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Hypothesis testing
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1. Identity testing 

Dimension = 𝑘 − 1,  Accuracy = 𝜀

𝑋𝑛 ≔ 𝑋1, … , 𝑋𝑛 : Samples from an unknown 𝐩 on 𝒳= 𝑘
𝐪: reference distribution 

Design a test 𝑇 𝑋𝑛 such that 
Pr 𝑇 𝑋𝑛 = 0 > 0.9, if 𝐩 = 𝐪

Pr 𝑇 𝑋𝑛 = 1 > 0.9, if dTV 𝐩, 𝐪 > 𝜀

Sample Complexity = Θ
𝑘

𝜀2



Hypothesis testing
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2. High-dimensional mean testing

Dimension = 𝑑,  Accuracy = 𝜀

𝑋𝑛: Samples from an unknown product distribution 𝐩 on 𝒳 = ℝ𝑑

𝜃: mean of 𝐩, 𝑖. 𝑒. , 𝔼 𝑋1 = 𝜃

Design a test 𝑇 𝑋𝑛 such that 
Pr 𝑇 𝑋𝑛 = 0 > 0.9, if 𝜃 = 0
Pr 𝑇 𝑋𝑛 = 1 > 0.9, if 𝜃 𝟐 > 𝜀

Families of interest: Gaussian, Product Bernoulli 

Sample Complexity = Θ
𝑑

𝜀2



Hypothesis testing
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3. The hide-and-seek problem

(Example for lower bounds, related to sparse mean estimation)

𝑋𝑛: Samples from a product Bernoulli dist. 𝐩 on 𝒳 = −1, +1 𝑑

𝔼 𝑋𝑖 ∈ {𝜃1, 𝜃2, … , 𝜃𝑑} is unkown where 𝜃𝑗 = 𝜀𝒆𝑗 , 𝑗 ∈ 𝑑

Design a test 𝑇 𝑋𝑛 such that 
Pr 𝑇 𝑋𝑛 = 𝑗 > 0.9, if 𝔼 𝑋1 = 𝜃𝑗, 𝑗 ∈ [𝑑]

Sample Complexity = O
log 𝑑

𝜀2



Types of protocols
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𝑋1 𝑋2
.  .  .   𝑋𝑛

𝑊1 𝑊2 𝑊𝑛

𝑌1 𝑌2
.  .  .   𝑌𝑛

𝐩

ℜ

Private-coin SMP protocols

∈ 𝒲

Referee ℜ applies test 𝑇 𝑌𝑛
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𝑋1 𝑋2
.  .  .   𝑋𝑛

𝑊1 𝑊2 𝑊𝑛

𝑌1 𝑌2
.  .  .   𝑌𝑛

𝐩

ℜ

Public-coin SMP protocols

∈ 𝒲𝑈

Referee ℜ applies test 𝑇 𝑌𝑛, 𝑈
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𝑋1 𝑋2
.  .  .   𝑋𝑛

𝑊1 𝑊2 𝑊𝑛

𝑌1 𝑌2
.  .  .   𝑌𝑛

𝐩

ℜ

Sequentially Interactive 
protocols

∈ 𝒲𝑈

Referee ℜ applies test 𝑇 𝑌𝑛, 𝑈



Information constrained setting
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1. Communication constraints

ℓ-bit communication constrained players:

𝒲ℓ = {𝑊: 𝒳 → 0,1 ℓ }

2. Local differential privacy constraints

𝜚-LDP channels

𝒲𝜚 = 𝑊: max{𝑥,𝑥′∈𝒳,𝑦∈ 𝒴}

𝑊 𝑦 𝑥

𝑊 𝑦 𝑥′
≤ 𝑒𝜚



The plan for this hour

9

Will derive lower bounds for sample complexity of hypothesis 
testing problems 1-3 under information constraints 

