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Those were lower bounds.
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Those were lower bounds.

3

Are they tight?
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Upper bounds for learning

Estimation

Δ𝑘 , ℓ1
𝑘

𝜀2
⋅

𝑘

min 2ℓ, 𝑘

𝑘

𝜀2
⋅
𝑘

𝜚2

ℬ𝑑 , ℓ2
𝑑

𝜀2
⋅

𝑑

min ℓ, 𝑑

𝑑

𝜀2
⋅
𝑑

𝜚2

𝒢𝑑 , ℓ2
𝑑

𝜀2
⋅

𝑑

min ℓ, 𝑑

𝑑

𝜀2
⋅
𝑑

𝜚2
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Upper bounds for learning

Estimation

Δ𝑘 , ℓ1
𝑘

𝜀2
⋅

𝑘

min 2ℓ, 𝑘

𝑘

𝜀2
⋅
𝑘

𝜚2

ℬ𝑑 , ℓ2
𝑑

𝜀2
⋅

𝑑

min ℓ, 𝑑

𝑑

𝜀2
⋅
𝑑

𝜚2

𝒢𝑑 , ℓ2
𝑑

𝜀2
⋅

𝑑

min ℓ, 𝑑

𝑑

𝜀2
⋅
𝑑

𝜚2

Focus on communication
for this part
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Upper bounds for testing

Testing

Δ𝑘 , ℓ1
𝑘

𝜀2
⋅

𝑘

min 2ℓ, 𝑘

𝑘

𝜀2
⋅

𝑘

min{2ℓ, 𝑘}

ℬ𝑑 , ℓ2
𝑑

𝜀2
⋅

𝑑

min ℓ, 𝑑

𝑑

𝜀2
⋅

𝑑

min{ℓ, 𝑑}

“Hide-and-Seek”
log 𝑑

𝜀2
⋅

𝑑

min ℓ, 𝑑
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Upper bounds for testing

Testing

Δ𝑘 , ℓ1
𝑘

𝜀2
⋅

𝑘

min 2ℓ, 𝑘

𝑘

𝜀2
⋅

𝑘

min{2ℓ, 𝑘}

ℬ𝑑 , ℓ2
𝑑

𝜀2
⋅

𝑑

min ℓ, 𝑑

𝑑

𝜀2
⋅

𝑑

min{ℓ, 𝑑}

“Hide-and-Seek”
log 𝑑

𝜀2
⋅

𝑑

min ℓ, 𝑑

(analogous for privacy)



That’s seven upper bounds to prove.
(in ≈30 minutes)

8



That’s seven upper bounds to prove.
(in ≈30 minutes)
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Discrete distributions 
under ℓ1 loss: 3

Bernoulli product hide-
and-seek: 1

Bernoulli product 
under ℓ2 loss: 3



Let’s do several at once: simulate-and-infer
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Idea: if, under constraints, given messages from 𝑠 users the 
server can simulate one sample from the unknown 𝒑, then

𝑛 = 𝑠 ⋅ 𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑
users suffice.



Let’s do several at once: simulate-and-infer
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Theorem (easy). For ℬ𝑑, noninteractive private-coin 

simulate-and-infer is possible with 𝑠 =
𝑑

ℓ
.



Let’s do several at once: simulate-and-infer
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Proof. First user sends the first ℓ bits of 𝑋1, …, 𝑠-th user 
sends last ℓ bits of 𝑋𝑠. Server creates

෨𝑋 ≔ 𝑋11, … , 𝑋1ℓ, 𝑋21, … , 𝑋2ℓ, … , 𝑋𝑠1, … , 𝑋𝑠ℓ ∈ ±1 𝑑

Since 𝒑 is a product distribution, ෨𝑋 ∼ 𝒑. □

Theorem (easy). For ℬ𝑑, noninteractive private-coin 

simulate-and-infer is possible with 𝑠 =
𝑑

ℓ
.



