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Boolean Functions

Boolean function f : {−1, 1}n → {−1, 1}

ANDn(x) =

{
−1 (TRUE) if x = (−1)n

1 (FALSE) otherwise



Approximate Degree

A real polynomial p ε-approximates f if

|p(x)− f(x)| < ε ∀x ∈ {−1, 1}n

d̃egε(f) = minimum degree needed to ε-approximate f

d̃eg(f) := deg1/3(f) is the approximate degree of f



Threshold Degree

Definition

Let f : {−1, 1}n → {−1, 1} be a Boolean function. A polynomial
p sign-represents f if sgn(p(x)) = f(x) for all x ∈ {−1, 1}n.

Definition

The threshold degree of f is min deg(p), where the minimum is
over all sign-representations of f .

An equivalent definition of threshold degree is limε→1 d̃egε(f).



Why Care About Approximate and Threshold Degree?

Upper bounds on d̃egε(f) and deg±(f) yield efficient learning
algorithms.

ε ≈ 1/3: Agnostic Learning [KKMS05]

ε ≈ 1− 2−n
δ
: Attribute-Efficient Learning [KS04, STT12]

ε→ 1 (i.e., deg±(f) upper bounds): PAC learning [KS01]

Upper bounds on d̃eg1/3(f) also imply fast algorithms for
differentially private data release [TUV12, CTUW14].
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Why Care About Approximate and Threshold Degree?

Lower bounds on d̃egε(f) yield lower bounds on:

Quantum query complexity [BBCMW98, AS01, Amb03, KSW04]

Communication complexity [She08, SZ08, CA08, LS08, She12]

Lower bounds hold for a communication problem related to f .
Technique is called the Pattern Matrix Method [She08].

Circuit complexity [MP69, Bei93, Bei94, She08]

Oracle Separations [Bei94, BCHTV16]

Lower bounds on d̃eg(f) also yield efficient secret-sharing
schemes [BIVW16]
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Details of Communication Applications

Lower bounds on d̃egε(f) and deg±(f) yield communication lower
bounds (often in a black-box manner) [Sherstov 2008]

ε ≈ 1/3: BQPcc lower bounds.

ε ≈ 1− 2−n
δ
: PPcc lower bounds

ε→ 1 (i.e., deg±(f) lower bounds): UPPcc lower bounds.



Example 1: The Approximate Degree of ANDn



Example: What is the Approximate Degree of ANDn?

d̃eg(ANDn) = Θ(
√
n).

Upper bound: Use Chebyshev Polynomials.

Markov’s Inequality: Let G(t) be a univariate polynomial s.t.
deg(G) ≤ d and supt∈[−1,1] |G(t)| ≤ 1. Then

sup
t∈[−1,1]

|G′(t)| ≤ d2.

Chebyshev polynomials are the extremal case.



Example: What is the Approximate Degree of ANDn?

d̃eg(ANDn) = O(
√
n).

After shifting a scaling, can turn degree O(
√
n) Chebyshev

polynomial into a univariate polynomial Q(t) that looks like:

!"#$%&'()*+*&',*

Define n-variate polynomial p via p(x) = Q(
∑n

i=1 xi/n).

Then |p(x)−ANDn(x)| ≤ 1/3 ∀x ∈ {−1, 1}n.



Example: What is the Approximate Degree of ANDn?

[NS92] d̃eg(ANDn) = Ω(
√
n).

Lower bound: Use symmetrization.

Suppose |p(x)−ANDn(x)| ≤ 1/3 ∀x ∈ {−1, 1}n.

There is a way to turn p into a univariate polynomial psym

that looks like this:

!"#$%&'()*+*&',*

Claim 1: deg(psym) ≤ deg(p).

Claim 2: Markov’s inequality =⇒ deg(psym) = Ω(n1/2).



Example 2: The Threshold Degree of the
Minsky-Papert DNF



The Minsky-Papert DNF

The Minsky-Papert DNF is MP(x) := ORn1/3 ◦ANDn2/3 .



The Minsky-Papert DNF

Claim: deg±(MP) = Θ̃(n1/3).

The Ω(n1/3) lower bound was proved by Minsky and Papert
in 1969 via a symmetrization argument.

More generally, deg±(ORt ◦ANDb) ≥ Ω(min(t, b1/2)).

We will prove the matching upper bound:

deg±(ORt ◦ANDb) ≤ Õ(min(t, b1/2)).

First, we’ll construct a sign-representation of degree
O((b log t)1/2) using Chebyshev approximations to ANDb.

