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Distribution Testing

Given samples from one or more unknown probability distributions, 
decide whether they satisfy a certain property.

• Introduced by Karl Pearson (1899).

• Classical Problem in Statistics
[Neyman-Pearson’33, Lehman-Romano’05]

• Last fifteen years (TCS): property testing
[Goldreich-Ron’00, Batu et al. FOCS’00/JACM’13]



Notation

Basic object of study: 
Probability distributions over finite domain.

or 

Notation:
p, q:  probability mass function

[n]d[n]



Example: Testing Closeness

• Let       be a family of probability distributions

Example:
Testing Closeness Problem:

− Distinguish between the cases p=q and dist (p, q) > ε
− Minimize sample size, computation time

Unknown
1, 2, 2, 4, 3,…

Unknown
2, 1, 2, 3, 1,…

Total	Variation	Distance
dTV(p, q) = (1/2)kp� qk1

D

p 2 D

q 2 D



This Work

Simple Framework for Distribution Testing:
Leads to sample-optimal and computationally efficient 

estimators 
for a variety of properties

Primarily	based	on:

A	New	Approach	for	Testing	Properties	of	Discrete	Distributions	
(I.	Diakonikolas	and	D.	Kane,	FOCS’16)
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Prior Work: Identity Testing

Focus has been on arbitrary distributions over support of size    . 
Testing Identity to a known Distribution:
• [Goldreich-Ron’00]:                   upper bound for uniformity testing

(collision statistics)

• [Batu et al., FOCS’01]:                                upper bound for testing 
identity to any known distribution.

• [Paninski ’03]: upper bound of                   for uniformity testing, 
assuming                        . Lower bound of                   .

• [Valiant-Valiant, FOCS’14, D-Kane-Nikishkin, SODA’15]: upper 
bound of                   for identity testing to any known distribution.

• [D-Gouleakis-Peebles-Price’16]: [GR’00] tester is optimal!
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Prior Work: Closeness Testing

Focus has been on arbitrary distributions over support of size    . 

Testing Closeness between two unknown distributions:

• [Batu et al., FOCS’00]:                                 upper bound for testing 
closeness between two unknown discrete distributions.

• [P. Valiant, STOC’08]: lower bound of               for constant error.

• [Chan-D-Valiant-Valiant, SODA’14]: tight upper and lower bound of                                                  

• [Bhatacharya-Valiant, NIPS’15]: tight bounds for different sample 
sizes (assuming                    ). 

n

O(n2/3
log n/✏8/3)

⌦(n2/3)

O(max{n2/3/✏4/3, n1/2/✏2})

✏ > n�1/12



Prior Work: Testing Independence

Focus has been on arbitrary distributions over support of size    . 

Testing Independence of a distribution on                 :

• [Batu et al., FOCS’01]:                                           upper bound.

• [Levi-Ron-Rubinfeld, ICS’11]: lower bounds for constant error

• [Acharya-Daskalakis-Kamath, NIPS’15]: upper bound of
for n=m.                                                

n

[n]⇥ [m].

eO(n2/3m1/3 · poly(1/✏))

O(n/✏2)

⌦(m1/2n1/2
) and ⌦(n2/3m1/3

), for n = ⌦(m logm)
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L2 Closeness Testing

Lemma 1: Let        be unknown distributions on a domain of size    . 
There is an algorithm that uses 

samples from each of       , and with probability at least 2/3 
distinguishes between the cases that and

Basic Tester [Chan-D-Valiant-Valiant’14]:
• Calculate Z = Σi {(Xi – Yi)2 – Xi – Yi}

• If Z > ε2m2 then output “No” (different), otherwise, output “Yes” 
(same)

Collision-based estimator also works [D-Gouleakis-Peebles-Price’16]

O(min{kpk2, kqk2}n/✏2)
p, q

p = q kp� qk1 � ✏.

np, q



Main New Idea

Solve all problems by reducing to this as a black-box.



Framework and Results

• Approach: Reduction of L1 Testing to L2 testing

1) Transform given distribution(s) to new distribution(s) (over 
potentially larger domain) with small L2 norm.

2) Use standard L2 tester as a black-box.

• Circumvents method of explicitly learning heavy elements 
[Batu et al., FOCS’00]



Algorithmic Applications

Sample Optimal Testers for:

• Identity to a Fixed Distribution
• Closeness between two Unknown Distributions
• (Nearly) Instance-optimal Identity Testing

• Closeness with unequal sample size
• Adaptive Closeness Testing
• Independence (in any dimension) 
• Properties of Collections of Distributions 

(Sample & Query model)
• Testing Histograms
• Other Metrics (chi-squared, Hellinger)

All algorithms follow same pattern. Very simple analysis.

Simpler 
Proofs of 
Known 
Results

New 
Results
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Warm-up: Testing Identity to Fixed 
Distribution (I)

Let     be unknown distribution and    known distribution on     .

Main Idea: “Stretch” the domain size to make L2 norm of    small.

• For every bin             create set      of          new bins.
• Subdivide the probability mass of bin   equally within     .

Let    be the new domain and          the resulting distributions over    .

