Three Perspectives on Orthogonal Polynomials

Paul Valiant

Brown University

(Based on joint work with Gregory Valiant, mostly STOC'11: "Estimating the Unseen: An n/log(n)-sample Estimator for Entropy and Support Size, Shown Optimal via New CLTs")

Structure of this talk: 3 polynomial challenges... and solutions

Chebyshev Seems like: "cosine"

Laguerre "cosine times exponential"

Hermite "cosine over Gaussian"

"Seems," madam? Nay, *it is.* I know not "seems." – Hamlet

Challenge 1: Poisson bumps \rightarrow thinnest bumps

$$poi(\lambda, k) = \frac{\lambda^k e^{-k}}{k!}$$

Х Linear transform 1. Thin as possible

k-2 k-1 k k+1 k+2

(with bounded coeffs) 2. $\sum \bigwedge \approx 1$ v-resolution

Motivation: Given an event with probability p, poi(pn, k)captures the probability of it occurring exactly k times in Poi(n) samples. Let \mathcal{F}_{k} be total number of events that were observed k times. \mathcal{F}_{k} captures probabilities from ____ . IS there a linear combination of \mathcal{F}_{k} that captures Λ ? Thm: general log n factor improvement in resolution, #samples

Chebyshev Polynomials

$T_i(\cos x) = \cos(jx)$ Chebyshev is exactly like cosine, except on distorted x-axis 1. Thin as possible Both unchanged under (with bounded coeffs) x-axis distortion! 2. ∑ /∖ =1 -resolution New question: thin cosine bumps

Thinnest Cosine Bumps

Thinnest linear combination of $\approx 1/b$ $\cos(jx)$ for j < b: (Intuition: Fourier transform of degree b gives resolution 1/b) 1. Thin as possible Sum of all possible x-(with bounded coeffs) translated bumps is constant 2. <u>)</u> (Trig functions are wellresolution behaved under x-translation)

Chebyshev Takeaways:

(Modulo x-axis distortion) "polynomials are cosines"

$$poi(\lambda, k) = \frac{\lambda^k e^{-k}}{k!}$$

Motivation: Given an event with probability p, poi(pn, k)captures the probability of it occurring exactly k times in Poi(n) samples. Let $\mathcal{F}_{\mathbf{k}}$ be total number of events that were observed k times. \mathcal{F}_{k} captures probabilities from . **I**S there a linear combination of $\mathcal{F}_{\mathbf{k}}$ that captures \bigwedge ? Thm: general log n factor improvement in resolution, #samples

Challenge 2: Exponentially Growing Derivatives

Find: Degree j polynomial with roots at ε, 2ε; and all remaining roots have much larger derivative, growing exponentially with x

Success requires a delicate balancing act!

Orthogonal to Polynomials

Motivation: Want to construct a pair of distributions g^+ , g^- that are, respectively, close to the uniform distributions on T and 2T elements, but where for each (small) k, the expected number of domain elements seen k times from Poi(n) samples is identical for g^+ , g^- . Essentially: find a signed measure g(x) that is

- 1) Orthogonal to $poi(x, k) = \frac{x^k e^{-k}}{k!}$ for each small k,
- 2) Has most of its positive $g(x) \triangleq e^{x}h(x)$ mass at 1/T and most of its negative mass at 1/(2T)

Fact: If P is a degree j polynomial with distinct real roots $\{x_i\}$, then the signed measure h_P having point mass $1/P'(x_i)$ at each root x_i is orthogonal to all polynomials of degree $\leq j-2$

> Essentially: find a signed measure h(x) that is 1) Orthogonal to all degree $\leq k$ polynomials

- L) Orthogonal to all degree $\leq k$ polynomials
- Has most of its positive mass at 1/T and most of its negative mass at 1/(2T)
 - and otherwise decays $\ll e^{-x}$

Task: find P such that $P'(x_i)$ grows exponentially in x_i

Laguerre Polynomials

Defined by $L_n(x) = e^x \frac{d^n}{dx^n} \frac{e^{-x}x^n}{n!}$ and orthogonal as: $\int_0^\infty L_n(x) L_m(x) e^{-x} dx = [m = n]$

Why should the derivative be so nicely behaved at its roots, in particular, growing exponentially?

Fransform the Laguerre:
$$v = e^{-x^2/2}\sqrt{x} \cdot L_n(x^2)$$

Many differential equations, including $v'' + \left(4n + 2 - x^2 + \frac{1}{4x^2}\right)v = 0$ Almost harmonic motion, v \rightarrow sine Nicely spaced zeros, and max derivative at the zeros

The Construction

Recall:

We want a *signed measure* g on the positive reals that:

- Is orthogonal to low degree polynomials
- Decays exponentially fast
- Its positive portion has most of its mass at 2ϵ
- Its negative portion has most of its mass at ϵ

Theorem: p^+ is "close" to $U_{n/2}$, and p^- is "close" to U_n , and p^+ and p^- are indistinguishable via *cn/log n* samples

(Modulo diff-eq distortion) "polynomials are $e^x \sin(x)$ "

Challenge 3: exponentially good bump approximations

Motivation: Previously, constructed lowerbound distributions g^+, g^- where expectation of every measurement matched. Lower bound? No... until we show variances match too. Aim: show that variances can be approximated as linear combinations of expectations, with moderate coefficients; thus matching means implies matching variances. Since means come from poi(j,x), second moments come from poi(j,x)².

Find a linear combination over j of poi(x,j) that approximates poi(x,k)² to within ε , using coefficients $\leq 1/\varepsilon$

Think of ε =1/exp(j)

These look like Gaussians!

1) What's the answer for Gaussians?

2) Analyze via Hermite polynomials instead

Approximating "Thin" Gaussians as Linear Combinations of Gaussians

What do we convolve a Gaussian with to approximate a thinner Gaussian?

(Other direction is easy, since convolving Gaussians adds their variances)

"Blurring is easy, unblurring is hard" \rightarrow can only do it approximately

How to analyze? Fourier transform! Convolution becomes multiplication

Now: what do we *multiply* a Gaussian with to approximate a *fatter* Gaussian?

$$e^{-x^2} \cdot ??? = e^{-x^2/2}$$

 $e^{x^2/2}$ Problem: blows up

Answer: if we want to approximate to within ϵ , we only need to approximate out to where $e^{-x^2/2} = \epsilon$. How big is $e^{x^2/2}$ here? $1/\epsilon$

Result: Can approximate to within ϵ using coefficients no bigger than $1/\epsilon$

Hermite Polynomials

Which function? Fourier transform of "thin" Poisson, cut off at ϵ

Proposition: Can approximate $\Pr[Poi(2\lambda) = k]$ to within ϵ as a linear combination $\sum_{j} \alpha_{k,j} \Pr[Poi(\lambda) = j]$ with coefficients that sum to $\sum_{j} |\alpha_{k,j}| \leq \frac{1}{\epsilon} 200 \max\{\sqrt[4]{k}, 24 \log^{\frac{3}{2}}{\frac{1}{\epsilon}}\}$

Structure of this talk: 3 polynomial challenges... and solutions

Chebyshev Seems like: "cosine"

Laguerre "cosine times exponential"

Hermite "cosine over Gaussian"

"Seems," madam? Nay, *it is*. I know not "seems." – Hamlet