1. Decoupled chi-square contraction bound 
• directly handle how chi-square distances between 𝑛-fold distributions shrink 

when samples are passed through channels from 𝒲

2. Average mutual information bound
• relate testing to the average information about each coordinate of the unknown 

parameter

3. Extensions to high-dimensional mean testing
• general bounds and difficulties that emerge due to “nonlinear perturbations”



1. The Decoupled Chi-square 
Contraction Bound



Ingster’s method
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Use-case: Lower bound for (𝑘, 𝜀)-identity testing [Paninski ’08]

[Paninski ’08] L. Paninski, “A coincidence-based test for uniformity given very sparsely  
sampled discrete data,” IEEE Transactions on Information Theory, 2008 

Consider the set 𝒫 = 𝐩𝑧: 𝑧 ∈ −1,1 𝑘/2

𝐩𝑧 2𝑗 − 1 =
1 + 𝑧𝑗𝜀

𝑘
, 𝐩𝑧 2𝑗 =

1 − 𝑧𝑗𝜀

𝑘

1 2 3 4 5 6

𝑧1=1 𝑧2=1 𝑧3=−1

…

…

1/𝑘

Perturbations around 𝐮, dTV 𝐩𝐳, 𝐮 = 𝜀



Ingster’s method
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Use-case: Lower bound for (𝑘, 𝜀)-identity testing [Paninski ’08]

Consider the set 𝒫 = 𝐩𝑧: 𝑧 ∈ −1,1 𝑘/2

𝐩𝑧 2𝑗 − 1 =
1 + 𝑧𝑗𝜀

𝑘
, 𝐩𝑧 2𝑖 =

1 − 𝑧𝑗𝜀

𝑘

Observation 1: 

Optimal Bayesian error =  
1

2
(1 − dTV 𝐩, 𝐪 )

Thus, if a test can distinguish 𝐩 and 𝐪, then dTV 𝐩, 𝐪 ≥ c

Observation 2:
Since our test can distinguish 𝐩𝑧

𝑛 and 𝐮𝑛 for every 𝑧, 
it can distinguish 𝔼 [𝐩𝑍

𝑛] and 𝐮𝑛 whereby dTV 𝔼 [𝐩𝑍
𝑛], 𝐮𝑛 ≥ c

What is the least 𝑛 needed to get dTV 𝔼 [𝐩𝑍
𝑛], 𝐮𝑛 ≥ c ?



Ingster’s method
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The mixture 𝔼 [𝐩𝑍
𝑛] is much closer to 𝐮𝑛 than any individual 𝐩𝑧

𝑛



Ingster’s method
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The mixture 𝔼 [𝐩𝑍
𝑛] is much closer to 𝐮𝑛 than any individual 𝐩𝑧

𝑛

1. Switch to chi-square divergence …

A very quick primer on chi-square divergence

Definition d𝜒2 𝐩, 𝐪 ≝ σ𝑥
𝐩 𝑥 −𝐪 𝑥

𝟐

𝐪 𝑥

= 𝔼𝐪 [Δ2]

= 𝔼𝐪 [(1 + Δ)2] − 1,

where  Δ 𝑥 ≝
𝐩 𝑥 −𝐪(𝑥)

𝐪(𝑥)
is the normalized change

Property dTV 𝐩, 𝐪 =𝔼𝐪 [|Δ|] ≤ d𝜒2 𝐩, 𝐪



Ingster’s method
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The mixture 𝔼 [𝐩𝑍
𝑛] is much closer to 𝐮𝑛 than any individual 𝐩𝑧

𝑛

1. Switch to chi-square divergence …

dTV 𝔼 [𝐩𝑍
𝑛], 𝐮𝑛 ≤ d𝜒2 𝔼 [𝐩𝑍

𝑛], 𝐮𝑛

2. Exploit the uncorrelatedness of 𝑍𝑖 to cancel “contributions” 
to the distance (the Ingster trick):

Warning: manipulations ahead…



Ingster’s method
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• Δ𝑍
𝑛 ≝

𝐩Z
𝑛−𝐮𝑛

𝐮𝑛 ⇒ 1 + Δ𝑍
𝑛 𝒙 = ∏𝑖=1

𝑛 𝐩𝑧 𝑥𝑖

𝐮 𝑥𝑖
= ∏𝑖=1

𝑛 (1 + Δ𝑍(𝑥𝑖))

