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What properties do your BIG
distributions have?




e.g. 1 Testing Uniformity

n bit
images

« Consider source p generating n-bit strings € {0,1}"
— 0011010101 (sample 1)
— 0101001110 (sample 2)
— 0011110100 (sample 3)

* Is p=Ugpqn or isitfarfrom uniform?




e.g.2: Linkage Disequilibrium

Genome . . .

locus 1 locus 2 locus n

Single Nucleotide Polymorphisms (SNPs), are they independent?

Suppose n loci, 2 possible states each, then:
* state of one’s genome € {0,1}"
* humans: some distribution p over {0,1}"

Question: Is p a product dist'n OR far from all product dist’'ns?

1000 samples (you patients)



e.g.3: Behavior in a Social Network

@@

s d o J
Q: Are nodes behaving independently or far from independently?

Q’: Do adopted technologies exhibit weak or strong network
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Problem formulation

Ristribution Property:

P: subset of all distributions over D = X"
—  e.g. P =product measures, P = {uniform distribution over D}

Problem:
Given: samples from unknown p ﬁT\ch G’s talk)

w/ prob > 0.9, distinguish: p € P vs d(p,P) > ¢

Objective
Minimize sample and time complexity

[Acharya-Daskalakis-Kamath NIPS’15]: A broad set of properties P can be
tested efficiently from an optimal © (\/ |D|/82) number of samples.

* e.g. monotonicity and independence of high-dimensional dist’ns, unimodality,
log-concavity, monotone-hazard rate of one-dimensional dist’ns

* c.f. [Paninksi’04], [Valiant-Valiant’14], [Canonne et al’16]

The sample complexity of G)(IZ'I"/Z/SZ) is optimal, but unsettling



What do we really know about our BIG
distributions of interest?




Inspecting the LB Instance

 Task: Distinguish p = Ugp1yn Vs dTV(p, U{O’l}n) > €7

2?1/2

— [Paninski’04]: ® (

— “Proof:”

* Universe 1: p is uniform over {0,1}"
* Universe 2: p is randomly chosen as follows

= ) samples are necessary and sufficient

u.a.r.

— if u, v differ only in last bit, set (p,, p,) = (zin (1+ 6),2% (1+e) )

 average distribution in Universe 2 = uniform (formally use LeCam)

* To index a dist’n in Universe 2, need 2™ /2 bits

* Nature doesn’t have this many bits
— often high dimensional systems have structure,
— modeled as Markov Random Fields (MRFs), Bayesian Networks, etc

Testing high-dimensional distributions with structure?
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Bayesian Networks

* Probability distribution defined in terms of a DAG G = (V,E)
* Nodes v associated w/ random variable X, € X
* Distribution factorizable in terms of parenthood relationships

Pr(x) = 1_[ Pry,ixm, (xplxm,), Vx € 2V
v

Parents of vin G ]

Pr(x] = Prlx] - Prlx,] - Prlxs|xq, x;] - Prlxg|xs] - Prixs| xs, x4]



Testing Bayesian Networks

Bayesnet P on Bayesnet Q on
DAG G with: X1 x2, ... DAG H with:

- n nodes
- in-degree d

- n nodes
- in-degree d

Goal: distinguishP = Q vs dpy(P,Q) > ¢

[Daskalakis-Pan COLT’17]: There exist efficient testers using:

- |E|0'75 (d+1)n
-0 ( = ) samples, if DAGs G= H and unknown

- 9/2
0 (IEI /'
&£
Moreover, the dependence on n, € of both bounds is tight up to a O(logn) factor, and the
exponential in d dependence is necessary and essentially tight.

) samples, if G and H are unknown and potentially different trees

[Canonne et al. COLT’17]: Identify conditions under which dependence on n can be made
\/n when one of the two Bayesnetsis known (goodness-of-fit problem)



Testing Bayesian Networks (cont’d)

Goal: distinguishP = Q vs dy(P,Q) > ¢

Idea: distance localization

* prove statements of the form: “If P and Q are far in TV, there exists a small size witness set
S of variables such that P and Qg, the marginals of P and Q on variables S, are also
somewhat far away”

* reducesthe original problem to identity testing on small size sets

Question: which distanceto localize in?

