Optimal Distribution Testing via Reductions

> Ilias Diakonikolas USC

Joint work with Daniel Kane (UCSD)

Distribution Testing

Given samples from one or more unknown probability distributions, decide whether they satisfy a certain property.

- Introduced by Karl Pearson (1899).
- Classical Problem in Statistics
 [Neyman-Pearson'33, Lehman-Romano'05]
- Last fifteen years (TCS): property testing
 [Goldreich-Ron'00, Batu *et al.* FOCS'00/JACM'13]

Notation

Basic object of study:

Probability distributions over finite domain.

Notation:

p, *q*: probability mass function

Example: Testing Closeness

- Let \mathcal{D} be a family of probability distributions

This Work

Simple Framework for Distribution Testing: Leads to *sample-optimal and computationally efficient* estimators for a variety of properties

Primarily based on:

A New Approach for Testing Properties of Discrete Distributions (I. Diakonikolas and D. Kane, FOCS'16)

Outline

- Related and Prior Work
- Framework Overview and Statement of Results
- Case Study: Testing Identity, Closeness, and Independence
- Future Directions and Concluding Remarks

Outline

- Related and Prior Work
- Framework Overview and Statement of Results
- Case Study: Testing Identity, Closeness, and Independence
- Future Directions and Concluding Remarks

Prior Work: Identity Testing

Focus has been on arbitrary distributions over support of size n.

Testing Identity to a *known* Distribution:

- [Goldreich-Ron'00]: $O(\sqrt{n}/\epsilon^4)$ upper bound for *uniformity testing* (collision statistics)
- [Batu *et al.*, FOCS'01]: $\widetilde{O}(\sqrt{n}) \cdot \text{poly}(1/\epsilon)$ upper bound for testing identity to any *known* distribution.
- [Paninski '03]: upper bound of $O(\sqrt{n}/\epsilon^2)$ for uniformity testing, assuming $\epsilon = \Omega(n^{-1/4})$. Lower bound of $\Omega(\sqrt{n}/\epsilon^2)$.
- [Valiant-Valiant, FOCS'14, D-Kane-Nikishkin, SODA'15]: upper bound of $O(\sqrt{n}/\epsilon^2)$ for identity testing to any known distribution.
- [D-Gouleakis-Peebles-Price'16]: [GR'00] tester is optimal!

Prior Work: Closeness Testing

Focus has been on arbitrary distributions over support of size n.

Testing Closeness between two *unknown* distributions:

- [Batu *et al.*, FOCS'00]: $O(n^{2/3} \log n/\epsilon^{8/3})$ upper bound for testing closeness between two unknown discrete distributions.
- [P. Valiant, STOC'08]: lower bound of $\Omega(n^{2/3})$ for constant error.
- [Chan-D-Valiant-Valiant, SODA'14]: tight upper and lower bound of $O(\max\{n^{2/3}/\epsilon^{4/3},n^{1/2}/\epsilon^2\})$
- [Bhatacharya-Valiant, NIPS'15]: tight bounds for different sample sizes (assuming $\epsilon > n^{-1/12}$).

Prior Work: Testing Independence

Focus has been on arbitrary distributions over support of size n.

Testing Independence of a distribution on $[n] \times [m]$.:

- [Batu *et al.*, FOCS'01]: $\widetilde{O}(n^{2/3}m^{1/3} \cdot \text{poly}(1/\epsilon))$ upper bound.
- [Levi-Ron-Rubinfeld, ICS'11]: lower bounds for constant error $\Omega(m^{1/2}n^{1/2})$ and $\Omega(n^{2/3}m^{1/3})$, for $n = \Omega(m \log m)$
- [Acharya-Daskalakis-Kamath, NIPS'15]: upper bound of $O(n/\epsilon^2)$ for n=m.

Outline

- Related and Prior Work
- Framework Overview and Statement of Results
- Case Study: Testing Identity, Closeness, and Independence
- Future Directions and Concluding Remarks

L2 Closeness Testing

Lemma 1: Let p,q be unknown distributions on a domain of size n . There is an algorithm that uses

 $O(\min\{\|p\|_2, \|q\|_2\}n/\epsilon^2)$

samples from each of p, q, and with probability at least 2/3 distinguishes between the cases that p = q and $||p - q||_1 \ge \epsilon$.

Basic Tester [Chan-D-Valiant-Valiant'14]:

- Calculate $Z = \sum_i \{(X_i Y_i)^2 X_i Y_i\}$
- If $Z > \varepsilon^2 m^2$ then output "No" (different), otherwise, output "Yes" (same)

Collision-based estimator also works [D-Gouleakis-Peebles-Price'16]

Main New Idea

Solve *all* problems by reducing to this as a black-box.

Framework and Results

- **Approach**: Reduction of L1 Testing to L2 testing
 - 1) Transform given distribution(s) to new distribution(s) (over potentially larger domain) with small L2 norm.
 - 2) Use standard L2 tester as a black-box.

 Circumvents method of explicitly learning heavy elements [Batu et al., FOCS'00]

Algorithmic Applications

Sample Optimal Testers for:

All algorithms follow same pattern. Very simple analysis.

Outline

- Related and Prior Work
- Framework Overview and Statement of Results
- Case Study: Testing Identity, Closeness, and Independence
- Future Directions and Concluding Remarks

Warm-up: Testing Identity to Fixed Distribution (I)

Let p be unknown distribution and q known distribution on [n].

Main Idea: "Stretch" the domain size to make L_2 norm of q small.

- For every bin $i \in [n]$ create set S_i of $\lceil nq_i \rceil$ new bins.
- Subdivide the probability mass of bin i equally within S_i .

Let S be the new domain and p^\prime,q^\prime the resulting distributions over S .