• 𝑍′ is an independent copy of 𝑍

(The Decoupling Step)

d𝜒2 𝔼𝑍 [𝐩𝑍
𝑛], 𝐮𝑛

= 𝔼[(1 + 𝔼Z[Δ𝑍
𝑛])2] − 1

= 𝔼[𝔼𝑍𝑍′[(1 + Δ𝑍
𝑛)(1 + Δ𝑍′

𝑛 )]] − 1

= 𝔼𝑍𝑍′[𝔼[(1 + Δ𝑍
𝑛)(1 + Δ𝑍′

𝑛 )]] − 1



Ingster’s method
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• Δ𝑍
𝑛 ≝

𝐩Z
𝑛−𝐮𝑛

𝐮𝑛 ⇒ 1 + Δ𝑍
𝑛 𝒙 = ∏𝑖=1

𝑛 𝐩𝑧 𝑥𝑖

𝐮 𝑥𝑖
= ∏𝑖=1

𝑛 (1 + Δ𝑍(𝑥𝑖))

• 𝑍′ is an independent copy of 𝑍

d𝜒2 𝔼𝑍 [𝐩𝑍
𝑛], 𝐮𝑛 = 𝔼𝑍𝑍′[𝔼[(1 + Δ𝑍

𝑛)(1 + Δ𝑍′
𝑛 )]] − 1 (decoupling)

= 𝔼𝑍𝑍′[∏𝑖=1
𝑛 (1 + 𝔼[ Δ𝑍 𝑋𝑖 Δ𝑍′ 𝑋𝑖 ])] −1 (averaging out uncorrelated terms)

≤ 𝔼𝑍𝑍′ e𝑛𝔼[ Δ𝑍 𝑋1 Δ
𝑍′ 𝑋1 ] -1                                                            ( since 1 + 𝑡 ≤ 𝑒𝑡)

d𝜒2 𝔼 [𝐩𝑍
𝑛], 𝐮𝑛 ≤ 𝑒

𝑛2𝜀4

𝑘 − 1

Noting that 𝔼 Δ𝑍 𝑋1 Δ𝑍′ 𝑋1 =
2𝜀2

𝑘
σ𝑗=1

𝑘/2
𝑍𝑗𝑍𝑗

′ and using Hoeffding’s bound



Ingster’s method (as used in [Paninski’08])
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The mixture 𝔼 [𝐩𝑍
𝑛] is much closer to 𝐮𝑛 than any individual 𝐩𝑧

𝑛

1. Switch to chi-square divergence …

dTV 𝔼 [𝐩𝑍
𝑛], 𝐮𝑛 ≤ d𝜒2 𝔼 [𝐩𝑍

𝑛], 𝐮𝑛

2. Exploit the uncorrelatedness of 𝑍𝑖 to cancel “contributions” 
to the distance (the Ingster trick):

whereby 𝑒𝑛2𝜀4/𝑘 ≥ log 1 + 𝑐 ⇒

d𝜒2 𝔼 [𝐩𝑍
𝑛], 𝐮𝑛 ≤ 𝑒

𝑛2𝜀4

𝑘 − 1

𝑛 ≥ Ω
𝑘

𝜀2



• The mixture is much closer to 𝐮𝑛 than individual 𝐩𝑍
𝑛

(which are all at distance 𝑛 𝜀)

dTV 𝔼 [𝐩𝑍
𝑛], 𝐮𝑛 ≤ 𝑒

𝑛2𝜀4

𝑘 − 1 ≈ 𝑛 𝜀 .
𝑛 𝜀

𝑘

Smaller than 1 if 𝑛 < 𝑘/𝜀2

• The quadratic form of d𝜒2 is useful to handle mixtures

Take away 1: Summary of Ingster’s method



Ingster’s method in the information constrained setting
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Lower bounds for identity testing 