Attempt 1: dry (P, Q) < Xy drv (Pyun,, Quun,) + Xv d1v (Pr,, Qn,) (hybrid argument)

& &
* Hence: dTv(P, Q) > & = 3Jvus.t. dTV(PUUHvJ QUUHU) > g or dTv(an, an) > g

2
* Butleads to suboptimal sample complexity 4 |5 (%)

Attempt 2: KL(P||Q) < ¥, KL (Pyum, ||Qpun,)  (chain rule of KL)

2
+ Hence: dry(P,Q) > & = KL(P||Q) > 2e% = 3vs.t. KL(Poun,||Quun,) > =
* But KL testing requires infinitely many samples, b.c. of low probability events ®



Testing Bayesian Networks (cont’d)

Goal: distinguishP = Q vs dy(P,Q) > ¢

Idea: distance localization

* prove statements of the form: “If P and Q are far in TV, there exists a small size witness set
S of variables such that P and Qg, the marginals of P and Q on variables S, are also
somewhat far away”

* reducesthe original problem to identity testing on small size sets

Attempt 3: Use Hellinger distance!

2
* Definedas: H(P,Q) = % ' \/Zx (\/P(x) — \/Q(x))
« Satisfies:dty(P,Q) <V2-H(P,Q) < /KL(P||Q)

We show that H? satisfies subadditivity over neighborhoods:

HA(P,Q) < ) H? (Pun, Quun,)

2
Hence:dTV(P, Q) > £ D 317 S.t. Hz(PvUHv’ Qvul'lv) > ;_n

, L. e g? , n
c.f. G’s talk: distinguishing H? (Pwnv, anv) = 0 versus > o requires Oa,5| (;) samples
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Ising Model

* Probability distribution defined in terms of a graph ¢ = (V,E)
* State space {+1}"
* Given edge potentials 8,, node potentials 6,

pg(x)ocexp( Z 0,x,%, +Zex)

e=(u,v)€EE VeV
2-D Ising Model

— High |0,|'s = strongly (anti-)correlated spins
» Statistical physics, computer vision, neuroscience, social science
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Ising Model: Strong vs weak ties

“low temperature regime”
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Testing Ising Models
o (x)  exp ( PLEZEDY evxv)

(u,v) vVEV

e Identity Testing: Given sample access to two Ising models pg and pyr,

distinguish Po = Do’ VS dTv(pg,par) > £
* Independence Testing: Given sample access to an Ising model pg,

distinguish pg € 7,0y vs €1 (pe,Ta0yv) > €

product measures

1 . :
* [w/ Dikkala, Kamath SODA’18]: small-poly (n, E) samples suffice to do this
efficiently
— Poly depends on the regime: high vs low temperature, ferromagnetic (6, = 0, Vu, v) vs
non-ferromagnetic, non-external fields (68,= 0, Vv) vs external fields, tree vs general
graph, independence vs identity, etc.

— Technical vignettes: localization, concentration of measure
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Testing Ising Models

Identity Testing: Given sample access to
two Ising models pgy and pyr, pe(x) o exp ( Z 00Xy Xy + Z vav)
distinguishpg = pyr vs dryv(pe,per) > € (wv) VEV

Independence Testing: Given sample access to an Ising model pg,

distinguish py € Jepv s £ (}'Jg,j{il}v’) > €

Bi-linear functions of the Ising model serve as useful distinguishing statistics
For X ~ pg consider:
f(X) = Eu,v Cuv(Xu_E[Xu])(Xv - E[Xv])r where Say Cyyp € [il]

Technical Challenge: can’t bound Var[f (X)] intelligently

Low temperature.

