∆([n]), proximity parameter ε ∈ (0, 1]
Sample access to D

Decide with high probability:

Is D ∈ Π, or δTV(D,Π) > ε?
6

different types of proofs

NP distribution testers
Deterministic algorithm T with

sample access to D ∈ ∆([n])
explicit access to ε > 0 and a proof π:

* For every D ∈ Π, there exists proof π s.t.
TD(ε, π) = 1

* For every δTV(D,Π) > ε and any “proof” π,
Pr[TD(ε, π) = 0] ≥ 2/3

MA distribution testers

NP distribution testers that are allowed to toss coins

IP distribution testers

MA distribution testers that interact with a prover

7

different types of proofs

NP distribution testers
Deterministic algorithm T with
sample access to D ∈ ∆([n])

explicit access to ε > 0 and a proof π:

* For every D ∈ Π, there exists proof π s.t.
TD(ε, π) = 1

* For every δTV(D,Π) > ε and any “proof” π,
Pr[TD(ε, π) = 0] ≥ 2/3

MA distribution testers

NP distribution testers that are allowed to toss coins

IP distribution testers

MA distribution testers that interact with a prover

7

different types of proofs

NP distribution testers
Deterministic algorithm T with
sample access to D ∈ ∆([n])
explicit access to ε > 0 and a proof π:

* For every D ∈ Π, there exists proof π s.t.
TD(ε, π) = 1

* For every δTV(D,Π) > ε and any “proof” π,
Pr[TD(ε, π) = 0] ≥ 2/3

MA distribution testers

NP distribution testers that are allowed to toss coins

IP distribution testers

MA distribution testers that interact with a prover

7

different types of proofs

NP distribution testers
Deterministic algorithm T with
sample access to D ∈ ∆([n])
explicit access to ε > 0 and a proof π:

* For every D ∈ Π, there exists proof π s.t.
TD(ε, π) = 1

* For every δTV(D,Π) > ε and any “proof” π,
Pr[TD(ε, π) = 0] ≥ 2/3

MA distribution testers

NP distribution testers that are allowed to toss coins

IP distribution testers

MA distribution testers that interact with a prover

7

different types of proofs

NP distribution testers
Deterministic algorithm T with
sample access to D ∈ ∆([n])
explicit access to ε > 0 and a proof π:

* For every D ∈ Π, there exists proof π s.t.
TD(ε, π) = 1

* For every δTV(D,Π) > ε and any “proof” π,
Pr[TD(ε, π) = 0] ≥ 2/3

MA distribution testers

NP distribution testers that are allowed to toss coins

IP distribution testers

MA distribution testers that interact with a prover

7

different types of proofs

NP distribution testers
Deterministic algorithm T with
sample access to D ∈ ∆([n])
explicit access to ε > 0 and a proof π:

* For every D ∈ Π, there exists proof π s.t.
TD(ε, π) = 1

* For every δTV(D,Π) > ε and any “proof” π,
Pr[TD(ε, π) = 0] ≥ 2/3

MA distribution testers

NP distribution testers that are allowed to toss coins

IP distribution testers

MA distribution testers that interact with a prover

7

different types of proofs

NP distribution testers
Deterministic algorithm T with
sample access to D ∈ ∆([n])
explicit access to ε > 0 and a proof π:

* For every D ∈ Π, there exists proof π s.t.
TD(ε, π) = 1

* For every δTV(D,Π) > ε and any “proof” π,
Pr[TD(ε, π) = 0] ≥ 2/3

MA distribution testers

NP distribution testers that are allowed to toss coins

IP distribution testers

MA distribution testers that interact with a prover

7

different types of proofs

NP distribution testers
Deterministic algorithm T with
sample access to D ∈ ∆([n])
explicit access to ε > 0 and a proof π:

* For every D ∈ Π, there exists proof π s.t.
TD(ε, π) = 1

* For every δTV(D,Π) > ε and any “proof” π,
Pr[TD(ε, π) = 0] ≥ 2/3

MA distribution testers

NP distribution testers that are allowed to toss coins

IP distribution testers

MA distribution testers that interact with a prover

7

some questions

This is all very nice, but:

∙ Are proof-augmented testers stronger than standard testers?
∙ If so, to what extent? Polynomially better? Exponentially
better? Large classes?

∙ What are the most important resources? Randomness?
Interaction? Private coins?

∙ What can and cannot be achieved with each proof system?

8

some questions

This is all very nice, but:

∙ Are proof-augmented testers stronger than standard testers?

∙ If so, to what extent?

Polynomially better? Exponentially
better? Large classes?

∙ What are the most important resources? Randomness?
Interaction? Private coins?

∙ What can and cannot be achieved with each proof system?

8

some questions

This is all very nice, but:

∙ Are proof-augmented testers stronger than standard testers?
∙ If so, to what extent?

Polynomially better? Exponentially
better? Large classes?

∙ What are the most important resources? Randomness?
Interaction? Private coins?

∙ What can and cannot be achieved with each proof system?

8

some questions

This is all very nice, but:

∙ Are proof-augmented testers stronger than standard testers?
∙ If so, to what extent?

Polynomially better? Exponentially
better? Large classes?

∙ What are the most important resources? Randomness?
Interaction? Private coins?

∙ What can and cannot be achieved with each proof system?

8

some questions

This is all very nice, but:

∙ Are proof-augmented testers stronger than standard testers?
∙ If so, to what extent? Polynomially better?

Exponentially
better? Large classes?

∙ What are the most important resources? Randomness?
Interaction? Private coins?

∙ What can and cannot be achieved with each proof system?

8

some questions

This is all very nice, but:

∙ Are proof-augmented testers stronger than standard testers?
∙ If so, to what extent? Polynomially better? Exponentially
better?

Large classes?

∙ What are the most important resources? Randomness?
Interaction? Private coins?

∙ What can and cannot be achieved with each proof system?

8

some questions

This is all very nice, but:

∙ Are proof-augmented testers stronger than standard testers?
∙ If so, to what extent? Polynomially better? Exponentially
better? Large classes?

∙ What are the most important resources? Randomness?
Interaction? Private coins?

∙ What can and cannot be achieved with each proof system?

8

some questions

This is all very nice, but:

∙ Are proof-augmented testers stronger than standard testers?
∙ If so, to what extent? Polynomially better? Exponentially
better? Large classes?

∙ What are the most important resources?

Randomness?
Interaction? Private coins?

∙ What can and cannot be achieved with each proof system?

8

some questions

This is all very nice, but:

∙ Are proof-augmented testers stronger than standard testers?
∙ If so, to what extent? Polynomially better? Exponentially
better? Large classes?

∙ What are the most important resources?

Randomness?
Interaction? Private coins?

∙ What can and cannot be achieved with each proof system?

8

some questions

This is all very nice, but:

∙ Are proof-augmented testers stronger than standard testers?
∙ If so, to what extent? Polynomially better? Exponentially
better? Large classes?

