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Distribution Testing

Given samples from one or more unknown probability distributions,
decide whether they satisfy a certain property.

« Introduced by Karl Pearson (1899).

« Classical Problem in Statistics
[Neyman-Pearson’33, Lehman-Romano’05]

« Last fifteen years (TCS): property testing
[Goldreich-Ron’00, Batu et al. FOCS'00/JACM’13]




Notation

Basic object of study:
Probability distributions over finite domain.

] or [n]?

il

p, q- probability mass function

Notation:



Example: Testing Closeness

« Let D be a family of probability distributions

Unknown

pED > 1,2,2,4,3,...

Unknown

>2,1,2,3,1,...

gD

Example: Total Variation Distance

Testing Closeness Problem:
— Distinguish between the cases p=¢g and dist (p, ¢) > ¢
— Minimize sample size, computation time

drv(p,q) = (1/2)]lp — qllx




This Work

Simple Framework for Distribution Testing:
Leads to sample-optimal and computationally efficient
estimators
for a variety of properties

Primarily based on:

A New Approach for Testing Properties of Discrete Distributions
(1. Diakonikolas and D. Kane, FOCS’16)
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Prior Work: Identity Testing

Focus has been on arbitrary distributions over support of size n .
Testing Identity to a known Distribution:

[Goldreich-Ron’00]: O(+/n/€*) upper bound for uniformity testing
(collision statistics)

[Batu et al., FOCS'01]: O(y/n) - poly(1/¢)upper bound for testing
identity to any known distribution.

[Paninski 03]: upper bound of O(y/n/€?) for uniformity testing,

assuming ¢ = Q(n~"/*). Lower bound of Q(v/n/e?).

[Valiant-Valiant, FOCS’14, D-Kane-Nikishkin, SODA15]: upper
bound of O(+y/n/e*)for identity testing to any known distribution.

[D-Gouleakis-Peebles-Price’16]: [GR'00] tester is optimal!



Prior Work: Closeness Testing
Focus has been on arbitrary distributions over support of size n .
Testing Closeness between two unknown distributions:

+ [Batu et al., FOCS'00]: O(n?/31ogn/e®/?) upper bound for testing
closeness between two unknown discrete distributions.

« [P. Valiant, STOC’08]: lower bound of Q(n2/3)for constant error.

« [Chan-D-Valiant-Valiant, SODA’'14]: tight upper and lower bound of
O(max{n2/3/64/3, n1/2/62})

« [Bhatacharya-Valiant, NIPS’15]: tight bounds for different sample
sizes (assuming € > n~ /12



Prior Work: Testing Independence
Focus has been on arbitrary distributions over support of size n .
Testing Independence of a distribution on [n] X [m].:
. [Batu et al, FOCS'01]: O(n2/3m1/3 . poly(1/€)) upper bound.

« [Levi-Ron-Rubinfeld, ICS’11]: lower bounds for constant error
Q(m/2n1/2)  and  Q(n%3m'/3), for n = Q(mlogm)

- [Acharya-Daskalakis-Kamath, NIPS’15]: upper bound of O(n/e?)

for n=m.
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L2 Closeness Testing

Lemma 1: Let p, g be unknown distributions on a domain of size n .
There is an algorithm that uses

O(min{|pl|2, llgll2}n/€”)

samples from each of p, g, and with probability at least 2/3
distinguishes between the cases that p = gand ||p — q||1 > €.

Basic Tester [Chan-D-Valiant-Valiant’14]:
« Calculate Z=2, {(X;- Y)*— X,- Y}

 If Z> &2m? then output “No” (different), otherwise, output “Yes”
(same)

Collision-based estimator also works [D-Gouleakis-Peebles-Price’16]



Main New ldea

Solve all problems by reducing to this as a black-box.



Framework and Results

« Approach: Reduction of L1 Testing to L2 testing

1) Transform given distribution(s) to new distribution(s) (over
potentially larger domain) with small L2 norm.

2) Use standard L2 tester as a black-box.

« Circumvents method of explicitly learning heavy elements
[Batu et al., FOCS’00]



Algorithmic Applications

Sample Optimal Testers for:

« |dentity to a Fixed Distribution Simpler

« Closeness between two Unknown Distributions Proofs of

* (Nearly) Instance-optimal Identity Testing Known
Results

» Closeness with unequal sample size u
« Adaptive Closeness Testing

* Independence (in any dimension)

» Properties of Collections of Distributions New
(Sample & Query model) ~  Results
Testing Histograms

Other Metrics (chi-squared, Hellinger)

=

All algorithms follow same pattern. Very simple analysis.
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Warm-up: Testing Identity to Fixed
Distribution (1)

Let p be unknown distribution and ¢ known distribution on[n].
Main Idea: “Stretch” the domain size to make L, norm of ¢ small.

« For every bin i € [n| create set S; of [ng; | new bins.
« Subdivide the probability mass of bin; equally within .S .