Then we’ll construct a sign-representation of degree Õ(t) using
rational approximations to ANDb.
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A Sign-Representation for ORt ◦ANDb of degree Õ(b1/2)

Let p1 be a (Chebyshev-derived) polynomial of degree
O
(√
b · log t

)
approximating ANDb to error 1

8t .

Let p = 1
2 · (1− p1).

Then 1
2 −

∑t
i=1 p(xi) sign-represents ORt ◦ANDb.

If ANDb(xi) = FALSE for all i, then

1

2
−

t∑
i=1

p(xi) ≥
1

2
− t · 1

8t
≥ 3/8.

If ANDb(xi) = TRUE for even one i, then

1

2
−

t∑
i=1

p(xi) ≤
1

2
− 7/8 + (t− 1) · 1

8t
≤ −1/4.
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A Sign-Representation for ORt ◦ANDb of degree Õ(t)

Fact: there exist p1, q1 of degree O(log b · log t) such that∣∣∣∣ANDb(x)− p1(x)

q1(x)

∣∣∣∣ ≤ 1

8t
for all x ∈ {−1, 1}b.

Let p(x)
q(x) = 1

2 ·
(

1− p1(x)
q1(x)

)
.

Claim: The following polynomial sign-represents ORt ◦ANDb.

r(x) :=

1

2
·
∏

1≤i≤t
q2(xi)

− t∑
i=1

p(xi) · q(xi) · ∏
1≤i≤t,i′ 6=i

q2(xi′)

 .

Proof: sgn(ORt ◦ANDb(x)) = 1
2 −

∑t
i=1

p(xi)
q(xi)

=

1
2 −

∑t
i=1

p(xi)·q(xi)
q2(xi)

= r(x)∏t
i=1 q

2(xi)
. The denominator of the

RHS is non-negative, so throw it away w/o changing the sign.
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Recent Progress on Lower Bounds:
Beyond Symmetrization



Beyond Symmetrization

Symmetrization is “lossy”: in turning an n-variate poly p into
a univariate poly psym, we throw away information about p.

Challenge problem: What is d̃eg(OR-ANDn)?



History of the OR-AND Tree

Upper bounds

[HMW03] d̃eg(OR-ANDn) = O(n1/2)

Lower bounds

[NS92] Ω(n1/4)

[Shi01] Ω(n1/4
√

log n)

[Amb03] Ω(n1/3)
[Aar08] Reposed Question

[She09] Ω(n3/8)

[BT13] Ω(n1/2)

[She13] Ω(n1/2), independently



Linear Programming Formulation of Approximate Degree

What is best error achievable by any degree d approximation of f?
Primal LP (Linear in ε and coefficients of p):

minp,ε ε

s.t. |p(x)− f(x)| ≤ ε for all x ∈ {−1, 1}n

deg p ≤ d

Dual LP:

maxψ
∑

x∈{−1,1}n
ψ(x)f(x)

s.t.
∑

x∈{−1,1}n
|ψ(x)| = 1

∑
x∈{−1,1}n

ψ(x)q(x) = 0 whenever deg q ≤ d



Dual Characterization of Approximate Degree

Theorem: degε(f) > d iff there exists a “dual polynomial”
ψ : {−1, 1}n → R with

(1)
∑

x∈{−1,1}n
ψ(x)f(x) > ε “high correlation with f”

(2)
∑

x∈{−1,1}n
|ψ(x)| = 1 “L1-norm 1”

(3)
∑

x∈{−1,1}n
ψ(x)q(x) = 0, when deg q ≤ d “pure high degree d”

A lossless technique. Strong duality implies any approximate
degree lower bound can be witnessed by dual polynomial.



Goal: Construct an explicit dual polynomial
ψOR-AND for OR-AND



Constructing a Dual Polynomial

By [NS92], there are dual polynomials

ψOUT for d̃eg (ORn1/2) = Ω(n1/4) and

ψIN for d̃eg (ANDn1/2) = Ω(n1/4)

Both [She13] and [BT13] combine ψOUT and ψIN to obtain a
dual polynomial ψOR-AND for OR-AND.

The combining method was proposed in independent earlier
work by [Lee09] and [She09].



The Combining Method [She09, Lee09]

ψOR-AND(x1, . . . , xn1/2) := C · ψOUT(. . . , sgn(ψIN(xi)), . . . )

n1/2∏
i=1

|ψIN(xi)|

(C chosen to ensure ψOR-AND has L1-norm 1).

Must verify:

1 ψOR-AND has pure high degree ≥ n1/4 · n1/4 = n1/2.