∙ What are the most important resources? Randomness?

Interaction? Private coins?

∙ What can and cannot be achieved with each proof system?

8

some questions

This is all very nice, but:

∙ Are proof-augmented testers stronger than standard testers?
∙ If so, to what extent? Polynomially better? Exponentially
better? Large classes?

∙ What are the most important resources? Randomness?
Interaction?

Private coins?

∙ What can and cannot be achieved with each proof system?

8

some questions

This is all very nice, but:

∙ Are proof-augmented testers stronger than standard testers?
∙ If so, to what extent? Polynomially better? Exponentially
better? Large classes?

∙ What are the most important resources? Randomness?
Interaction? Private coins?

∙ What can and cannot be achieved with each proof system?

8

some questions

This is all very nice, but:

∙ Are proof-augmented testers stronger than standard testers?
∙ If so, to what extent? Polynomially better? Exponentially
better? Large classes?

∙ What are the most important resources? Randomness?
Interaction? Private coins?

∙ What can and cannot be achieved with each proof system?

8

functions vs distributions

9

functions vs distributions

10

first example

support size

Consider the support size problem:

SuppSize≤n/2 = {D ∈ ∆([n]) : |supp(D)| ≤ n/2}

This is a hard problem (requires Ω(n/ log(n)) samples [Val11])

...unless a prover is giving us support!

Or rather, a prover is specifying supp(D)...

Then we only need O(1/ε) samples to detect
whether is D is ε-far from SuppSize≤k

Caveat: this requires a long proof (O(n log n) bits)

12

support size

Consider the support size problem:

SuppSize≤n/2 = {D ∈ ∆([n]) : |supp(D)| ≤ n/2}

This is a hard problem

(requires Ω(n/ log(n)) samples [Val11])

...unless a prover is giving us support!

Or rather, a prover is specifying supp(D)...

Then we only need O(1/ε) samples to detect
whether is D is ε-far from SuppSize≤k

Caveat: this requires a long proof (O(n log n) bits)

12

support size

Consider the support size problem:

SuppSize≤n/2 = {D ∈ ∆([n]) : |supp(D)| ≤ n/2}

This is a hard problem (requires Ω(n/ log(n)) samples [Val11])

...unless a prover is giving us support!

Or rather, a prover is specifying supp(D)...

Then we only need O(1/ε) samples to detect
whether is D is ε-far from SuppSize≤k

Caveat: this requires a long proof (O(n log n) bits)

12

support size

Consider the support size problem:

SuppSize≤n/2 = {D ∈ ∆([n]) : |supp(D)| ≤ n/2}

This is a hard problem (requires Ω(n/ log(n)) samples [Val11])

...unless a prover is giving us support!

Or rather, a prover is specifying supp(D)...

Then we only need O(1/ε) samples to detect
whether is D is ε-far from SuppSize≤k

Caveat: this requires a long proof (O(n log n) bits)

12

support size

Consider the support size problem:

SuppSize≤n/2 = {D ∈ ∆([n]) : |supp(D)| ≤ n/2}

This is a hard problem (requires Ω(n/ log(n)) samples [Val11])

...unless a prover is giving us support!

Or rather, a prover is specifying supp(D)...

Then we only need O(1/ε) samples to detect
whether is D is ε-far from SuppSize≤k

Caveat: this requires a long proof (O(n log n) bits)

12

support size

Consider the support size problem:

SuppSize≤n/2 = {D ∈ ∆([n]) : |supp(D)| ≤ n/2}

This is a hard problem (requires Ω(n/ log(n)) samples [Val11])

...unless a prover is giving us support!

Or rather, a prover is specifying supp(D)...

Then we only need O(1/ε) samples to detect
whether is D is ε-far from SuppSize≤k

Caveat: this requires a long proof (O(n log n) bits)

12

support size

Consider the support size problem:

SuppSize≤n/2 = {D ∈ ∆([n]) : |supp(D)| ≤ n/2}

This is a hard problem (requires Ω(n/ log(n)) samples [Val11])

...unless a prover is giving us support!

Or rather, a prover is specifying supp(D)...

Then we only need O(1/ε) samples to detect
whether is D is ε-far from SuppSize≤k

Caveat: this requires a long proof (O(n log n) bits) 12

on long proofs – functions

The proof length is a key complexity measure for proofs of proximity

For functions, linear-length proofs completely trivialize the model!

Why? (How to check that function f has property Π)

The tester has explicit access to the proof π
If π = f it can directly check whether π ∈ Π

Hence, it boils down to test that f is identical to π

which can easily be done using O(1/ε) queries...for functions

13

on long proofs – functions

The proof length is a key complexity measure for proofs of proximity

For functions, linear-length proofs completely trivialize the model!

Why? (How to check that function f has property Π)

The tester has explicit access to the proof π
If π = f it can directly check whether π ∈ Π

Hence, it boils down to test that f is identical to π

which can easily be done using O(1/ε) queries...for functions

13

on long proofs – functions

The proof length is a key complexity measure for proofs of proximity

For functions, linear-length proofs completely trivialize the model!

Why?

(How to check that function f has property Π)

The tester has explicit access to the proof π
If π = f it can directly check whether π ∈ Π

Hence, it boils down to test that f is identical to π

which can easily be done using O(1/ε) queries...for functions

13

on long proofs – functions

The proof length is a key complexity measure for proofs of proximity

For functions, linear-length proofs completely trivialize the model!

Why? (How to check that function f has property Π)

The tester has explicit access to the proof π
If π = f it can directly check whether π ∈ Π

Hence, it boils down to test that f is identical to π

which can easily be done using O(1/ε) queries...for functions

13

on long proofs – functions

The proof length is a key complexity measure for proofs of proximity

For functions, linear-length proofs completely trivialize the model!

Why? (How to check that function f has property Π)

The tester has explicit access to the proof π

If π = f it can directly check whether π ∈ Π

Hence, it boils down to test that f is identical to π

which can easily be done using O(1/ε) queries...for functions

13

on long proofs – functions

The proof length is a key complexity measure for proofs of proximity

For functions, linear-length proofs completely trivialize the model!

Why? (How to check that function f has property Π)

The tester has explicit access to the proof π
If π = f it can directly check whether π ∈ Π

Hence, it boils down to test that f is identical to π

which can easily be done using O(1/ε) queries...for functions

13

on long proofs – functions

The proof length is a key complexity measure for proofs of proximity

For functions, linear-length proofs completely trivialize the model!

Why? (How to check that function f has property Π)

The tester has explicit access to the proof π
If π = f it can directly check whether π ∈ Π

Hence, it boils down to test that f is identical to π

which can easily be done using O(1/ε) queries...for functions

13

on long proofs – functions

The proof length is a key complexity measure for proofs of proximity

For functions, linear-length proofs completely trivialize the model!