Let’s do several at once: simulate-and-infer
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Proof. Recall that the centralized sample complexity is 

𝑂
𝑑

𝜀2
, by taking the empirical mean. □

Corollary. For ℬ𝑑, noninteractive private-coin mean

estimation under ℓ2 loss is possible with 𝑛 = 𝑂
𝑑

𝜀2
⋅
𝑑

ℓ
.



Let’s do several at once: simulate-and-infer
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Proof. Recall that the centralized sample complexity is 

𝑂
𝑑

𝜀2
, by taking the squared ℓ2 norm empirical mean 

(and computing its expectation and variance). □

Corollary. For ℬ𝑑, noninteractive private-coin mean

testing under ℓ2 loss is possible with 𝑛 = 𝑂
𝑑

𝜀2
⋅
𝑑

ℓ
.



Let’s do several at once: simulate-and-infer
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Proof. Recall that the centralized sample complexity is 

𝑂
log 𝑑

𝜀2
, by computing the empirical mean of each 

coordinate to ±
𝜀

2
(and taking a union bound). □

Corollary. For ℬ𝑑, noninteractive private-coin hide-and-

seek can be performed with 𝑛 = 𝑂
log 𝑑

𝜀2
⋅
𝑑

ℓ
.



Let’s do several at once: simulate-and-infer
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That’s three upper bounds via simulate-and-infer. Let’s 
do two more.



Theorem ([ACT20d]). For Δ𝑘, noninteractive private-coin 

simulate-and-infer is possible with 𝑠 =
𝑘

2ℓ
.

Let’s do several at once: simulate-and-infer
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That’s three upper bounds via simulate-and-infer. Let’s 
do two more.



Theorem. For Δ𝑘, noninteractive private-coin simulate-

and-infer is possible with 𝑠 ≍
𝑘

2ℓ
(in expectation).

Let’s do several at once: simulate-and-infer
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Theorem. For Δ𝑘, noninteractive private-coin simulate-

and-infer is possible with 𝑠 ≍
𝑘

2ℓ
(in expectation).

Let’s do several at once: simulate-and-infer

19

Proof. First, ℓ = 1. Take 𝑠 = 2𝑘 users, pair them: users 2𝑖 − 1
and 2𝑖 send 𝑌2𝑖−1 = 𝕀𝑋2𝑖−1=𝑖 and 𝑌2𝑖 = 𝕀𝑋2𝑖=𝑖, resp.

If 
- there is a unique 𝑖 ∈ 𝑘 s.t. 𝑌2𝑖−1 = 1, and 
- for that 𝑖 we also have 𝑌2𝑖 = 0
then the server outputs that 𝑖. Otherwise, it outputs ⊥.



Theorem. For Δ𝑘, noninteractive private-coin simulate-

and-infer is possible with 𝑠 ≍
𝑘

2ℓ
(in expectation).

Let’s do several at once: simulate-and-infer

20

Proof. First, ℓ = 1. Take 𝑠 = 2𝑘 users, pair them: users 2𝑖 − 1
and 2𝑖 send 𝑌2𝑖−1 = 𝕀𝑋2𝑖−1=𝑖 and 𝑌2𝑖 = 𝕀𝑋2𝑖=𝑖, resp.

If 
- there is a unique 𝑖 ∈ 𝑘 s.t. 𝑌2𝑖−1 = 1, and 
- for that 𝑖 we also have 𝑌2𝑖 = 0
then the server outputs ෨𝑋 = 𝑖. Otherwise, ෨𝑋 = ⊥.

Pr[ ෨𝑋 = 𝑖 ∣ ෨𝑋 ≠⊥] = 𝒑𝑖ෑ

𝑗≠𝑖

1 − 𝒑𝑗 ⋅ 1 − 𝒑𝑖 = 𝒑𝑖 ⋅ෑ

𝑗

1 − 𝒑𝑗



Theorem. For Δ𝑘, noninteractive private-coin simulate-

and-infer is possible with 𝑠 ≍
𝑘

2ℓ
(in expectation).