2 ψOR-AND has high correlation with OR-AND.
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Must verify:
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2 ψOR-AND has high correlation with OR-AND. [BT13, She13]



Additional Recent Progress on Approximate and
Threshold Degree Lower Bounds



(Negative) One-Sided Approximate Degree

Negative one-sided approximate degree is an intermediate
notion between approximate degree and threshold degree.

A real polynomial p is a negative one-sided ε-approximation
for f if

|p(x)− 1| < ε ∀x ∈ f−1(1)

p(x) ≤ −1 ∀x ∈ f−1(−1)

õdeg−,ε(f) = min degree of a negative one-sided
ε-approximation for f .

Examples: õdeg−,1/3(ANDn) = Θ(
√
n); õdeg−,1/3(ORn) = 1.
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õdeg−,ε(f) = min degree of a negative one-sided
ε-approximation for f .
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Recent Theorems: Part 1

Theorem (BT13, She13)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then d̃eg1/2(F ) ≥ d ·

√
t.

Theorem (BT14)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then d̃eg1−2−t(F ) ≥ d.

Theorem (She14)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then deg±(F ) = Ω(min{d, t}).
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Recent Theorems: Part 2

For other applications in complexity theory, one needs an even
simpler “hardness-amplifying function” than ORt.

Define GAPMAJt : {−1, 1}t → {−1, 1} to be the partial
function that equals:

−1 if at least 2/3 of its inputs are −1
+1 if at least 2/3 of its inputs are +1
undefined otherwise.

Theorem (BCHTV16)

Let f be a Boolean function with d̃eg1/2(f) ≥ d. Let
F = GAPMAJt(f, . . . , f). Then deg±(F ) ≥ Ω(min{d, t}).

Implies a number of new oracle separations:

SZKA 6⊆ PPA, SZKA 6⊆ PZKA, and NIPZKA 6⊆ coNIPZKA.

Compare to:

Theorem (She14)
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Applications to Communication Complexity
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Goal:&Compute&
F(x,y)&



Definition of the UPPcc Communication Model

Alice& Bob&

x& y&

Goal:&Compute&
F(x,y)&



Definition of the UPPcc Communication Model

Alice& Bob&

x& y&



Definition of the UPPcc Communication Model

Alice& Bob&

x& y&

0&or&1&

Protocol computes F if on every input (x, y), the output is
correct with probability greater than 1/2.

The cost of a protocol is the worst-case number of bits
exchanged on any input (x, y).

UPPcc(F ) is the least cost of a protocol that computes F .

UPPcc is the class of all F computed by UPPcc protocols of
polylogarithmic cost.
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Importance of UPPcc

UPPcc is the strongest two-party communication model
against which we can prove lower bounds.

Progress on UPPcc has been slow.

Paturi and Simon (1984) showed that

UPPcc(F )≈ log (sign-rank([F (x, y)]x,y)) .

Forster (2001) nearly-optimal lower bounds on the UPPcc

complexity of Hadamard matrices.
Razborov and Sherstov (2008) proved polynomial UPPcc lower
bounds for a function in PHcc (more context to follow).
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Rest of the Talk: How Much of PHcc is Contained
In UPPcc?



Background

An important question in complexity theory is to determine
the relative power of alternation (as captured by the
polynomial-hierarchy PH), and counting (as captured by #P
and its decisional variant PP).

Both PH and PP generalize NP in natural ways.

Toda famously showed that their power is related: PH ⊆ PPP.

But it is open how much of PH is contained in PP itself.

Babai, Frankl, and Simon (1986) introduced communication
analogues of Turing Machine complexity classes.

Main question they left open was the relationship between
PHcc and UPPcc.

Is PHcc ⊆ UPPcc?
Is UPPcc ⊆ PHcc?
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Prior Work By Razborov and Sherstov (2008)

Razborov and Sherstov (2008) resolved the first question left
open by Babai, Frankl, and Simon!

They gave a function F in PHcc (actually, in Σcc
2 ) such that

UPPcc(F ) = Ω(n1/3).



Remainder of the Talk

Goal: show that even lower levels of PHcc are not in UPPcc.

Outline:
Proof sketch for Razborov and Sherstov (2008).

Threshold degree and its relation to UPPcc.
The Pattern Matrix Method (PMM).
Combining PMM with “smooth dual witnesses” to prove
UPPcc lower bounds.

Improving on Razborov and Sherstov.



Communication Upper Bounds from Threshold Degree Upper Bounds

Let F : {−1, 1}n × {−1, 1}n → {−1, 1}.
Claim: Let d = deg±(F ). There is a UPPcc protocol of cost
O(d log n) computing F (x, y).