Let S be the new domain and p’, ¢’ the resulting distributions over S'.
/

q q

[ N«




Warm-up: Testing Identity to Fixed
Distribution (Il)

Let p be unknown distribution and ¢ known distribution on[n].

L1 Identity Tester
« Given g, construct new domain §.
« Use basic tester to distinguish between p’ = ¢’ and ||p' — ¢||1 > e.

We construct ¢’ explicitly. Can sample from p’ given sample from p.

Analysis:
Observation 1.

Observation 2:

\p’ — qu1 —

S| < 2nand

p—QH1

q'[l2 = O(1/+/n)

By Lemma 1, we can test identity between p’ and ¢’ with sample size

O(lld'll218]/€") = O(v/n/€?)



ldentity Reduces to Uniformity

« Summary of Previous Slides:

|ldentity reduces to its special case when the explicit distribution
has max probability O(1/n).

 Recent Improvement:
[Oded Goldreich’16]:

|ldentity Reduces to Uniformity.



Testing Closeness (l)
Let p, ¢ be unknown distributions on[n].
Main Idea: Use samples from ¢ to “stretch” the domain size.
- Draw a set S of Poi(k) samples from q.
* Let a; be the number of times we see i € [n] in S.
« Subdivide the mass of bin ¢ equally within a; + 1 new bins.
Let S’ be the new domain and p’, ¢’ the resulting distributions over S".

We can sample from p’, ¢’.

Observation: ||p" — ¢'l|l1 = ||lp — ¢l|1



Testing Closeness (ll)
Let p, ¢ be unknown distributions on|n].

L1 Closeness Tester
« Draw a set S of Poi(k) samples from g, construct new domain 5.
- Use basic tester to distinguish between p’ = ¢’ and||p’ — ¢'||1 > e.

Claim: Whp |S’'| < n+ O(k)and ||¢'||s = O(1/Vk).
Proof -
Ip'lI53 =322 pi /(L +a;), E[l/(1+a;)] <1/(kp;). O
By Lemma 1, we can test identity between p’ and ¢’ with sample size
O(llq'[[25|/€*) = O(k2 - (n+ k) /).
Total sample size
Ok + k=12 (n+Ek)/e?).

Set k := min{n,n?/3e 43},



Closeness with Unequal Samples

Let p, ¢ be unknown distributions on|n].
Have m + m+ samples from g and my samples from p.

L1 Closeness Tester Unequal

« Set k :=min{n,mq}.

 Draw Poi(k) samples from ¢, construct new domain S".

- Use basic tester to distinguish between p’ = ¢’ and||p’ — ¢'||1 > e.

Claim: Whp |S’] < n+ O(k) and ||¢'||2 = O(1/VE).

By Lemma 1, we can test identity between p" and ¢’ with sample size
my = O(||¢'[|2]5]/€*) = O(k™'/2 - (n + k) /€?).
By our choice of £, it follows

Mo = O(max{nml_l/262, nt’?/e?}).



Testing Independence in 2-d

Let p be unknown distribution on [n] x [m].
Let ¢ = p1 X pa.

L1 Independence Tester
« Setk := min{n, n2/3m1/36_4/3}.
« Draw a set.S; of Poi(k) samples from p1,
and S, of Poi(m)samples from p2.
« Stretch domain in each dimension to obtain new support.
. Use basic tester to distinguish between p’ = ¢’ and||p’ — ¢'||1 > €.

By Lemma 1, we can test identity between p’ and ¢’ with sample size
O(lld'1215'1/€*) = Ok~ *m~'/2 - mn/€?)

= O(max{n?*m'/3e= 42 (mn)'/?/e?})
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Future Directions ()

This Talk: Unified Technique for Testing Unstructured Discrete
Distributions.

Gives sample-optimal estimators for many properties in the literature.

Game Over?
* Recent line of work on Testing Structured Distributions
[D-Kane-Nikishkin, SODA'15 / FOCS’15 / ICALP’16]

« Dependence on error probability? [D-Gouleakis-Peebles-Price’17]
E.g., identity testing

O(y/nlog(1/8)/€* +log(1/5)/€?)

« Optimal Constants? Practically relevant question; requires new insights.
[Huang-Meyn IEEE TolT'14]




Future Directions (ll)

This Talk: Unified Technique for Testing Unstructured Discrete
Distributions.

Future Directions:

« High-Dimensional Structured Distributions

[Canonne-D-Kane-Stewart’16, Daskalakis-Pan’16, Daskalakis-Dikkala-
Kamath’16, D-Kane-Stewart’17]

» Other criteria (privacy, communication, etc.)

[Cai-Daskalakis-Kamath’17, Aliakbarpour-D-Rubinfeld’17, Acharya-Sun-
Zhang'17, D-Grigorescu-Onak-Natarajan’16]

« Beyond Worst-Case Analysis

Thank you for your attention!