Let’s do several at once: simulate-and-infer
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Proof (cont’d). So 
Pr ෨𝑋 = 𝑖 ෨𝑋 ≠⊥ ∝ 𝒑𝑖

which is good. Moreover,

Pr ෨𝑋 ≠⊥ =ෑ

𝑗

1 − 𝒑𝑗 ≥ෑ

𝑗

4−𝒑𝑗 =
1

4

using that 1 − 𝑥 ≥ 4−𝑥 for 0 ≤ 𝑥 ≤
1

2
. So we are good as long 

as 𝒑 ∞ ≤
1

2
… which we can assume via a simple trick using       

and losing a factor 2: 𝒑′ on [2𝑘] with 𝒑𝑖
′ = 𝒑𝑖+𝑘

′ =
𝒑𝑖

2
).



Theorem. For Δ𝑘, noninteractive private-coin simulate-

and-infer is possible with 𝑠 ≍
𝑘

2ℓ
(in expectation).

Let’s do several at once: simulate-and-infer
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Proof (cont’d). We just proved that 𝔼 𝑠 ≤ 4𝑘, for ℓ = 1. For 
ℓ ≥ 1, partition [𝑘] in sets 𝑆1, … , 𝑆 𝑘

2ℓ−1

of size 2ℓ − 1. Users 

2𝑖 − 1 and 2𝑖 send 0 if their sample is outside 𝑆𝑖, or the index 
of their sample inside 𝑆𝑖 otherwise. Same analysis as for the 
case ℓ = 1.                                                            □



Let’s do several at once: simulate-and-infer

23

Proof. Recall that the centralized sample complexity is 

𝑂
𝑘

𝜀2
, by taking the empirical distribution. □

Corollary. ForΔ𝑘, noninteractive private-coin estimation

under ℓ1 loss is possible with 𝑛 = 𝑂
𝑘

𝜀2
⋅
𝑘

2ℓ
.



Let’s do several at once: simulate-and-infer
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Proof. Recall that the centralized sample complexity is 

𝑂
𝑘

𝜀2
, e.g., via a 𝜒2-type test (and computing its 

expectation and variance). □

Corollary. For Δ𝑘, noninteractive private-coin identity

testing under ℓ1 distance is possible with 𝑛 = 𝑂
𝑘

𝜀2
⋅
𝑘

2ℓ
.



Two more to go, and public coins to use
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We just proved 5 out of 7 upper bounds, via distribution 
simulation: all were private-coin, noninteractive.

The last two are public-coin upper bounds, and both will 
rely on some type of dimensionality reduction: use public 
randomness to project 𝒑 to a lower-dimensional random 
subspace ⇝ “domain compression”



Domain compression for ℬ𝑑
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Theorem. For ℬ𝑑, noninteractive public-coin mean testing

under ℓ2 loss is possible with 𝑛 = 𝑂
𝑑

𝜀2
⋅

𝑑

ℓ
.



Domain compression for ℬ𝑑
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Proof. Pick a common u.a.r. random vector 𝑍 ∈ {±1}𝑑: all 
users replace their 𝑋𝑖 by 𝑋𝑖

′ ≔ 𝑍 ⋅ 𝑋𝑖 ∈ {±1}𝑑 .
Conditioned on 𝑍, new mean s.t. 𝑍 ⋅ 𝜇 2

2 = 𝜇 2
2.

Partition the 𝑑 coordinates in ℓ groups 𝑆1, … , 𝑆ℓ of same 
size. User 𝑖 computes 𝕀[σ𝑗∈𝑆𝑡

𝑋𝑖𝑗
′ > 0] for all 1 ≤ 𝑡 ≤ ℓ

and send those ℓ bits.

So the server gets 𝑛 i.i.d. samples from some 𝒑𝑍 on {±1}ℓ.

Theorem. For ℬ𝑑, noninteractive public-coin mean testing

under ℓ2 loss is possible with 𝑛 = 𝑂
𝑑

𝜀2
⋅

𝑑

ℓ
.