• Notation.

o Channels 𝑊𝑛 = 𝑊1 ⊗ … ⊗ 𝑊𝑛

o 𝐩𝑊𝑛
the output distrib. for  𝑊𝑛 when the input distrib. is 𝐩𝑛

o For a p.s.d. matrix 𝐴 with eigenvalues 𝜆1, 𝜆2, … , 𝜆𝑚, recall

∥ 𝐴 ∥F= 𝜆1
2 + 𝜆2

2 + ⋯ + 𝜆𝑚
2

∥ 𝐴 ∥∗= 𝜆1 + 𝜆2 + ⋯ + 𝜆𝑚

∥ 𝐴 ∥OP= max
i

𝜆𝑖



Ingster’s method in the information constrained setting
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Lower bounds for identity testing 

• An observation. For public-coin protocols:
If we can resolve the mixture vs uniform problem,
we can derandomize and resolve it using a constant 𝑈

• Earlier we saw 

d𝜒2 𝔼 [𝐩𝑍
𝑊𝑛

], 𝐮𝑊𝑛
= 𝔼𝑍𝑍′[∏𝑖=1

𝑛 (1 + 𝔼[ Δ𝑍
𝑊𝑖 𝑋𝑖 Δ

𝑍′
𝑊𝑖 𝑋𝑖 ])] −1



Ingster’s method in the information constrained setting
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We start at the last expression:

d𝜒2 𝔼 [𝐩𝑍
𝑊𝑛

], 𝐮𝑊𝑛
= 𝔼𝑍𝑍′[∏𝑖=1

𝑛 (1 + 𝔼[ Δ𝑍
𝑊𝑖 𝑋𝑖 Δ

𝑍′
𝑊𝑖 𝑋𝑖 ])] −1

The key observation.

𝔼 Δ𝑍
𝑊𝑖 𝑋𝑖 Δ

𝑍′
𝑊𝑖 𝑋𝑖 =

2𝜀2

𝑘
𝑍𝑇𝐻 𝑊𝑖 𝑍′

where 𝐻 𝑊 is 
𝑘

2
×

𝑘

2
matrix with (𝑗1, 𝑗2) entry given by

෍

𝑦

𝑊 𝑦 2𝑗1 − 1 − 𝑊 𝑦 2𝑗1 𝑊 𝑦 2𝑗2 − 1 − 𝑊 𝑦 2𝑗2

σ𝑥 𝑊 𝑦 𝑥



Ingster’s method in the information constrained setting
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d𝜒2 𝔼 [𝐩𝑍
𝑊𝑛

], 𝐮𝑊𝑛
= 𝔼𝑍𝑍′ ∏𝑖=1

𝑛 (1 +
2𝜀2

𝑘
𝑍𝑇𝐻 𝑊𝑖 𝑍′ ) −1

≤ 𝔼𝑍𝑍′ 𝑒
2𝜀2

𝑘
𝑍𝑇(σ𝑖=1

𝑛 𝐻 𝑊𝑖 )𝑍′

−1

= 𝔼𝑍𝑍′ 𝑒
2𝑛𝜀2

𝑘
𝑍𝑇 𝐻 𝑍′

−1, where 𝐻 =
1

𝑛
σ𝑖 𝐻(𝑊𝑖)