Why? (How to check that function f has property Π)

The tester has explicit access to the proof π
If π = f it can directly check whether π ∈ Π

Hence, it boils down to test that f is identical to π

which can easily be done using O(1/ε) queries

...for functions

13

on long proofs – functions

The proof length is a key complexity measure for proofs of proximity

For functions, linear-length proofs completely trivialize the model!

Why? (How to check that function f has property Π)

The tester has explicit access to the proof π
If π = f it can directly check whether π ∈ Π

Hence, it boils down to test that f is identical to π

which can easily be done using O(1/ε) queries...for functions
13

on long proofs – distributions

For distribution testing, testing identity is much harder:

O(
√
n/ε2)

...or even O(∥D−max
−ε/16∥2/3) [VV17] where ∥ · ∥2/3 denotes the ℓ2/3 quasi-norm, and D−max

−ε/16 is the

distribution obtained by removing the maximal element of D as well as removing a maximal set of elements of total mass ε/16

...or perhaps O(κ−1
D (1− cε)) [BCG17] where c > 0 is a constant, and κD is the K-functional between ℓ1

and ℓ2 with respect to the distribution D

But wait, how can the proof fully describe the distribution?

The description of D ∈ ∆([n]) may be very large
(even infinite...)

Luckily, it suffices to send a granular
approximation Dapprox of D

What if D ∈ Π, but Dapprox is close to, yet not in Π?

We can use a tolerant tester to make sure it rules the same

14

on long proofs – distributions

For distribution testing, testing identity is much harder: O(
√
n/ε2)

...or even O(∥D−max
−ε/16∥2/3) [VV17] where ∥ · ∥2/3 denotes the ℓ2/3 quasi-norm, and D−max

−ε/16 is the

distribution obtained by removing the maximal element of D as well as removing a maximal set of elements of total mass ε/16

...or perhaps O(κ−1
D (1− cε)) [BCG17] where c > 0 is a constant, and κD is the K-functional between ℓ1

and ℓ2 with respect to the distribution D

But wait, how can the proof fully describe the distribution?

The description of D ∈ ∆([n]) may be very large
(even infinite...)

Luckily, it suffices to send a granular
approximation Dapprox of D

What if D ∈ Π, but Dapprox is close to, yet not in Π?

We can use a tolerant tester to make sure it rules the same

14

on long proofs – distributions

For distribution testing, testing identity is much harder: O(
√
n/ε2)

...or even O(∥D−max
−ε/16∥2/3) [VV17] where ∥ · ∥2/3 denotes the ℓ2/3 quasi-norm, and D−max

−ε/16 is the

distribution obtained by removing the maximal element of D as well as removing a maximal set of elements of total mass ε/16

...or perhaps O(κ−1
D (1− cε)) [BCG17] where c > 0 is a constant, and κD is the K-functional between ℓ1

and ℓ2 with respect to the distribution D

But wait, how can the proof fully describe the distribution?

The description of D ∈ ∆([n]) may be very large
(even infinite...)

Luckily, it suffices to send a granular
approximation Dapprox of D

What if D ∈ Π, but Dapprox is close to, yet not in Π?

We can use a tolerant tester to make sure it rules the same

14

on long proofs – distributions

For distribution testing, testing identity is much harder: O(
√
n/ε2)

...or even O(∥D−max
−ε/16∥2/3) [VV17] where ∥ · ∥2/3 denotes the ℓ2/3 quasi-norm, and D−max

−ε/16 is the

distribution obtained by removing the maximal element of D as well as removing a maximal set of elements of total mass ε/16

...or perhaps O(κ−1
D (1− cε)) [BCG17] where c > 0 is a constant, and κD is the K-functional between ℓ1

and ℓ2 with respect to the distribution D

But wait, how can the proof fully describe the distribution?

The description of D ∈ ∆([n]) may be very large
(even infinite...)

Luckily, it suffices to send a granular
approximation Dapprox of D

What if D ∈ Π, but Dapprox is close to, yet not in Π?

We can use a tolerant tester to make sure it rules the same

14

on long proofs – distributions

For distribution testing, testing identity is much harder: O(
√
n/ε2)

...or even O(∥D−max
−ε/16∥2/3) [VV17] where ∥ · ∥2/3 denotes the ℓ2/3 quasi-norm, and D−max

−ε/16 is the

distribution obtained by removing the maximal element of D as well as removing a maximal set of elements of total mass ε/16

...or perhaps O(κ−1
D (1− cε)) [BCG17] where c > 0 is a constant, and κD is the K-functional between ℓ1

and ℓ2 with respect to the distribution D

But wait, how can the proof fully describe the distribution?

The description of D ∈ ∆([n]) may be very large
(even infinite...)

Luckily, it suffices to send a granular
approximation Dapprox of D

What if D ∈ Π, but Dapprox is close to, yet not in Π?

We can use a tolerant tester to make sure it rules the same

14

on long proofs – distributions

For distribution testing, testing identity is much harder: O(
√
n/ε2)

...or even O(∥D−max
−ε/16∥2/3) [VV17] where ∥ · ∥2/3 denotes the ℓ2/3 quasi-norm, and D−max

−ε/16 is the

distribution obtained by removing the maximal element of D as well as removing a maximal set of elements of total mass ε/16

...or perhaps O(κ−1
D (1− cε)) [BCG17] where c > 0 is a constant, and κD is the K-functional between ℓ1

and ℓ2 with respect to the distribution D

But wait, how can the proof fully describe the distribution?

The description of D ∈ ∆([n]) may be very large
(even infinite...)

Luckily, it suffices to send a granular
approximation Dapprox of D

What if D ∈ Π, but Dapprox is close to, yet not in Π?

We can use a tolerant tester to make sure it rules the same

14

on long proofs – distributions

For distribution testing, testing identity is much harder: O(
√
n/ε2)

...or even O(∥D−max
−ε/16∥2/3) [VV17] where ∥ · ∥2/3 denotes the ℓ2/3 quasi-norm, and D−max

−ε/16 is the

distribution obtained by removing the maximal element of D as well as removing a maximal set of elements of total mass ε/16

...or perhaps O(κ−1
D (1− cε)) [BCG17] where c > 0 is a constant, and κD is the K-functional between ℓ1

and ℓ2 with respect to the distribution D

But wait, how can the proof fully describe the distribution?

The description of D ∈ ∆([n]) may be very large
(even infinite...)

Luckily, it suffices to send a granular
approximation Dapprox of D

What if D ∈ Π, but Dapprox is close to, yet not in Π?

We can use a tolerant tester to make sure it rules the same

14

on long proofs – distributions

For distribution testing, testing identity is much harder: O(
√
n/ε2)

...or even O(∥D−max
−ε/16∥2/3) [VV17] where ∥ · ∥2/3 denotes the ℓ2/3 quasi-norm, and D−max

−ε/16 is the

distribution obtained by removing the maximal element of D as well as removing a maximal set of elements of total mass ε/16

...or perhaps O(κ−1
D (1− cε)) [BCG17] where c > 0 is a constant, and κD is the K-functional between ℓ1

and ℓ2 with respect to the distribution D

But wait, how can the proof fully describe the distribution?