Domain compression for ℬ𝑑
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Proof (cont’d). Why is this good?

- This 𝒑𝑍 is a product distribution on {±1}ℓ

- If 𝒑 has mean 𝜇 = 𝟎, then  𝒑𝑍 has mean 𝜇𝑍 = 𝟎

- If 𝒑 has mean 𝜇 2 > 𝜀, “then”

Pr
Z

𝜇𝑍 2 > 𝜀 ⋅ ℓ/𝑑 = Ω(1)

Theorem. For ℬ𝑑, noninteractive public-coin mean testing

under ℓ2 loss is possible with 𝑛 = 𝑂
𝑑

𝜀2
⋅

𝑑

ℓ
.



Domain compression for ℬ𝑑
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Proof (cont’d). This last part is not quite obvious. Helps to 

think of each 
1

|𝑆𝑡|
σ𝑗∈𝑆𝑡

𝑋𝑖𝑗
′ =

ℓ

𝑑
σ𝑗∈𝑆𝑡

𝑋𝑖𝑗𝑍𝑗 as roughly 

normal: 

Nt ≈ 𝒩
ℓ

𝑑


𝑗∈𝑆𝑡

𝑍𝑗𝜇𝑗 , 1

So 𝑡-th bit has parameter Pr 𝑁𝑡 ≥ 0 = Ω
ℓ

𝑑
σ𝑗∈𝑆𝑡

𝑍𝑗𝜇𝑗 … 

Theorem. For ℬ𝑑, noninteractive public-coin mean testing

under ℓ2 loss is possible with 𝑛 = 𝑂
𝑑

𝜀2
⋅

𝑑

ℓ
.



Domain compression for ℬ𝑑
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Proof (cont’d). The mean vector then satisfies

𝔼𝑍 𝜇𝑍 2
2 ≥

ℓ

𝑑


𝑡=1

ℓ



𝑗∈𝑆𝑡

𝑍𝑗𝜇𝑗

2

=
ℓ

𝑑
𝜇 2

2

and (handwaving) we can show that

Pr
Z

𝜇𝑍 2 > 𝜀 ⋅ ℓ/𝑑 = Ω(1).

We are done: the server can do mean testing over {±1}ℓ with 

𝜀′ ≔ 𝜀 ℓ/𝑑, for which 𝑛 = 𝑂
ℓ

𝜀′
2 = 𝑂

𝑑

𝜀2 ℓ
is enough.   □

Theorem. For ℬ𝑑, noninteractive public-coin mean testing

under ℓ2 loss is possible with 𝑛 = 𝑂
𝑑

𝜀2
⋅

𝑑

ℓ
.



Domain compression for Δ𝑘
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Theorem ([ACT20d,ACHST20]). For Δ𝑘, noninteractive 
public-coin identity testing under ℓ1 distance is possible 

with 𝑛 = 𝑂
𝑘

𝜀2
⋅

𝑘

2ℓ
.



Domain compression for Δ𝑘
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Proof. Pick a common u.a.r. hash function ℎ: 𝑘 → [2ℓ]: all 
users replace their 𝑋𝑖 by 𝑋𝑖

′ ≔ ℎ(𝑋𝑖), which they can send.

So server gets 𝑛 i.i.d. samples from some 𝒑ℎ on [2ℓ]. It also 
knows ℎ, so can compute 𝒒ℎ (where 𝒒 is the reference 
distribution).

All that remains is to do identity testing of 𝒑ℎ to 𝒒ℎ…

Theorem. For Δ𝑘, noninteractive public-coin identity testing

under ℓ1 distance is possible with 𝑛 = 𝑂
𝑘

𝜀2
⋅

𝑘

2ℓ
.



Domain compression for Δ𝑘
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Proof (cont’d). Why is this good?

