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Background, Context, and
Motivation



Property Testing

Sublinear-time,

approximate, randomized decision algorithms that make
local queries to their input.

• Big Dataset: too big
• Expensive access: pricey data
• “Model selection”: many options
• Good Enough: a priori knowledge

Need to infer information – one bit – from the data: quickly, or with very
few lookups.
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Property Testing

Figure 1: Property Testing: Inside the yolk, or outside the egg.
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Property Testing

Introduced by [RS96, GGR98] – has been a very active area since.

• Known space (e.g., {0, 1}N)
• Property P ⊆ {0, 1}N

• Oracle access to unknown x ∈ {0, 1}N

• Proximity parameter ε ∈ (0, 1]

Must decide

x ∈ P vs. dist(x,P) > ε

(has the property, or is ε-far from it)

Many variants, subareas, with a plethora of results (see
e.g. [Ron08, Ron10, Gol10, Gol17, BY17]).
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Distribution Testing

Now, our “big object” is a probability distribution over a (discrete*)
domain Ω (e.g., Ω = [n]).

• instead of queries: samples*
• instead of Hamming distance: total variation*
• instead of functions/graphs/strings: distributions

Focus on the sample complexity, with efficiency as ancillary goal.

*usually.
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Background

Over the past 15+ years, many results on many properties:

• Uniformity: Θ(
√n/ε2) [GR00, BFR+00, Pan08, DGPP16]

• Identity: Θ(
√n/ε2), Φ(p,Θ(ε)) [BFF+01, VV14, DKN15, BCG17]

• Equivalence: Θ(n2/3/ε4/3) [BFR+00, Val11, CDVV14, DK16]
• Independence: Θ(m2/3n1/3/ε4/3) [BFF+01, LRR13, DK16]
• Monotonicity: Θ(

√n/ε2) [BKR04, BFRV11, ADK15]
• Poisson Binomial Distributions: Θ̃(n1/4/ε2) [AD15, CDGR16, CDS17]
• histograms, MHR, log-concavity, k-wise independence, SIIRV, PMD,

clusterability, juntas… and it goes on. [Rub12, Can15]

So much has been done; and yet so much remains…

Caveat: The above is not entirely accurate, and only the (usually) dominant term is included. For instance, the sample complexity of
equivalence is actually Θ(max(n2/3/ε4/3,√n/ε2)); for monotonicity, the current best upper bound has an additional 1/ε4 term,
while for PBDs the lower bound of Ω(n1/4/ε2) is almost matched by an O(n1/4/ε2 + log2(1/ε)/ε2) upper bound. Don’t sue me.
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Many questions remain

Techniques
Most algorithms, results are somewhat ad hoc, and property-specific.

Hardness
Most properties are depressingly hard to test: Ω(

√
n) samples are

required.

Tolerance and estimation
Testing is good; but what about tolerant testing and functional
estimation?

Beyond?
Only a preliminary step! What if…
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Some Notation



Glossary

• Probability distributions over discrete Ω (e.g. [n] := {1, . . . , n})

∆([n]) =
{

p : Ω → [0, 1] :
∑
i∈Ω

p(i) = 1
}

• Property (or class) of distributions over Ω:

P ⊆ ∆(Ω)

• Total variation distance (statistical distance, ℓ1 distance):

dTV(p, q) = sup
S⊆Ω

(p(S)− q(S)) = 1
2
∑
x∈Ω

|p(x)− q(x)| ∈ [0, 1]

Domain size/parameter n ∈ N is big (“goes to ∞”). Proximity parameter
ε ∈ (0, 1] is small. Lowercase Greek letters are in (0, 1]. Asymptotics Õ,
Ω̃, Θ̃ hide logarithmic factors.*
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P ⊆ ∆(Ω)

• Total variation distance (statistical distance, ℓ1 distance):

dTV(p, q) = sup
S⊆Ω

(p(S)− q(S)) = 1
2
∑
x∈Ω

|p(x)− q(x)| ∈ [0, 1]

Domain size/parameter n ∈ N is big (“goes to ∞”). Proximity parameter
ε ∈ (0, 1] is small. Lowercase Greek letters are in (0, 1].

Asymptotics Õ,
Ω̃, Θ̃ hide logarithmic factors.*
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General Approaches, Unified
Paradigms, and Many-Birded
Stones



Testing By Learning

Trivial baseline in property testing: “you can learn, so you can test.”

(i) Learn p without assumptions using a learner for ∆(Ω)

(ii) Check if dTV(p̂,P) ≤ ε
3 (Computational)

Yes, but…
(i) has sample complexity Θ(n/ε2).
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Testing By Learning

“Folklore” baseline in property testing: “if you can learn, you can test.”

(i) Learn p as if p ∈ P using a learner for P
(ii) Test dTV(p̂, p) ≤ ε

3 vs. dTV(p̂, p) ≥ 2ε
3

(iii) Check if dTV(p̂,P) ≤ ε
3 (Computational)

The triangle inequality does the rest.
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Testing By Learning?

“Folklore” baseline in property testing: “if you can learn, you can test.”