The description of D ∈ ∆([n]) may be very large
(even infinite...)

Luckily, it suffices to send a granular
approximation Dapprox of D

What if D ∈ Π, but Dapprox is close to, yet not in Π?

We can use a tolerant tester to make sure it rules the same

14

on long proofs – distributions

For distribution testing, testing identity is much harder: O(
√
n/ε2)

...or even O(∥D−max
−ε/16∥2/3) [VV17] where ∥ · ∥2/3 denotes the ℓ2/3 quasi-norm, and D−max

−ε/16 is the

distribution obtained by removing the maximal element of D as well as removing a maximal set of elements of total mass ε/16

...or perhaps O(κ−1
D (1− cε)) [BCG17] where c > 0 is a constant, and κD is the K-functional between ℓ1

and ℓ2 with respect to the distribution D

But wait, how can the proof fully describe the distribution?

The description of D ∈ ∆([n]) may be very large
(even infinite...)

Luckily, it suffices to send a granular
approximation Dapprox of D

What if D ∈ Π, but Dapprox is close to, yet not in Π?

We can use a tolerant tester to make sure it rules the same
14

functions vs distributions

15

what about short proofs?

So far we saw that:

∙ any property can be tested using O(
√
n/ε2)-ish samples

∙ there exists a (hard) property that is testable via O(1/ε) samples

Can we get significant savings via short (sublinear) proofs? Yes!

Theorem

There exists a property that requires Ω̃(
√
n) samples to test, yet ∀β,

given a proof of length Õ(nβ) can be tested using O(n1−β) samples

But can we do better? Not much... (not without interaction)

16

what about short proofs?

So far we saw that:

∙ any property can be tested using O(
√
n/ε2)-ish samples

∙ there exists a (hard) property that is testable via O(1/ε) samples

Can we get significant savings via short (sublinear) proofs? Yes!

Theorem

There exists a property that requires Ω̃(
√
n) samples to test, yet ∀β,

given a proof of length Õ(nβ) can be tested using O(n1−β) samples

But can we do better? Not much... (not without interaction)

16

what about short proofs?

So far we saw that:

∙ any property can be tested using O(
√
n/ε2)-ish samples

∙ there exists a (hard) property that is testable via O(1/ε) samples

Can we get significant savings via short (sublinear) proofs? Yes!

Theorem

There exists a property that requires Ω̃(
√
n) samples to test, yet ∀β,

given a proof of length Õ(nβ) can be tested using O(n1−β) samples

But can we do better? Not much... (not without interaction)

16

what about short proofs?

So far we saw that:

∙ any property can be tested using O(
√
n/ε2)-ish samples

∙ there exists a (hard) property that is testable via O(1/ε) samples

Can we get significant savings via short (sublinear) proofs?

Yes!

Theorem

There exists a property that requires Ω̃(
√
n) samples to test, yet ∀β,

given a proof of length Õ(nβ) can be tested using O(n1−β) samples

But can we do better? Not much... (not without interaction)

16

what about short proofs?

So far we saw that:

∙ any property can be tested using O(
√
n/ε2)-ish samples

∙ there exists a (hard) property that is testable via O(1/ε) samples

Can we get significant savings via short (sublinear) proofs? Yes!

Theorem

There exists a property that requires Ω̃(
√
n) samples to test, yet ∀β,

given a proof of length Õ(nβ) can be tested using O(n1−β) samples

But can we do better? Not much... (not without interaction)

16

what about short proofs?

So far we saw that:

∙ any property can be tested using O(
√
n/ε2)-ish samples

∙ there exists a (hard) property that is testable via O(1/ε) samples

Can we get significant savings via short (sublinear) proofs? Yes!

Theorem

There exists a property that requires Ω̃(
√
n) samples to test, yet ∀β,

given a proof of length Õ(nβ) can be tested using O(n1−β) samples

But can we do better? Not much... (not without interaction)

16

what about short proofs?

So far we saw that:

∙ any property can be tested using O(
√
n/ε2)-ish samples

∙ there exists a (hard) property that is testable via O(1/ε) samples

Can we get significant savings via short (sublinear) proofs? Yes!

Theorem

There exists a property that requires Ω̃(
√
n) samples to test, yet ∀β,

given a proof of length Õ(nβ) can be tested using O(n1−β) samples

But can we do better?

Not much... (not without interaction)

16

what about short proofs?

So far we saw that:

∙ any property can be tested using O(
√
n/ε2)-ish samples

∙ there exists a (hard) property that is testable via O(1/ε) samples

Can we get significant savings via short (sublinear) proofs? Yes!

Theorem

There exists a property that requires Ω̃(
√
n) samples to test, yet ∀β,

given a proof of length Õ(nβ) can be tested using O(n1−β) samples

But can we do better? Not much... (not without interaction)
16

limitations of non-interactive proofs of proximity

Lemma

For every Π and MA distribution tester for Π with proof length p and
sample complexity s, it holds that p · s = Ω(SAMP(Π))

The idea

Distribution testers are not only non-adaptive w.r.t. the samples,
but also w.r.t. the proof

Thus, testers can emulate all possible proofs reusing the samples!

Since there are 2p possible proofs, we need to amplify the
soundness to assure no error occurs w.h.p.

To this end, we invoke the tester O(p) times, increasing the sample
complexity to O(p · s).

17

limitations of non-interactive proofs of proximity

Lemma

For every Π and MA distribution tester for Π with proof length p and
sample complexity s, it holds that p · s = Ω(SAMP(Π))

The idea

Distribution testers are not only non-adaptive w.r.t. the samples,

but also w.r.t. the proof

Thus, testers can emulate all possible proofs reusing the samples!

Since there are 2p possible proofs, we need to amplify the
soundness to assure no error occurs w.h.p.

To this end, we invoke the tester O(p) times, increasing the sample
complexity to O(p · s).

17

limitations of non-interactive proofs of proximity

Lemma

For every Π and MA distribution tester for Π with proof length p and
sample complexity s, it holds that p · s = Ω(SAMP(Π))

The idea

Distribution testers are not only non-adaptive w.r.t. the samples,
but also w.r.t. the proof

Thus, testers can emulate all possible proofs reusing the samples!

Since there are 2p possible proofs, we need to amplify the
soundness to assure no error occurs w.h.p.

To this end, we invoke the tester O(p) times, increasing the sample
complexity to O(p · s).

17

limitations of non-interactive proofs of proximity

Lemma

For every Π and MA distribution tester for Π with proof length p and
sample complexity s, it holds that p · s = Ω(SAMP(Π))

The idea

Distribution testers are not only non-adaptive w.r.t. the samples,
but also w.r.t. the proof

Thus, testers can emulate all possible proofs reusing the samples!