Proof: Let p(x, y) =
∑
|T |≤d cT · χT (x, y) sign-represent F .

Alice chooses a parity T with probability proportional to |cT |,
and sends to Bob T and χT∩[n](y).

From this, Bob can compute and output sgn(cT ) · χT (x, y).

Since p sign-represents F , the output is correct with
probability strictly greater than 1/2.

Communication cost is O(d log n).
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Communication Lower Bounds from Threshold Degree Lower Bounds

The previous slide showed that threshold degree upper bounds
for F (x, y) imply communication upper bounds for F (x, y).

Can we use threshold degree lower bounds for F (x, y) to
establish communication lower bounds for F (x, y)?

Answer: No. Bad Example: The parity function has linear
threshold degree, but constant communication complexity.

Next Slide: Something almost as good.

A way to turn threshold degree lower bounds for f into
communication lower bounds for a related function F (x, y).
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The Pattern Matrix Method (Sherstov, 2008)

Let f : {−1, 1}n → {−1, 1} satisfy deg±(f) ≥ d.

Turn f into a 22n × 22n matrix F with UPPcc(F ) ≥ d.

(Sherstov, 2008) almost achieves this.
Sherstov turns f into a matrix F , called the “pattern matrix”
of f , such that:

Any randomized communication protocol that computes F
correctly with probability p = 1/2 + 2−d has cost at least d.
Note: to get a UPPcc lower bound, we would need the above
to hold for any p > 1/2.

Specifically, F (x, y) is set to f(u), where u(x, y) is derived
from (x, y) in a simple way.

y “selects” n bits of x and flips some of them to obtain u.
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Proof Sketch for the Pattern Matrix Method: Dual Witnesses

Let µ be a dual “witness” to the fact that the threshold
degree of f is large.

Sherstov shows that µ can be “lifted” into a distribution over
{−1, 1}2n × {−1, 1}2n under which F (x, y) cannot be
computed with probability 1/2 + 2−d, unless the
communication cost is at least d.
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Smooth Dual Witnesses Imply UPPcc Lower Bounds

Let f : {−1, 1}n → {−1, 1} satisfy deg±(f) ≥ d.

Razborov and Sherstov showed that if there is a dual witness
µ for f that additionally satisfies a smoothness condition,
then the pattern matrix F of f actually has UPPcc(F ) ≥ d.

The bulk of Razborov-Sherstov is showing that the
Minsky-Papert DNF has a smooth dual witness to the fact
that its threshold degree is Ω(n1/3).

Since f is computed by a DNF formula, its pattern matrix is
in Σcc

2 .
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Improving on Razborov-Sherstov (Part 1)

Recall:

Theorem (She14)

Let f be a Boolean function with õdeg−,1/2(f) ≥ d. Let
F = ORt(f, . . . , f). Then deg±(F ) = Ω(min{d, t}).

The dual witness constructed in (Sherstov 2014) isn’t smooth.

[BT16] showed how to smooth-ify the dual witness of
(Sherstov 2014) (under a mild additional restriction on f).

Implied more general and quantitatively stronger UPPcc lower
bounds for Σcc

2 compared to [RS08].



Improving on Razborov-Sherstov (Part 2)

Recall:

Theorem (BCHTV16)

Let f be a Boolean function with d̃eg1/2(f) ≥ d. Let
F = GAPMAJt(f, . . . , f). Then deg±(F ) ≥ Ω(min{d, t}).

Moreover, can use the methods of [BT16] to smooth-ify the
dual witness!

Corollary: a function in NISZKcc that is not in UPPcc.

Improves on Razborov-Sherstov because:

NISZKcc ⊆ SZKcc ⊆ AMcc ∩ coAMcc ⊆ AMcc ⊆ Σcc
2 .
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Open Questions and Directions

Beyond Block-Composed Functions.

Challenge problem: obtain quantitatively optimal lower bounds
on the approximate degree and threshold degree of AC0.
Best lower bound for approximate degree is Ω(n2/3) [AS04].
Best lower bound for threshold degree is Ω(n1/2) [She15].
Best upper bound for both is the trivial O(n).

Break the “UPPcc barrier” in communication complexity.

i.e., Identify any communication class that is not contained in
UPPcc (such as NISZKcc), and then prove a superlogarithmic
lower bound on that class for an explicit function.

Strengthen UPPcc lower bounds into lower bounds on
distribution-free Statistical Query learning algorithms.



Thank you!