(i) Learn p as if p ∈ P using a learner for P
(ii) Test if dTV(p̂, p) ≤ ε

3 vs. dTV(p̂, p) ≥ 2ε
3

(iii) Check if dTV(p̂,P) ≤ ε
3 (Computational)

Not quite.
(ii) fine for functions. But for distributions? Requires Ω( n

log n )

samples [VV11a, JYW17]
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Testing By Learning!

All is doomed, there is no hope, and every dream ends up shattered on
this unforgiving Earth.

Although…

(i) Learn p as if p ∈ P using a learner for P in χ2 distance
(ii) Test if χ2(p̂ || p) ≤ ε2 vs. dTV(p̂, p) ≥ 2ε

3

(iii) Check if dTV(p̂,P) ≤ ε
3 (Computational)

Success.
Acharya, Daskalakis, and Kamath [ADK15]: now (i) is harder, but (ii)
becomes cheap!
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Testing By Learning!

All is not doomed, there is some hope, and not every dream ends up
shattered on this unforgiving Earth.

And…

(i) Test that p satisfies a strong structural guarantee of P: succinct
approximation by histograms (“shape restrictions”)

(ii) Learn p efficiently (in a weird KL/ℓ2 sense) using this structure
(iii) Check if dTV(p̂,P) ≤ ε

3 (Computational)

Success.
Canonne, Diakonikolas, Gouleakis, and Rubinfeld [CDGR16]: now
dTV(p̂, p) ≤ O(ε) comes for free!
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Testing By Learning!

All is hope, there is no doom, and every dream ends up bright and shiny
on this wonderful Earth.

And…

(i) Test that p satisfies a strong structural guarantee of P: nice
discrete Fourier transform (Fourier sparsity)

(ii) Learn p efficiently (in ℓ2 sense) using this structure
(iii) Check if dTV(p̂,P) ≤ ε

3 (Computational)

Success.
Canonne, Diakonikolas, and Stewart [CDS17]: “all your (Fourier) basis
are belong to…”
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Testing in TV via ℓ2

Testing in ℓ2 distance is well-understood [CDVV14]; testing in TV ℓ1) is
trickier.

Can we reduce one to the other?

(i) Map p ∈ ∆([n]) to a “nicer, smoother” p′ ∈ ∆([O(n)])
(ii) Test p′ using an ℓ2 tester
(iii) That’s all.

Success.
Diakonikolas and Kane [DK16]: “It works.”
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Tolerant Testing and Estimation

Theorem (Everything is n
log n )

Pretty much every tolerant testing question or functional estimation
(entropy, support size, …) has sample complexity Θε(

n
log n ).

Technically, and as Jiantao’s talk will describe: a more accurate description is that whatever estimation can be performed in k log k
samples via the plug-in empirical estimator, the optimal scheme does with k. “Enlarge your sample,” if you will.
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Tolerant Testing and Estimation

• Paul Valiant [Val11]: the canonical tester for symmetric properties
(not quite, but near-optimal)

• Valiant–Valiant [VV11a]: learn the histogram with O( n
ε2 log n )

samples, then plug in – and we’re done
• Valiant–Valiant [VV11b]: actually, can even do it with a linear

estimator
• Acharya, Das, Orlitsky, Suresh [ADOS17]: actually, the (Profile)

Maximum Likelihood Estimator (PMLE) does it
• Jiao et al. [JVHW15], Wu and Yang [WY16]: actually, best

polynomial approximation is the tool for the job
• Han, Jiao, and Weissman [HJW17]: actually, moment-matching is

also the tool for the job
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General Approaches To Sadness, Too

Unified algorithms and techniques for upper bounds are nice, but what
about this feeling of despair in the face of impossibility?
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General Approaches To Sadness, Too

• Paul Valiant [Val11]: lower bounds for symmetric properties via
moment-matching: “Wishful Thinking Theorem.”

• Valiant-Valiant [VV14]: blackbox statement for Le Cam’s two point
method

• Diakonikolas and Kane [DK16]: information-theoretic framework to
proving lower bounds via mutual information.

• Canonne, Diakonikolas, Gouleakis, and Rubinfeld [CDGR16]: lower
bounds by reductions from (distribution testing+agnostic learning):
“if you can learn, you can’t test.”

• Blais, Canonne, and Gur [BCG17]: lower bounds by reductions from
communication complexity: “Alice and Bob say I can’t test.”

• Valiant–Valiant, Jiao et al., Wu and Yang: lower bounds for tolerant
testing via best polynomial approximation (dual of the u.b.’s).
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For More and Better on This…



Ilias Diakonikolas (USC)
Optimal Distribution Testing via Reductions

Jiantao Jiao (Stanford University)
Three Approaches towards Optimal Property Estimation and Testing

Alon Orlitsky (UCSD)
A Unified Maximum Likelihood Approach for Estimating Symmetric
Distribution Properties

Gautam Kamath (MIT)
Testing with Alternative Distances
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The Curse of Dimensionality, and
How to Deal with It



Costis Daskalakis (MIT)
High-Dimensional Distribution Testing
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Now, Make It Quantum.
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