Since there are 2p possible proofs, we need to amplify the
soundness to assure no error occurs w.h.p.

To this end, we invoke the tester O(p) times, increasing the sample
complexity to O(p · s).

17

limitations of non-interactive proofs of proximity

Lemma

For every Π and MA distribution tester for Π with proof length p and
sample complexity s, it holds that p · s = Ω(SAMP(Π))

The idea

Distribution testers are not only non-adaptive w.r.t. the samples,
but also w.r.t. the proof

Thus, testers can emulate all possible proofs reusing the samples!

Since there are 2p possible proofs, we need to amplify the
soundness to assure no error occurs w.h.p.

To this end, we invoke the tester O(p) times, increasing the sample
complexity to O(p · s).

17

limitations of non-interactive proofs of proximity

Lemma

For every Π and MA distribution tester for Π with proof length p and
sample complexity s, it holds that p · s = Ω(SAMP(Π))

The idea

Distribution testers are not only non-adaptive w.r.t. the samples,
but also w.r.t. the proof

Thus, testers can emulate all possible proofs reusing the samples!

Since there are 2p possible proofs, we need to amplify the
soundness to assure no error occurs w.h.p.

To this end, we invoke the tester O(p) times, increasing the sample
complexity to O(p · s).

17

limitations of non-interactive proofs of proximity

Lemma

For every Π and MA distribution tester for Π with proof length p and
sample complexity s, it holds that p · s = Ω(SAMP(Π))

What does this mean?

∙ Non-interactive proofs can only yield multiplicative tradeoffs
∙ The max between proof and sample complexity can only be
quadratically better

∙ This lemma allows us to “lift” standard lower bounds to MA
lower bounds

∙ Dramatically different behavior than in the functional setting
(there MA is exponentially stronger than standard testers)

18

limitations of non-interactive proofs of proximity

Lemma

For every Π and MA distribution tester for Π with proof length p and
sample complexity s, it holds that p · s = Ω(SAMP(Π))

What does this mean?

∙ Non-interactive proofs can only yield multiplicative tradeoffs

∙ The max between proof and sample complexity can only be
quadratically better

∙ This lemma allows us to “lift” standard lower bounds to MA
lower bounds

∙ Dramatically different behavior than in the functional setting
(there MA is exponentially stronger than standard testers)

18

limitations of non-interactive proofs of proximity

Lemma

For every Π and MA distribution tester for Π with proof length p and
sample complexity s, it holds that p · s = Ω(SAMP(Π))

What does this mean?

∙ Non-interactive proofs can only yield multiplicative tradeoffs
∙ The max between proof and sample complexity can only be
quadratically better

∙ This lemma allows us to “lift” standard lower bounds to MA
lower bounds

∙ Dramatically different behavior than in the functional setting
(there MA is exponentially stronger than standard testers)

18

limitations of non-interactive proofs of proximity

Lemma

For every Π and MA distribution tester for Π with proof length p and
sample complexity s, it holds that p · s = Ω(SAMP(Π))

What does this mean?

∙ Non-interactive proofs can only yield multiplicative tradeoffs
∙ The max between proof and sample complexity can only be
quadratically better

∙ This lemma allows us to “lift” standard lower bounds to MA
lower bounds

∙ Dramatically different behavior than in the functional setting
(there MA is exponentially stronger than standard testers)

18

limitations of non-interactive proofs of proximity

Lemma

For every Π and MA distribution tester for Π with proof length p and
sample complexity s, it holds that p · s = Ω(SAMP(Π))

What does this mean?

∙ Non-interactive proofs can only yield multiplicative tradeoffs
∙ The max between proof and sample complexity can only be
quadratically better

∙ This lemma allows us to “lift” standard lower bounds to MA
lower bounds

∙ Dramatically different behavior than in the functional setting
(there MA is exponentially stronger than standard testers)

18

functions vs distributions

19

on the role of inner randomness

In all the proof systems we saw, the testers toss coins

Indeed, in the functional setting, NP proofs of
proximity are extremely weak – the focus is on MA

In stark contrast, in distribution testing, in turns out
that NP proofs are nearly equivalent to MA proofs!

Theorem

Every MA distribution tester with sample complexity s can be
emulated by an NP distribution tester with the same proof length
and sample complexity O(s+ log n).

20

on the role of inner randomness

In all the proof systems we saw, the testers toss coins

Indeed, in the functional setting, NP proofs of
proximity are extremely weak – the focus is on MA

In stark contrast, in distribution testing, in turns out
that NP proofs are nearly equivalent to MA proofs!

Theorem

Every MA distribution tester with sample complexity s can be
emulated by an NP distribution tester with the same proof length
and sample complexity O(s+ log n).

20

on the role of inner randomness

In all the proof systems we saw, the testers toss coins

Indeed, in the functional setting, NP proofs of
proximity are extremely weak – the focus is on MA

In stark contrast, in distribution testing, in turns out
that NP proofs are nearly equivalent to MA proofs!

Theorem

Every MA distribution tester with sample complexity s can be
emulated by an NP distribution tester with the same proof length
and sample complexity O(s+ log n).

20

on the role of inner randomness

In all the proof systems we saw, the testers toss coins

Indeed, in the functional setting, NP proofs of
proximity are extremely weak – the focus is on MA

In stark contrast, in distribution testing, in turns out
that NP proofs are nearly equivalent to MA proofs!

Theorem

Every MA distribution tester with sample complexity s can be
emulated by an NP distribution tester with the same proof length
and sample complexity O(s+ log n).

20

derandomizing ma distribution testers

Key idea: The deterministic tester has access to random samples

It can extract its inner randomness from them!

1. Draw samples. Max between the sample complexity and
samples needed to extract randomness.

2. Low-entropy test. If the samples are not “random enough” for
efficient extraction – we can test without proofs

3. Deterministic extraction. Generalize the Von-Neumann
extractor [Von51]

4. Invoke the MA distribution tester. Where coin tosses are
replaced with the extracted randomness

Main technical difficulty: prove a randomness reduction lemma

21

derandomizing ma distribution testers

Key idea: The deterministic tester has access to random samples
It can extract its inner randomness from them!

1. Draw samples. Max between the sample complexity and
samples needed to extract randomness.

2. Low-entropy test. If the samples are not “random enough” for
efficient extraction – we can test without proofs

3. Deterministic extraction. Generalize the Von-Neumann
extractor [Von51]

4. Invoke the MA distribution tester. Where coin tosses are
replaced with the extracted randomness

Main technical difficulty: prove a randomness reduction lemma

21

derandomizing ma distribution testers

Key idea: The deterministic tester has access to random samples
It can extract its inner randomness from them!

1. Draw samples. Max between the sample complexity and
samples needed to extract randomness.

2. Low-entropy test. If the samples are not “random enough” for
efficient extraction – we can test without proofs

3. Deterministic extraction. Generalize the Von-Neumann
extractor [Von51]

4. Invoke the MA distribution tester. Where coin tosses are
replaced with the extracted randomness

Main technical difficulty: prove a randomness reduction lemma

21

derandomizing ma distribution testers

Key idea: The deterministic tester has access to random samples
It can extract its inner randomness from them!

