High-Dimensional Distribution Testing

Constantinos “Costis” Daskalakis
CSAIL and EECS, MIT
What properties do your BIG distributions have?
e.g. 1 Testing Uniformity

- Consider source \(p \) generating \(n \)-bit strings \(\in \{0,1\}^n \)
 - 0011010101 (sample 1)
 - 0101001110 (sample 2)
 - 0011110100 (sample 3)
 - ...
- Is \(p = U_{\{0,1\}^n} \) or is it far from uniform?
e.g.2: Linkage Disequilibrium

Single Nucleotide Polymorphisms (SNPs), are they independent?

Suppose n loci, 2 possible states each, then:
- state of one’s genome $\in \{0,1\}^n$
- **humans:** some distribution ρ over $\{0,1\}^n$

Question: Is ρ a product dist’n **OR** *far* from all product dist’n’s?

1000 samples (you patients)
e.g.3: Behavior in a Social Network

Q: Are nodes behaving independently or far from independently?

Q’: Do adopted technologies exhibit weak or strong network effects?
Problem formulation

Distribution Property:

\(\mathcal{P} \): subset of all distributions over \(D = \Sigma^n \)
- e.g. \(\mathcal{P} = \) product measures, \(\mathcal{P} = \{ \text{uniform distribution over } D \} \)

Problem:

Given: samples from unknown \(p \)

w/ prob \(\geq 0.9 \), distinguish: \(p \in \mathcal{P} \) vs \(d(p, \mathcal{P}) > \varepsilon \)

Objective

Minimize sample and time complexity \(\ll |D| \)?

[Acharya-Daskalakis-Kamath NIPS’15]: A broad set of properties \(\mathcal{P} \) can be tested efficiently from an optimal \(\Theta \left(\sqrt{|D|/\varepsilon^2} \right) \) number of samples.

- e.g. monotonicity and independence of high-dimensional dist’n’s, unimodality, log-concavity, monotone-hazard rate of one-dimensional dist’n’s
- c.f. [Paninski’04], [Valiant-Valiant’14], [Canonne et al’16]

The sample complexity of \(\Theta \left(|\Sigma|^{n/2}/\varepsilon^2 \right) \) is optimal, but unsettling
What do we *really* know about our BIG distributions of interest?
Inspecting the LB Instance

- **Task**: Distinguish $p = U_{\{0,1\}^n}$ vs $d_{TV}(p, U_{\{0,1\}^n}) > \varepsilon$?
 - [Paninski’04]: $\Theta\left(\frac{2^{n/2}}{\varepsilon^2}\right)$ samples are necessary and sufficient
 - “Proof:"
 - Universe 1: p is uniform over $\{0,1\}^n$
 - Universe 2: p is randomly chosen as follows
 - if u, v differ only in last bit, set $(p_u, p_v) = \left(\frac{1}{2^n} (1 \pm \varepsilon), \frac{1}{2^n} (1 \mp \varepsilon)\right)$
 - average distribution in Universe 2 = uniform (formally use LeCam)

- To index a dist’n in Universe 2, need $2^n/2$ bits
- Nature doesn’t have this many bits
 - often high dimensional systems have structure,
 - modeled as Markov Random Fields (MRFs), Bayesian Networks, etc

Testing high-dimensional distributions with structure?
Today’s Menu

• Motivation
• Testing Bayesian Networks
• Testing Ising Models
• Closing Thoughts
Today’s Menu

• Motivation
• Testing Bayesian Networks
• Testing Ising Models
• Closing Thoughts
Bayesian Networks

- Probability distribution defined in terms of a DAG $G = (V, E)$
- Nodes v associated w/ random variable $X_v \in \Sigma$
- Distribution factorizable in terms of parenthood relationships

$$\Pr(x) = \prod_v \Pr_{X_v|X_{\Pi_v}}(x_v|x_{\Pi_v}), \forall x \in \Sigma^V$$

Parents of v in G

$$\Pr[\vec{x}] = \Pr[x_1] \cdot \Pr[x_2] \cdot \Pr[x_3|x_1,x_2] \cdot \Pr[x_4|x_3] \cdot \Pr[x_5|x_3,x_4]$$
Testing Bayesian Networks

Bayesnet P on DAG G with:
- n nodes
- in-degree d

$X^1, X^2, ...$

Bayesnet Q on DAG H with:
- n nodes
- in-degree d

$... Y^2, Y^1$

Goal: distinguish $P = Q$ vs $d_{TV}(P, Q) > \varepsilon$

[Daskalakis-Pan COLT’17]: There exist efficient testers using:
- $\tilde{O}\left(\frac{|\Sigma|^{0.75(d+1)n}}{\varepsilon^2}\right)$ samples, if DAGs $G = H$ and unknown
- $\tilde{O}\left(\frac{|\Sigma|^{9/2n}}{\varepsilon^2}\right)$ samples, if G and H are unknown and potentially different trees

Moreover, the dependence on n, ε of both bounds is tight up to a $O(\log n)$ factor, and the exponential in d dependence is necessary and essentially tight.