Using a decoupling bound (for Rademacher chaos),

d𝜒2 𝔼 [𝐩𝑍
𝑊𝑛

], 𝐮𝑊𝑛
≲

𝑛2𝜀4

𝑘2 ⋅∥ 𝐻 ∥𝐹
2 ≤

𝑛2𝜀4

𝑘2 max
𝑊∈𝒲

∥ 𝐻(𝑊) ∥𝐹
2

which implies that 𝑛 ≥ Ω
𝑘

𝜀2 ⋅
𝑘

max
𝑊∈𝒲

∥𝐻 𝑊 ∥𝐹

Chi-square contraction 
due to information constraints



Private-coin protocols
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Ingster’s method applied to private-coin identity testing

• For public-coin protocol, we “derandomized” in the first step. Perhaps a better 

bound can be obtained if minimize over the choice of 𝐩𝑧, 𝑧 ∈ −1,1 𝑘/2

• But this approach cannot work for public-coin protocols because, heuristically, 
the shared randomness allows the protocol to “align” to the difficult case 
(formally, the choice of channels used can depend on the difficult case)

However, this can be done for private-coin protocols!



Private-coin protocols
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Ingster’s method applied to private-coin identity testing

We choose 𝑍 = 𝑉𝑌, where 𝑌 is Rademacher vector as before and 𝑉 is a 
𝑘

2
×

𝑘

4

matrix chosen to make the family the most challenging for 𝑊𝑛

d𝜒2 𝔼 [𝐩𝑍
𝑊𝑛

], 𝐮𝑊𝑛
≤ 𝔼𝑍𝑍′ 𝑒

2𝑛𝜀2

𝑘
𝑍𝑇 𝐻 Z′

−1 = 𝔼𝑌𝑌′ 𝑒
2𝑛𝜀2

𝑘
𝑌𝑇𝑉𝑇 𝐻 𝑉𝑌′

− 1

≈
𝑛2𝜀4

𝑘2 ∥ 𝑉𝑇𝐻𝑉 ∥𝐹
2

Choose 𝑉so that it picks the smallest 
𝑘

4
eigenvalues of p.s.d. matrix 𝐻 to get

d𝜒2 𝔼 [𝐩𝑍
𝑊𝑛

], 𝐮𝑊𝑛
≲

𝑛2𝜀4

𝑘2

∥𝐻∥∗
2

𝑘
≤

𝑛2𝜀4

𝑘3 max
𝑊∈𝒲

∥ 𝐻(𝑊) ∥∗
2

which implies that 𝑛 ≥ Ω
𝑘

𝜀2 ⋅
𝑘

max
𝑊∈𝒲

∥𝐻 𝑊 ∥∗ Chi-square contraction 
due to information constraints



Take away 2: SMP chi-square contraction

• We can bound the contraction in chi-square divergences 
between mixture and the uniform using Ingster’s method

• We get more restrictive bounds for private-coin protocols:

Sample-complexity lower bounds for identity testing

Public-coin protocols:     Ω
𝑘

𝜀2 ⋅
𝑘

max
𝑊∈𝒲

∥𝐻 𝑊 ∥𝐹

Private-coin protocols:   Ω
𝑘

𝜀2 ⋅
𝑘

max
𝑊∈𝒲

∥𝐻 𝑊 ∥∗



2. The average information bound for 
interactive testing



Relating testing to average information
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• Assouad’s method implies that the difficulty of the learning problem is 

related to the average information 
2

𝑘
σ𝑖 𝐼 𝑍𝑖 ∧ 𝑌𝑛

• Interestingly, we will now see that even the difficulty of the testing problem 
can be related to the same quantity

Abbreviate 𝐪𝑌𝑛
= 𝔼 𝐩𝑍

𝑊𝑛
and 𝐮𝑌𝑛

= 𝐮𝑊𝑛

Step 1. Chain rule in KL divergence before switching to chi-square

2dTV 𝐪𝑌𝑛
∥ 𝐮𝑌𝑛 2

≤ D 𝐪𝑌𝑛
∥ 𝐮𝑌𝑛

= σ𝑡=1
𝑛 𝔼

𝐪𝑌𝑡−1 D 𝐪𝑌𝑡|𝑌𝑡−1
∥ 𝐮𝑌𝑡|𝑌𝑡−1

≤ σ𝑡=1
𝑛 𝔼

𝐪𝑌𝑡−1 d𝜒2 𝐪𝑌𝑡|𝑌𝑡−1
∥ 𝐮𝑌𝑡|𝑌𝑡−1



Relating testing to average information
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• Step 1 gives 2dTV 𝐪𝑌𝑛
∥ 𝐮𝑌𝑛 2