1. Draw samples. Max between the sample complexity and
samples needed to extract randomness.

2. Low-entropy test. If the samples are not “random enough” for
efficient extraction – we can test without proofs

3. Deterministic extraction. Generalize the Von-Neumann
extractor [Von51]

4. Invoke the MA distribution tester. Where coin tosses are
replaced with the extracted randomness

Main technical difficulty: prove a randomness reduction lemma

21

derandomizing ma distribution testers

Key idea: The deterministic tester has access to random samples
It can extract its inner randomness from them!

1. Draw samples. Max between the sample complexity and
samples needed to extract randomness.

2. Low-entropy test. If the samples are not “random enough” for
efficient extraction – we can test without proofs

3. Deterministic extraction. Generalize the Von-Neumann
extractor [Von51]

4. Invoke the MA distribution tester. Where coin tosses are
replaced with the extracted randomness

Main technical difficulty: prove a randomness reduction lemma

21

derandomizing ma distribution testers

Key idea: The deterministic tester has access to random samples
It can extract its inner randomness from them!

1. Draw samples. Max between the sample complexity and
samples needed to extract randomness.

2. Low-entropy test. If the samples are not “random enough” for
efficient extraction – we can test without proofs

3. Deterministic extraction. Generalize the Von-Neumann
extractor [Von51]

4. Invoke the MA distribution tester. Where coin tosses are
replaced with the extracted randomness

Main technical difficulty: prove a randomness reduction lemma

21

derandomizing ma distribution testers

Key idea: The deterministic tester has access to random samples
It can extract its inner randomness from them!

1. Draw samples. Max between the sample complexity and
samples needed to extract randomness.

2. Low-entropy test. If the samples are not “random enough” for
efficient extraction – we can test without proofs

3. Deterministic extraction. Generalize the Von-Neumann
extractor [Von51]

4. Invoke the MA distribution tester. Where coin tosses are
replaced with the extracted randomness

Main technical difficulty: prove a randomness reduction lemma

21

derandomizing ma distribution testers

Key idea: The deterministic tester has access to random samples
It can extract its inner randomness from them!

1. Draw samples. Max between the sample complexity and
samples needed to extract randomness.

2. Low-entropy test. If the samples are not “random enough” for
efficient extraction – we can test without proofs

3. Deterministic extraction. Generalize the Von-Neumann
extractor [Von51]

4. Invoke the MA distribution tester. Where coin tosses are
replaced with the extracted randomness

Main technical difficulty: prove a randomness reduction lemma

21

functions vs distributions

22

interaction: sky is the limit...

replacing proof by prover

Before (MA/NP)

Max of proof and sample
complexity can only be
quadratically better

Now (IP)

Both communication and sample
complexity can be exponentially

better
Using 1 round of interaction!

24

replacing proof by prover

Before (MA/NP)

Max of proof and sample
complexity can only be
quadratically better

Now (IP)

Both communication and sample
complexity can be exponentially

better
Using 1 round of interaction!

24

replacing proof by prover

Before (MA/NP)

Max of proof and sample
complexity can only be
quadratically better

Now (IP)

Both communication and sample
complexity can be exponentially

better

Using 1 round of interaction!

24

replacing proof by prover

Before (MA/NP)

Max of proof and sample
complexity can only be
quadratically better

Now (IP)

Both communication and sample
complexity can be exponentially

better
Using 1 round of interaction!

24

how can interaction help?

Consider the isolated elements property:

ΠIsolated = {D ∈ ∆([n]) : ∀i ∈ [n] i ̸∈ supp(D) or (i+ 1) ̸∈ supp(D)}

∙ We show that ΠIsolated requires Ω(
√
n) samples for standard

testers (via reduction from SMP communication complexity [BCG17])

∙ By the lifting lemma, every MA distribution tester has
proof · sample = Ω(

√
n)

∙ In fact, by a more involved lifting lemma, this also holds for
public-coin IP, regardless of #rounds

For (private-coin) IP, we can do exponentially better!

25

how can interaction help?

Consider the isolated elements property:

ΠIsolated = {D ∈ ∆([n]) : ∀i ∈ [n] i ̸∈ supp(D) or (i+ 1) ̸∈ supp(D)}

∙ We show that ΠIsolated requires Ω(
√
n) samples for standard

testers (via reduction from SMP communication complexity [BCG17])

∙ By the lifting lemma, every MA distribution tester has
proof · sample = Ω(

√
n)

∙ In fact, by a more involved lifting lemma, this also holds for
public-coin IP, regardless of #rounds

For (private-coin) IP, we can do exponentially better!

25

how can interaction help?

Consider the isolated elements property:

ΠIsolated = {D ∈ ∆([n]) : ∀i ∈ [n] i ̸∈ supp(D) or (i+ 1) ̸∈ supp(D)}

∙ We show that ΠIsolated requires Ω(
√
n) samples for standard

testers (via reduction from SMP communication complexity [BCG17])

∙ By the lifting lemma, every MA distribution tester has
proof · sample = Ω(

√
n)

∙ In fact, by a more involved lifting lemma, this also holds for
public-coin IP, regardless of #rounds

For (private-coin) IP, we can do exponentially better!

25

how can interaction help?

Consider the isolated elements property:

ΠIsolated = {D ∈ ∆([n]) : ∀i ∈ [n] i ̸∈ supp(D) or (i+ 1) ̸∈ supp(D)}

∙ We show that ΠIsolated requires Ω(
√
n) samples for standard

testers (via reduction from SMP communication complexity [BCG17])

∙ By the lifting lemma, every MA distribution tester has
proof · sample = Ω(

√
n)

∙ In fact, by a more involved lifting lemma, this also holds for
public-coin IP, regardless of #rounds

For (private-coin) IP, we can do exponentially better!

25

how can interaction help?