If 6, = 0, Vuv, then Var[f (X)] = n? How about high
O.w. best can say is (trivial) Var[f (X)] = 0(n*) temperature?
— and, in fact, this is tight

* consider two disjoint cliques with super-strong 6,,,,s
inside, 0 across, and all 8,,’s zero everywhere

* suppose also ¢, ,, = 1, forallu, v euv = +00 qu
* Then f(X) dances around its mean by Q(nz)



High Temperature Ising

» Several conditions
* Dobrushin’s uniqueness criterion:

mjlxz tanh(]6,,]) < 1

U#v

maxZIqul <1
v

U*v

 Think:

* Implies:
— 0(nlogn) mixing of natural MC
— Correlation decay properties
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Testing Ising Models

Identifcy Testing: Given sample access to pe(x) < exp ( Z 0,0, Xy Xy, + Z vav)
two Ising models py and py7, (o) =4

distinguishpg = pyr vs dyy(pe,per) > €
Independence Testing: Given sample access to an Ising model pg,

distinguish pg € I v vs 44 (pg,?{il}v) > €

Bi-linear functions of the Ising model serve as useful distinguishing statistic:
For X ~ pg consider:

f(X) = Z Cuv(Xu_E[XuD(Xv - E[Xv])

u,v

Low temperature: Var[f(X)] = 0(n*)
[w/ Dikkala, Kamath]: High temperature: Var[f(X)] = 0(n?)
— proof by tightening exchangeable pair technology [Stein,...,Chatterjee 2006]



Concentration of Measure

P (x) < exp (Z B0k X + Z vav)

(w,v) vVEV

‘e [W/ Dikkala, Kamath NIPS’17]: Under high temperature, any centered polynomial
function of the Ising model concentrates essentially as well as if the variables
where independent.

* High temperature = Dobrushin’s condition holds, think [|[0,,]]l. < 1
* Centered multi-linear function of degree d:

FoO= ) o | [t -ElGD

S|S[sd  veS

* Essentially as well as if the variables where independent:

2
Pr{lf(X) = E[fCOll > 7] < exp _'Qd( - )

nlogn

* |Improvesfrom known concentration results on Lipschitz fn’s of Ising model

— n9705 5 na/2 radius of concentration



Using Concentration to Test

pe (x) X exp (Z gx, 5 + Z vav)

(u,v) vVEV

In(1+v/2)
ok

* Isit high-temperature Ising (9 <0, =

One is a sample from a product measure, the other is product measure but
every node selects a friend or friend of friend and copies him with probability T

Bilinear statistics catch the deviation at 10x smaller T value compared to MLE
on 6 and comparisonto 6,



Testing Weak vs Strong Network Ties

e.g. Who listens to the Beatles?
Beifies =
\ Beagies |

) ot ( By
BE&_"fl_ES

Q: Given one sample (from last.fm dataset) of who does/doesn’t listen to
a particular band, can we reject the hypothesis that this decision comes
from high-temperature Ising model (lack of long range correlation)?

A: we can for Taylor Swift, Britney Spears, Katy Perry, Rihanna, Lady
Gaga; we cannot for Beatles and Muse



Conclusions

Testing properties of high-dimensional distributions
requires exponentially many samples

Making assumptions about the distribution being
sampled gives leverage

[w/ Pan COLT’17]: Testing Bayes nets with linearly
many samples

[w/ Dikkala, Kamath SODA’18]: Testing Ising models
with polynomially many samples

[w/ Dikkala, Kamath NIPS’17]: Testing weak vs strong
ties from one sample



Testing from a Single Sample

* Given one social network, one brain, etc., how can
we test the validity of a certain generative model?

* Ongoing with Aliakbarpour-Rubinfeld-Zampetakis,
testing preferential attachment models




Testing Markov Chains

 Given one trajectory of an unknown Markov Chain M, whose
starting state we cannot control, can we test whether it came
from a given Markov Chain M™ over n states?

* Question:test M = M* vs dist(M,M*) > ¢

How to quantify distance
between Markov chains?

* [Ongoing w/ Dikkala, Gravin]: We propose a distance
measure capturing the limiting behavior of the TV distance
between trajectories of the two chains

diSt(M,M*) =1 _p(\/MU : M:})

* Show that one trajectory of n/e? length suffices

Thanks!