Warm-up: Testing Identity to Fixed Distribution (II)

Let p be unknown distribution and q known distribution on [n].

L1 Identity Tester

- Given q, construct new domain S.
- Use basic tester to distinguish between p' = q' and $||p' q'||_1 \ge \epsilon$.

We construct q' explicitly. Can sample from p' given sample from p.

Analysis:

Observation 1: $||p' - q'||_1 = ||p - q||_1$

Observation 2: $|S| \leq 2n$ and $||q'||_2 = O(1/\sqrt{n})$

By Lemma 1, we can test identity between p' and q' with sample size $O(\|q'\|_2|S|/\epsilon^2)=O(\sqrt{n}/\epsilon^2)$

Identity Reduces to Uniformity

• Summary of Previous Slides:

Identity reduces to its special case when the explicit distribution has max probability O(1/n).

Recent Improvement:

[Oded Goldreich'16]:

Identity Reduces to Uniformity.

Testing Closeness (I)

Let p, q be unknown distributions on [n].

Main Idea: Use samples from q to "stretch" the domain size.

- Draw a set S of Poi(k) samples from q.
- Let a_i be the number of times we see $i \in [n]$ in S.
- Subdivide the mass of bin *i* equally within $a_i + 1$ new bins.

Let S' be the new domain and p', q' the resulting distributions over S'.

We can sample from p', q'.

Observation: $||p' - q'||_1 = ||p - q||_1$

Testing Closeness (II)

Let p, q be unknown distributions on [n].

L1 Closeness Tester

- Draw a set S of Poi(k) samples from q, construct new domain S'.
- Use basic tester to distinguish between p' = q' and $\|p' q'\|_1 \ge \epsilon$.

Claim: Whp $|S'| \le n + O(k)$ and $||q'||_2 = O(1/\sqrt{k})$. *Proof*:

$$||p'||_2^2 = \sum_{i=1}^n p_i^2 / (1+a_i), \quad \mathbb{E}[1/(1+a_i)] \le 1/(kp_i). \quad \Box$$

By Lemma 1, we can test identity between p' and q' with sample size $O(||q'||_2 |S'|/\epsilon^2) = O(k^{-1/2} \cdot (n+k)/\epsilon^2).$

Total sample size

$$O(k+k^{-1/2}\cdot(n+k)/\epsilon^2).$$

Set $k := \min\{n, n^{2/3} \epsilon^{-4/3}\}.$

Closeness with Unequal Samples

Let p, q be unknown distributions on [n].

Have $m_1 + m_2$ samples from q and m_2 samples from p.

L1 Closeness Tester Unequal

- Set $k := \min\{n, m_1\}$.
- Draw Poi(k) samples from q, construct new domain S'.
- Use basic tester to distinguish between p' = q' and $||p' q'||_1 \ge \epsilon$.

Claim: Whp $|S'| \le n + O(k)$ and $||q'||_2 = O(1/\sqrt{k})$.

By Lemma 1, we can test identity between p' and q' with sample size $m_2 = O(||q'||_2 |S'|/\epsilon^2) = O(k^{-1/2} \cdot (n+k)/\epsilon^2).$

By our choice of k, it follows

$$m_2 = O(\max\{nm_1^{-1/2}\epsilon^2, n^{1/2}/\epsilon^2\}).$$

Testing Independence in 2-d

Let p be unknown distribution on $[n] \times [m]$. Let $q = p_1 \times p_2$.

L1 Independence Tester

- Set $k := \min\{n, n^{2/3}m^{1/3}\epsilon^{-4/3}\}.$
- Draw a set S_1 of Poi(k) samples from p_1 , and S_2 of Poi(m) samples from p_2 .
- Stretch domain in each dimension to obtain new support.
- Use basic tester to distinguish between p' = q' and $||p' q'||_1 \ge \epsilon$.

By Lemma 1, we can test identity between p' and q' with sample size

$$O(\|q'\|_2 |S'| / \epsilon^2) = O(k^{-1/2} m^{-1/2} \cdot mn / \epsilon^2)$$

$$= O(\max\{n^{2/3}m^{1/3}\epsilon^{-4/3}, (mn)^{1/2}/\epsilon^2\})$$

Outline

- Introduction, Related and Prior Work
- Framework Overview and Statement of Results
- Case Study: Testing Identity, Closeness, and Independence
- Future Directions and Concluding Remarks

Future Directions (I)

This Talk: Unified Technique for Testing *Unstructured* Discrete Distributions.

Gives sample-optimal estimators for many properties in the literature.

Game Over?

- Recent line of work on Testing Structured Distributions
 [D-Kane-Nikishkin, SODA'15 / FOCS'15 / ICALP'16]
- Dependence on error probability? [D-Gouleakis-Peebles-Price'17]
 E.g., identity testing

$$O(\sqrt{n\log(1/\delta)}/\epsilon^2 + \log(1/\delta)/\epsilon^2)$$

 Optimal Constants? Practically relevant question; requires new insights. [Huang-Meyn IEEE ToIT'14]

Future Directions (II)

This Talk: Unified Technique for Testing *Unstructured* Discrete Distributions.

Future Directions:

- High-Dimensional Structured Distributions
 [Canonne-D-Kane-Stewart'16, Daskalakis-Pan'16, Daskalakis-Dikkala-Kamath'16, D-Kane-Stewart'17]
- Other criteria (privacy, communication, etc.)
 [Cai-Daskalakis-Kamath'17, Aliakbarpour-D-Rubinfeld'17, Acharya-Sun-Zhang'17, D-Grigorescu-Onak-Natarajan'16]
- Beyond Worst-Case Analysis

Thank you for your attention!