Consider the isolated elements property:

ΠIsolated = {D ∈ ∆([n]) : ∀i ∈ [n] i ̸∈ supp(D) or (i+ 1) ̸∈ supp(D)}

∙ We show that ΠIsolated requires Ω(
√
n) samples for standard

testers (via reduction from SMP communication complexity [BCG17])

∙ By the lifting lemma, every MA distribution tester has
proof · sample = Ω(

√
n)

∙ In fact, by a more involved lifting lemma, this also holds for
public-coin IP, regardless of #rounds

For (private-coin) IP, we can do exponentially better!
25

ip distribution tester for isolated elements

ΠIsolated = {D ∈ ∆([n]) : ∀i ∈ [n] i ̸∈ supp(D) or (i+ 1) ̸∈ supp(D)}

1. Tester:

1.1 draw samples S = {s1, . . . , sO(1/eps)} samples from D
1.2 mask S by shifting each s ∈ S to s+ 1 w.p. 1/2
1.3 send the masked samples M = Mask(S)

2. Prover: unshift the samples, and send the purported preimage
S̃ = Mask−1(M)

3. Tester: check that the prover unmasked correctly: S̃ = S

Sample complexity: O(1/ε) Communication complexity: O(log(n)/ε)

26

ip distribution tester for isolated elements

ΠIsolated = {D ∈ ∆([n]) : ∀i ∈ [n] i ̸∈ supp(D) or (i+ 1) ̸∈ supp(D)}

1. Tester:
1.1 draw samples S = {s1, . . . , sO(1/eps)} samples from D

1.2 mask S by shifting each s ∈ S to s+ 1 w.p. 1/2
1.3 send the masked samples M = Mask(S)

2. Prover: unshift the samples, and send the purported preimage
S̃ = Mask−1(M)

3. Tester: check that the prover unmasked correctly: S̃ = S

Sample complexity: O(1/ε) Communication complexity: O(log(n)/ε)

26

ip distribution tester for isolated elements

ΠIsolated = {D ∈ ∆([n]) : ∀i ∈ [n] i ̸∈ supp(D) or (i+ 1) ̸∈ supp(D)}

1. Tester:
1.1 draw samples S = {s1, . . . , sO(1/eps)} samples from D
1.2 mask S by shifting each s ∈ S to s+ 1 w.p. 1/2

1.3 send the masked samples M = Mask(S)

2. Prover: unshift the samples, and send the purported preimage
S̃ = Mask−1(M)

3. Tester: check that the prover unmasked correctly: S̃ = S

Sample complexity: O(1/ε) Communication complexity: O(log(n)/ε)

26

ip distribution tester for isolated elements

ΠIsolated = {D ∈ ∆([n]) : ∀i ∈ [n] i ̸∈ supp(D) or (i+ 1) ̸∈ supp(D)}

1. Tester:
1.1 draw samples S = {s1, . . . , sO(1/eps)} samples from D
1.2 mask S by shifting each s ∈ S to s+ 1 w.p. 1/2
1.3 send the masked samples M = Mask(S)

2. Prover: unshift the samples, and send the purported preimage
S̃ = Mask−1(M)

3. Tester: check that the prover unmasked correctly: S̃ = S

Sample complexity: O(1/ε) Communication complexity: O(log(n)/ε)

26

ip distribution tester for isolated elements

ΠIsolated = {D ∈ ∆([n]) : ∀i ∈ [n] i ̸∈ supp(D) or (i+ 1) ̸∈ supp(D)}

1. Tester:
1.1 draw samples S = {s1, . . . , sO(1/eps)} samples from D
1.2 mask S by shifting each s ∈ S to s+ 1 w.p. 1/2
1.3 send the masked samples M = Mask(S)

2. Prover: unshift the samples, and send the purported preimage
S̃ = Mask−1(M)

3. Tester: check that the prover unmasked correctly: S̃ = S

Sample complexity: O(1/ε) Communication complexity: O(log(n)/ε)

26

ip distribution tester for isolated elements

ΠIsolated = {D ∈ ∆([n]) : ∀i ∈ [n] i ̸∈ supp(D) or (i+ 1) ̸∈ supp(D)}

1. Tester:
1.1 draw samples S = {s1, . . . , sO(1/eps)} samples from D
1.2 mask S by shifting each s ∈ S to s+ 1 w.p. 1/2
1.3 send the masked samples M = Mask(S)

2. Prover: unshift the samples, and send the purported preimage
S̃ = Mask−1(M)

3. Tester: check that the prover unmasked correctly: S̃ = S

Sample complexity: O(1/ε) Communication complexity: O(log(n)/ε)

26

ip distribution tester for isolated elements

ΠIsolated = {D ∈ ∆([n]) : ∀i ∈ [n] i ̸∈ supp(D) or (i+ 1) ̸∈ supp(D)}

1. Tester:
1.1 draw samples S = {s1, . . . , sO(1/eps)} samples from D
1.2 mask S by shifting each s ∈ S to s+ 1 w.p. 1/2
1.3 send the masked samples M = Mask(S)

2. Prover: unshift the samples, and send the purported preimage
S̃ = Mask−1(M)

3. Tester: check that the prover unmasked correctly: S̃ = S

Sample complexity: O(1/ε) Communication complexity: O(log(n)/ε)

26

ip distribution tester for isolated elements

ΠIsolated = {D ∈ ∆([n]) : ∀i ∈ [n] i ̸∈ supp(D) or (i+ 1) ̸∈ supp(D)}

1. Tester:
1.1 draw samples S = {s1, . . . , sO(1/eps)} samples from D
1.2 mask S by shifting each s ∈ S to s+ 1 w.p. 1/2
1.3 send the masked samples M = Mask(S)

2. Prover: unshift the samples, and send the purported preimage
S̃ = Mask−1(M)

3. Tester: check that the prover unmasked correctly: S̃ = S

Sample complexity: O(1/ε)

Communication complexity: O(log(n)/ε)

26

ip distribution tester for isolated elements

ΠIsolated = {D ∈ ∆([n]) : ∀i ∈ [n] i ̸∈ supp(D) or (i+ 1) ̸∈ supp(D)}

1. Tester:
1.1 draw samples S = {s1, . . . , sO(1/eps)} samples from D
1.2 mask S by shifting each s ∈ S to s+ 1 w.p. 1/2
1.3 send the masked samples M = Mask(S)

2. Prover: unshift the samples, and send the purported preimage
S̃ = Mask−1(M)

3. Tester: check that the prover unmasked correctly: S̃ = S

Sample complexity: O(1/ε) Communication complexity: O(log(n)/ε)
26

ip distribution tester for isolated elements

ΠIsolated = {D ∈ ∆([n]) : ∀i ∈ [n] i ̸∈ supp(D) or (i+ 1) ̸∈ supp(D)}

Tester:
* draw S = {s1, . . . , sO(1/eps)} from D
* shift each s ∈ S to s+ 1 w.p. 1/2
* send masked samples M = Mask(S)

Prover: send alleged S̃ = Mask−1(M)

Tester: check that S̃ = S

Why does this work?

If the elements of D are isolated,
the mask is invertible

If D is ε-far from isolated,
∃ adjacent supported elements of
weight Ω(ε)
Prover has to guess their
preimage!

27

ip distribution tester for isolated elements

ΠIsolated = {D ∈ ∆([n]) : ∀i ∈ [n] i ̸∈ supp(D) or (i+ 1) ̸∈ supp(D)}

Tester:
* draw S = {s1, . . . , sO(1/eps)} from D
* shift each s ∈ S to s+ 1 w.p. 1/2
* send masked samples M = Mask(S)

Prover: send alleged S̃ = Mask−1(M)

Tester: check that S̃ = S

Why does this work?
If the elements of D are isolated

,
the mask is invertible

If D is ε-far from isolated,
∃ adjacent supported elements of
weight Ω(ε)
Prover has to guess their
preimage!