[Canonne et al. COLT’17]: Identify conditions under which dependence on n can be made \sqrt{n} when one of the two Bayesnets is known (goodness-of-fit problem)
Testing Bayesian Networks (cont’d)

Goal: distinguish $P = Q$ vs $d_{TV}(P, Q) > \varepsilon$

Idea: distance localization
- prove statements of the form: “If P and Q are far in TV, there exists a small size witness set S of variables such that P_S and Q_S, the marginals of P and Q on variables S, are also somewhat far away”
- reduces the original problem to identity testing on small size sets

Question: which distance to localize in?

Attempt 1:
\[d_{TV}(P, Q) \leq \sum_v d_{TV}(P_{v \cup \Pi_v}, Q_{v \cup \Pi_v}) + \sum_v d_{TV}(P_{\Pi_v}, Q_{\Pi_v}) \] (hybrid argument)
- Hence: $d_{TV}(P, Q) > \varepsilon \Rightarrow \exists v$ s. t. $d_{TV}(P_{v \cup \Pi_v}, Q_{v \cup \Pi_v}) > \frac{\varepsilon}{2n}$ or $d_{TV}(P_{\Pi_v}, Q_{\Pi_v}) > \frac{\varepsilon}{2n}$
- But leads to suboptimal sample complexity $\Omega_{d, |\Sigma|} \left(\frac{n^2}{\varepsilon^2} \right)$

Attempt 2:
\[KL(P||Q) \leq \sum_v KL(P_{v \cup \Pi_v}||Q_{v \cup \Pi_v}) \] (chain rule of KL)
- Hence: $d_{TV}(P, Q) > \varepsilon \Rightarrow KL(P||Q) > 2\varepsilon^2 \Rightarrow \exists v$ s. t. $KL(P_{v \cup \Pi_v}||Q_{v \cup \Pi_v}) > \frac{2\varepsilon^2}{n}$
- But KL testing requires infinitely many samples, b.c. of low probability events ☹
Testing Bayesian Networks (cont’d)

Goal: distinguish $P = Q$ vs $d_{TV}(P, Q) > \varepsilon$

Idea: distance localization
- prove statements of the form: “If P and Q are far in TV, there exists a small size witness set S of variables such that P_S and Q_S, the marginals of P and Q on variables S, are also somewhat far away”
- reduces the original problem to identity testing on small size sets

Attempt 3: Use Hellinger distance!
- Defined as: $H(P, Q) = \frac{1}{\sqrt{2}} \cdot \sqrt{\sum_x \left(\sqrt{P(x)} - \sqrt{Q(x)} \right)^2}$
- Satisfies: $d_{TV}(P, Q) \leq \sqrt{2} \cdot H(P, Q) \leq \sqrt{KL(P||Q)}$

We show that H^2 satisfies subadditivity over neighborhoods:

$$H^2(P, Q) \leq \sum_v H^2(P_{v\cup \Pi_v}, Q_{v\cup \Pi_v})$$

Hence: $d_{TV}(P, Q) > \varepsilon \Rightarrow \exists v$ s. t. $H^2(P_{v\cup \Pi_v}, Q_{v\cup \Pi_v}) > \frac{\varepsilon^2}{2n}$

c.f. G’s talk: distinguishing $H^2(P_{v\cup \Pi_v}, Q_{v\cup \Pi_v}) = 0$ versus $> \frac{\varepsilon^2}{2n}$, requires $O_{d,|\Sigma|} \left(\frac{n}{\varepsilon^2} \right)$ samples
Today’s Menu

• Motivation
• Testing Bayesian Networks
• Testing Ising Models
• Closing Thoughts
Ising Model

- Probability distribution defined in terms of a graph $G = (V, E)$
- State space $\{\pm 1\}^V$
- Given edge potentials θ_e, node potentials θ_v:
 \[
 p_\theta(x) \propto \exp \left(\sum_{e=(u,v) \in E} \theta_e x_u x_v + \sum_{v \in V} \theta_v x_v \right)
 \]
- High $|\theta_e|$’s \implies strongly (anti-)correlated spins
- Statistical physics, computer vision, neuroscience, social science
Ising Model: Strong vs weak ties