- Server has 𝑛 i.i.d. samples from this 𝒑ℎ on [2ℓ]

- If 𝒑 = 𝒒 then  𝒑ℎ = 𝒒ℎ

- If 𝒑 − 𝒒 1 > 𝜀, “then”

Pr
ℎ

𝒑ℎ − 𝒒ℎ 1 > 𝜀 ⋅ 2ℓ/𝑘 = Ω(1)

Theorem. For Δ𝑘, noninteractive public-coin identity testing

under ℓ1 distance is possible with 𝑛 = 𝑂
𝑘

𝜀2
⋅

𝑘

2ℓ
.



Domain compression for Δ𝑘
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Proof (cont’d). This last part is not obvious: going to 
handwave the argument. Proving the analogous statement 
for ℓ2 is a bit simpler: 

1. Check that 𝔼ℎ 𝒑ℎ − 𝒒ℎ 2
2 ≍ 𝒑 − 𝒒 2

2

2. Bound the variance of 𝒑ℎ − 𝒒ℎ 2
2

3. Apply Paley-Zygmund’s inequality.

(For the ℓ1 statement, a few more ingredients are needed.)

Theorem. For Δ𝑘, noninteractive public-coin identity testing

under ℓ1 distance is possible with 𝑛 = 𝑂
𝑘

𝜀2
⋅

𝑘

2ℓ
.



Domain compression for Δ𝑘
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Proof (cont’d). Once we have this, we are done: the server 

can do identity testing to 𝑞ℎ over [2ℓ]with 𝜀′ ≔ 𝜀 2ℓ/𝑘, 
for which 

𝑛 = 𝑂
2ℓ

𝜀′
2 = 𝑂

𝑘

𝜀2 2ℓ

is enough.   □

Theorem. For Δ𝑘, noninteractive public-coin identity testing

under ℓ1 distance is possible with 𝑛 = 𝑂
𝑘

𝜀2
⋅

𝑘

2ℓ
.



That’s seven upper bounds we proved.
(in ≈30 minutes)
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That’s seven upper bounds we proved.
(in ≈30 minutes)
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Estimation

Δ𝑘, ℓ1
𝑘

𝜀2
⋅

𝑘

min 2ℓ, 𝑘

𝑘

𝜀2
⋅
𝑘

𝜚2

ℬ𝑑 , ℓ2
𝑑

𝜀2
⋅

𝑑

min ℓ, 𝑑

𝑑

𝜀2
⋅
𝑑

𝜚2

𝒢𝑑 , ℓ2
𝑑

𝜀2
⋅

𝑑

min ℓ, 𝑑

𝑑

𝜀2
⋅
𝑑

𝜚2

Testing

Δ𝑘, ℓ1
𝑘

𝜀2
⋅

𝑘

min 2ℓ, 𝑘

𝑘

𝜀2
⋅

𝑘

min{2ℓ, 𝑘}

ℬ𝑑 , ℓ2
𝑑

𝜀2
⋅

𝑑

min ℓ, 𝑑

𝑑

𝜀2
⋅

𝑑

min{ℓ, 𝑑}

“Hide-and-Seek”
log 𝑑

𝜀2
⋅

𝑑

min ℓ, 𝑑



Summary
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This tutorial: techniques for proving lower bounds, in both 
interactive and noninteractive settings, for statistical 
estimation and testing under “local constraints.”



Summary

3939

This tutorial: techniques for proving lower bounds, in both 
interactive and noninteractive settings, for statistical 
estimation and testing under “local constraints.”

I. Introduction Clément

II. Lower Bounds for Estimation Jayadev

III. Lower Bounds for Testing Himanshu

IV. Some upper bounds, and discussion Clément



Some open problems

First, happy to discuss those (and more) in detail during the 
conference, interactively! Please feel free reach out.
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Some directions

First, happy to discuss those (and more) in detail during the 
conference, interactively! Please feel free reach out.

Open Problem #1: What if all users had different constraints? E.g., 
different bandwidth constraints, or different privacy requirements…

Open Problem #2: Other types of constraints! Linear measurements, 
threshold measurements (univariate case), or malicious noise à la 
Massart…
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