27

ip distribution tester for isolated elements

ΠIsolated = {D ∈ ∆([n]) : ∀i ∈ [n] i ̸∈ supp(D) or (i+ 1) ̸∈ supp(D)}

Tester:
* draw S = {s1, . . . , sO(1/eps)} from D
* shift each s ∈ S to s+ 1 w.p. 1/2
* send masked samples M = Mask(S)

Prover: send alleged S̃ = Mask−1(M)

Tester: check that S̃ = S

Why does this work?
If the elements of D are isolated,
the mask is invertible

If D is ε-far from isolated

,
∃ adjacent supported elements of
weight Ω(ε)
Prover has to guess their
preimage!

27

ip distribution tester for isolated elements

ΠIsolated = {D ∈ ∆([n]) : ∀i ∈ [n] i ̸∈ supp(D) or (i+ 1) ̸∈ supp(D)}

Tester:
* draw S = {s1, . . . , sO(1/eps)} from D
* shift each s ∈ S to s+ 1 w.p. 1/2
* send masked samples M = Mask(S)

Prover: send alleged S̃ = Mask−1(M)

Tester: check that S̃ = S

Why does this work?
If the elements of D are isolated,
the mask is invertible

If D is ε-far from isolated,
∃ adjacent supported elements of
weight Ω(ε)

Prover has to guess their
preimage!

27

ip distribution tester for isolated elements

ΠIsolated = {D ∈ ∆([n]) : ∀i ∈ [n] i ̸∈ supp(D) or (i+ 1) ̸∈ supp(D)}

Tester:
* draw S = {s1, . . . , sO(1/eps)} from D
* shift each s ∈ S to s+ 1 w.p. 1/2
* send masked samples M = Mask(S)

Prover: send alleged S̃ = Mask−1(M)

Tester: check that S̃ = S

Why does this work?
If the elements of D are isolated,
the mask is invertible

If D is ε-far from isolated,
∃ adjacent supported elements of
weight Ω(ε)
Prover has to guess their
preimage!

27

functions vs distributions

28

functions vs distributions

29

open problems

open problems

There are many of them...let’s focus on one:

1. For MA distribution testers we have
proof · sample = Ω(SAMP(Π))

2. For r-round AM distribution testers we have
...well communication · sample = Ω(SAMP(Π))!

3. But often we can get AM, but do not know how to get MA...

Is AM strictly stronger than MA?

31

open problems

There are many of them...let’s focus on one:

1. For MA distribution testers we have
proof · sample = Ω(SAMP(Π))

2. For r-round AM distribution testers we have
...well communication · sample = Ω(SAMP(Π))!

3. But often we can get AM, but do not know how to get MA...

Is AM strictly stronger than MA?

31

open problems

There are many of them...let’s focus on one:

1. For MA distribution testers we have
proof · sample = Ω(SAMP(Π))

2. For r-round AM distribution testers we have

...well communication · sample = Ω(SAMP(Π))!
3. But often we can get AM, but do not know how to get MA...

Is AM strictly stronger than MA?

31

open problems

There are many of them...let’s focus on one:

1. For MA distribution testers we have
proof · sample = Ω(SAMP(Π))

2. For r-round AM distribution testers we have

...well communication · sample = Ω(SAMP(Π))!

3. But often we can get AM, but do not know how to get MA...

Is AM strictly stronger than MA?

31

open problems

There are many of them...let’s focus on one:

1. For MA distribution testers we have
proof · sample = Ω(SAMP(Π))

2. For r-round AM distribution testers we have

...well communication · sample = Ω(SAMP(Π))!

3. But often we can get AM, but do not know how to get MA...

Is AM strictly stronger than MA?

31

open problems

There are many of them...let’s focus on one:

1. For MA distribution testers we have
proof · sample = Ω(SAMP(Π))

2. For r-round AM distribution testers we have
...well communication · sample = Ω(SAMP(Π))!

3. But often we can get AM, but do not know how to get MA...

Is AM strictly stronger than MA?

31

open problems

There are many of them...let’s focus on one:

1. For MA distribution testers we have
proof · sample = Ω(SAMP(Π))

2. For r-round AM distribution testers we have
...well communication · sample = Ω(SAMP(Π))!

3. But often we can get AM, but do not know how to get MA...

Is AM strictly stronger than MA?

31

open problems

There are many of them...let’s focus on one:

1. For MA distribution testers we have
proof · sample = Ω(SAMP(Π))

2. For r-round AM distribution testers we have
...well communication · sample = Ω(SAMP(Π))!

3. But often we can get AM, but do not know how to get MA...

Is AM strictly stronger than MA?

31

open problems

There are many of them...let’s focus on one:

1. For MA distribution testers we have
proof · sample = Ω(SAMP(Π))

2. For r-round AM distribution testers we have
...well communication · sample = Ω(SAMP(Π))!

3. But often we can get AM, but do not know how to get MA...

Is AM strictly stronger than MA?

31

Thank you!

32

Noga Alon, Michael Krivelevich, Ilan Newman, and Mario Szegedy.
Regular languages are testable with a constant number of queries.
SIAM Journal on Computing, 30(6):1842–1862, 2001.

Eric Blais, Clément L. Canonne, and Tom Gur.
Distribution testing lower bounds via reductions from communication complexity (Alice and
Bob don’t talk to each other anymore.).
In Proceedings of the 32th Conference on Computational Complexity, CCC 2017, pages 1–42,
2017.
Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan.
Robust PCPs of proximity, shorter PCPs, and applications to coding.
SIAM Journal on Computing, 36(4):889–974, 2006.

Funda Ergün, Ravi Kumar, and Ronitt Rubinfeld.
Fast approximate probabilistically checkable proofs.
Information and Computation, 189(2):135–159, 2004.

Eldar Fischer, Yonatan Goldhirsh, and Oded Lachish.
Partial tests, universal tests and decomposability.
In Proceedings of the 5th Innovations in Theoretical Computer Science Conference,
ITCS 2014, pages 483–500, 2014.

Guy N. Rothblum, Salil P. Vadhan, and Avi Wigderson.
Interactive proofs of proximity: delegating computation in sublinear time.
In Proceedings of the 45th Symposium on Theory of Computing, STOC 2013, pages 793–802,
2013.
Paul Valiant.
Testing symmetric properties of distributions.
SIAM Journal on Computing, 40:1927–1968, 2011.

32

John Von Neumann.
Various techniques used in connection with random digits.
National Bureau of Standards Applied Math Series, 12:36–38, 1951.

Gregory Valiant and Paul Valiant.
An automatic inequality prover and instance optimal identity testing.
SIAM Journal on Computing, 46(1):429–455, 2017.

32

	Proofs of proximity?
	Now for distributions!
	First example
	Interaction: sky is the limit...
	Open problems