[n]p q

q

i 2 [n] dnqie

S Sp0, q0

Si

i Si

q q0

[n] S
…



Warm-up: Testing Identity to Fixed 
Distribution (II)

Let     be unknown distribution and    known distribution on     .

L1 Identity Tester
• Given   , construct new domain   .
• Use basic tester to distinguish between             and  

We construct     explicitly. Can sample from    given sample from 

Analysis: 

Observation 1:               

Observation 2:                and

By Lemma 1, we can test identity between     and    with sample size

[n]p q

|S|  2n kq0k2 = O(1/
p
n)

kp0 � q0k1 = kp� qk1

p0 q0

O(kq0k2|S|/✏2) = O(
p
n/✏2)

q S
p0 = q0 kp0 � q0k1 � ✏.

q0 p0 p.



Identity Reduces to Uniformity

• Summary of Previous Slides: 

Identity reduces to its special case when the explicit distribution 
has max probability 

• Recent Improvement:

[Oded Goldreich’16]: 

Identity Reduces to Uniformity.

O(1/n).



Testing Closeness (I)

Let        be unknown distributions on     .

Main Idea: Use samples from     to “stretch” the domain size.

• Draw a set     of             samples from   .
• Let      be the number of times we see              in    .
• Subdivide the mass of bin   equally within new bins.

Let       be the new domain and          the resulting distributions over    .

We can sample from         .

Observation: 

[n]

q

i 2 [n]

kp0 � q0k1 = kp� qk1

p0, q0

p, q

q

ai S
i ai + 1

S0 S0

S Poi(k)

p0, q0



Testing Closeness (II)

Let        be unknown distributions on     .

L1 Closeness Tester
• Draw a set     of             samples from   , construct new domain    .
• Use basic tester to distinguish between             and  

Claim: Whp and                          
Proof :

By Lemma 1, we can test identity between     and    with sample size

Total sample size

Set

[n]

q

p0 q0

p, q

S Poi(k) S0

p0 = q0 kp0 � q0k1 � ✏.

|S0|  n+O(k) kq0k2 = O(1/
p
k).

O(kq0k2|S0|/✏2) = O(k�1/2 · (n+ k)/✏2).

O(k + k�1/2 · (n+ k)/✏2).

kp0k22 =
Pn

i=1 p
2
i /(1 + ai), E[1/(1 + ai)]  1/(kpi). ⇤

k := min{n, n2/3✏�4/3}.



Closeness with Unequal Samples

Let        be unknown distributions on     .
Have                  samples from    and        samples from   

L1 Closeness Tester Unequal
• Set 
• Draw             samples from   , construct new domain    .
• Use basic tester to distinguish between             and  

Claim: Whp and                          

By Lemma 1, we can test identity between     and    with sample size

By our choice of k, it follows

[n]

q

p0 q0

p, q

Poi(k) S0

p0 = q0 kp0 � q0k1 � ✏.

|S0|  n+O(k) kq0k2 = O(1/
p
k).

q p.

k := min{n,m1}.

m2 = O(kq0k2|S0|/✏2) = O(k�1/2 · (n+ k)/✏2).

m2 = O(max{nm�1/2
1 ✏2, n1/2/✏2}).

m1 +m2 m2



Testing Independence in 2-d

Let     be unknown distribution on     
Let              

L1 Independence Tester
• Set 
• Draw a set     of             samples from    , 

and      of             samples from  
• Stretch domain in each dimension to obtain new support.
• Use basic tester to distinguish between             and  

By Lemma 1, we can test identity between     and    with sample sizep0 q0

Poi(k)

p0 = q0 kp0 � q0k1 � ✏.

p [n]⇥ [m].

q = p1 ⇥ p2.

k := min{n, n2/3m1/3✏�4/3}.
S1 p1

S2 Poi(m)

p2.

= O(max{n2/3m1/3✏�4/3, (mn)1/2/✏2})

O(kq0k2|S0|/✏2) = O(k�1/2m�1/2 ·mn/✏2)
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Future Directions (I)

This Talk: Unified Technique for Testing Unstructured Discrete 
Distributions.

Gives sample-optimal estimators for many properties in the literature.

Game Over?
• Recent line of work on Testing Structured Distributions 

[D-Kane-Nikishkin, SODA’15 / FOCS’15 / ICALP’16]

• Dependence on error probability? [D-Gouleakis-Peebles-Price’17]
E.g., identity testing 

• Optimal Constants? Practically relevant question; requires new insights.
[Huang-Meyn IEEE ToIT’14]

O(

p
n log(1/�)/✏2 + log(1/�)/✏2)



Future Directions (II)

This Talk: Unified Technique for Testing Unstructured Discrete 
Distributions.

Future Directions:

• High-Dimensional Structured Distributions
[Canonne-D-Kane-Stewart’16, Daskalakis-Pan’16, Daskalakis-Dikkala-
Kamath’16, D-Kane-Stewart’17]

• Other criteria (privacy, communication, etc.) 
[Cai-Daskalakis-Kamath’17, Aliakbarpour-D-Rubinfeld’17, Acharya-Sun-
Zhang’17, D-Grigorescu-Onak-Natarajan’16]

• Beyond Worst-Case Analysis

Thank you for your attention!