“low temperature regime”

“high temperature regime”

\(\theta_e = 1 \quad \theta_e = 0.5 \quad \theta_e = 0.25 \quad \theta_e = 0.125 \quad \theta_e = 0 \)
Testing Ising Models

$$p_\theta(x) \propto \exp \left(\sum_{(u,v)} \theta_{uv} x_u x_v + \sum_{v \in V} \theta_v x_v \right)$$

• **Identity Testing:** Given sample access to two Ising models p_θ and p_θ', distinguish $p_\theta = p_\theta'$ vs $d_{\text{TV}}(p_\theta, p_\theta') > \varepsilon$

• **Independence Testing:** Given sample access to an Ising model p_θ, distinguish $p_\theta \in I_{\{\pm 1\}^V}$ vs $\ell_1 \left(p_\theta, I_{\{\pm 1\}^V} \right) > \varepsilon$

• **[w/ Dikkala, Kamath SODA’18]:** small-poly $\left(n, \frac{1}{\varepsilon}\right)$ samples suffice to do this efficiently
 - Poly depends on the regime: high vs low temperature, ferromagnetic ($\theta_{uv} \geq 0$, $\forall u, v$) vs non-ferromagnetic, non-external fields ($\theta_v = 0$, $\forall v$) vs external fields, tree vs general graph, independence vs identity, etc.
 - Technical vignettes: localization, concentration of measure
Testing Ising Models

\[p_\theta(x) \propto \exp \left(\sum_{(u,v)} \theta_{uv} x_u x_v + \sum_{v \in V} \theta_v x_v \right) \]

- **Identity Testing:** Given sample access to two Ising models \(p_\theta \) and \(p_{\theta'} \), distinguish \(p_\theta = p_{\theta'} \) vs \(d_{TV}(p_\theta, p_{\theta'}) > \varepsilon \)

- **Independence Testing:** Given sample access to an Ising model \(p_\theta \), distinguish \(p_\theta \in \mathcal{I}_{\{\pm 1\}}^V \) vs \(\ell_1 \left(p_\theta, \mathcal{I}_{\{\pm 1\}}^V \right) > \varepsilon \)

- **[w/ Dikkala, Kamath SODA’18]:** small-poly \(\left(n, \frac{1}{\varepsilon} \right) \) samples suffice to do this efficiently
 - Poly depends on the regime: high vs low temperature, ferromagnetic \((\theta_{uv} \geq 0, \forall u, v) \) vs non-ferromagnetic, non-external fields \((\theta_v = 0, \forall v) \) vs external fields, tree vs general graph, independence vs identity, etc.
 - Technical vignettes: localization, concentration of measure
Testing Ising Models

• **Identity Testing:** Given sample access to two Ising models p_θ and $p_{\theta'}$,
 distinguish $p_\theta = p_{\theta'}$ vs $d_{TV}(p_\theta, p_{\theta'}) > \varepsilon$

• **Independence Testing:** Given sample access to an Ising model p_θ,
 distinguish $p_\theta \in J_{\{\pm 1\}^V}$ vs $\ell_1(p_\theta, J_{\{\pm 1\}^V}) > \varepsilon$

• Bi-linear functions of the Ising model serve as useful distinguishing statistics

• For $X \sim p_\theta$ consider:
 $$f(X) = \sum_{u,v} c_{uv}(X_u - E[X_u])(X_v - E[X_v]),$$
 where say $c_{uv} \in [\pm 1]$

• **Technical Challenge:** can’t bound $\text{Var}[f(X)]$ intelligently

 - If $\theta_{uv} = 0, \forall uv$, then $\text{Var}[f(X)] = n^2$
 - O.w. best can say is (trivial) $\text{Var}[f(X)] = O(n^4)$

 -- and, in fact, this is tight
 - consider two disjoint cliques with super-strong θ_{uv}'s inside, 0 across, and all θ_v's zero everywhere
 - suppose also $c_{u,v} = 1$, for all u, v
 - Then $f(X)$ dances around its mean by $\Omega(n^2)$

Low temperature. How about high temperature?

\[\theta_{uv} = +\infty \]
High Temperature Ising

- Several conditions
- Dobrushin’s uniqueness criterion:
 \[
 \max_v \sum_{u \neq v} \tanh(|\theta_{uv}|) < 1
 \]
- Think:
 \[
 \max_v \sum_{u \neq v} |\theta_{uv}| < 1
 \]
- Implies:
 - $O(n \log n)$ mixing of natural MC
 - Correlation decay properties
Ising Model: Strong vs weak ties

“low temperature regime”

Exponential mixing of the Glauber dynamics

“high temperature regime”

$\theta_e = 1 \quad \theta_e = 0.5$

$\theta_e = 0.25 \quad \theta_e = 0.125 \quad \theta_e = 0$

$O(n \cdot \log n)$ mixing of the Glauber dynamics
Testing Ising Models

- **Identity Testing:** Given sample access to two Ising models \(p_\theta \) and \(p_{\theta'} \),

 distinguish \(p_\theta = p_{\theta'} \) vs \(d_{TV}(p_\theta, p_{\theta'}) > \varepsilon \)

- **Independence Testing:** Given sample access to an Ising model \(p_\theta \),

 distinguish \(p_\theta \in \mathcal{J}_{\{\pm 1\}^V} \) vs \(\ell_1(p_\theta, \mathcal{J}_{\{\pm 1\}^V}) > \varepsilon \)

- Bi-linear functions of the Ising model serve as useful distinguishing statistics.

- For \(X \sim p_\theta \) consider:

 \[
 f(X) = \sum_{u,v} c_{uv}(X_u - E[X_u])(X_v - E[X_v])
 \]

- Low temperature: \(Var[f(X)] = O(n^4) \)

- **[w/ Dikkala, Kamath]:** High temperature: \(Var[f(X)] = O(n^2) \)

 — proof by tightening exchangeable pair technology [Stein, ..., Chatterjee 2006]
Concentration of Measure

\[p_\theta(x) \propto \exp \left(\sum_{(u,v)} \theta_{uv} x_u x_v + \sum_{v \in V} \theta_v x_v \right) \]

- [w/ Dikkala, Kamath NIPS’17]: Under high temperature, any centered polynomial function of the Ising model concentrates essentially as well as if the variables where independent.

- High temperature = Dobrushin’s condition holds, think \(\| [\theta_{uv}] \|_\infty < 1 \)

- Centered multi-linear function of degree \(d \):

\[
f(X) = \sum_{s, |s| \leq d} c_s \prod_{v \in s} (X_v - E[X_v])
\]

- Essentially as well as if the variables where independent:

\[
\Pr[|f(X) - E[f(X)]| > r] \leq \exp \left(-\Omega_d \left(\frac{r^2}{n \log n} \right) \right)
\]

- Improves from known concentration results on Lipschitz fn’s of Ising model
 - \(n^{d-0.5} \rightarrow n^{d/2} \) radius of concentration
Using Concentration to Test

- \(p_\theta(x) \propto \exp\left(\sum_{(u,v)} \theta x_u x_v + \sum_{v \in V} \theta_v x_v \right) \)

- Is it high-temperature Ising \(\left(\theta < \theta_c = \frac{\ln(1+\sqrt{2})}{2} \right) \)?

One is a sample from a product measure, the other is product measure but every node selects a friend or friend of friend and copies him with probability \(\tau \)

Bilinear statistics catch the deviation at 10x smaller \(\tau \) value compared to MLE on \(\theta \) and comparison to \(\theta_c \)
Testing Weak vs Strong Network Ties

e.g. Who listens to the Beatles?

Q: Given one sample (from last.fm dataset) of who does/doesn’t listen to a particular band, can we reject the hypothesis that this decision comes from high-temperature Ising model (lack of long range correlation)?

A: we can for Taylor Swift, Britney Spears, Katy Perry, Rihanna, Lady Gaga; we cannot for Beatles and Muse
Conclusions

• Testing properties of high-dimensional distributions requires exponentially many samples
• Making assumptions about the distribution being sampled gives leverage
• [w/ Pan COLT’17]: Testing Bayes nets with linearly many samples
• [w/ Dikkala, Kamath SODA’18]: Testing Ising models with polynomially many samples
• [w/ Dikkala, Kamath NIPS’17]: Testing weak vs strong ties from one sample
Testing from a Single Sample

• Given one social network, one brain, etc., how can we test the validity of a certain generative model?
• Ongoing with Aliakbarpour-Rubinfeld-Zampetakis, testing preferential attachment models
Testing Markov Chains

- Given one trajectory of an unknown Markov Chain M, whose starting state we cannot control, can we test whether it came from a given Markov Chain M^* over n states?
- **Question**: test $M = M^*$ vs $\text{dist}(M, M^*) > \varepsilon$

- **[Ongoing w/ Dikkala, Gravin]**: We propose a distance measure capturing the limiting behavior of the TV distance between trajectories of the two chains

 \[
 \text{dist}(M, M^*) = 1 - \rho \left(\sqrt{M_{ij} \cdot M^*_{ij}} \right)
 \]

- Show that one trajectory of n/ε^2 length suffices

Thanks!