≤ σ𝑡=1
𝑛 𝔼

𝐪𝑌𝑡−1 d𝜒2 𝐪𝑌𝑡|𝑌𝑡−1
∥ 𝐮𝑌𝑡|𝑌𝑡−1

Step 2. Bringing-in the Channel Information matrix H

• Recall that for Paninski’s construction:

𝐪𝑋𝑡|𝑌𝑡−1 2𝑗 − 1 =
1+𝜀𝔼 𝑍𝑗|𝑌𝑡−1

𝑘
;    𝐪𝑋𝑡|𝑌𝑡−1 2𝑗 =

1−𝜀𝔼 𝑍𝑗|𝑌𝑡−1

𝑘
, 𝑗 ∈

𝑘

2

d𝜒2 𝐪𝑌𝑡|𝑌𝑡−1
∥ 𝐮𝑌𝑡|𝑌𝑡−1

=
𝜀2

𝑘
σ𝑦

σ𝑖 𝔼 𝑍𝑖|𝑌𝑡−1 𝑊𝑌𝑡−1 𝑦 2𝑖 − 1 −𝑊𝑌𝑡−1 𝑦 2𝑖
2

σ𝑥 𝑊𝑌𝑡−1
(𝑦|𝑥)

=
𝜀2

𝑘
𝔼 𝑍|𝑌𝑡−1 𝑇𝐻 𝑊𝑌𝑡−1

𝔼 𝑍|𝑌𝑡−1



Relating testing to average information
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• Step 1 gives 2dTV 𝐪𝑌𝑛
∥ 𝐮𝑌𝑛 2

≤ σ𝑡=1
𝑛 𝔼

𝐪𝑌𝑡−1 d𝜒2 𝐪𝑌𝑡|𝑌𝑡−1
∥ 𝐮𝑌𝑡|𝑌𝑡−1

• Step 2 gives d𝜒2 𝐪𝑌𝑡|𝑌𝑡−1
∥ 𝐮𝑌𝑡|𝑌𝑡−1

=
𝜀2

𝑘
𝔼 𝑍|𝑌𝑡−1 𝑇𝐻 𝑊𝑌𝑡−1

𝔼 𝑍|𝑌𝑡−1

Step 3. “Channel Alignment” Bound

𝔼 𝑍|𝑌𝑡−1 𝑇𝐻 𝑊𝑌𝑡−1
𝔼 𝑍|𝑌𝑡−1

≤ ∥ 𝐻 𝑊𝑌𝑡−1
∥OP ⋅ ∥ 𝔼 𝑍|𝑌𝑡−1 ∥2

2

≤ max
𝑊∈𝒲

∥ 𝐻 𝑊 ∥OP ⋅ ∥ 𝔼 𝑍|𝑌𝑡−1 ∥2
2

Finally, the average information bound for testing …
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Till now we have:

2dTV 𝐪𝑌𝑛
∥ 𝐮𝑌𝑛 2

≤
ε2

k
⋅ max

W∈𝒲
∥ H W ∥OP ⋅ ෍

t=1

n

𝔼 ∥ 𝔼 𝑍|𝑌𝑡−1 ∥2
2

An observation.

For a random variable 𝑉 taking values in −1, +1 ,

𝔼[𝑉] = 2 𝑃𝑉 1 −
1

2

Let U be Rademacher. By Pinsker’s inequality

1 − 𝐻 𝑉 = 𝐷 𝑃𝑉 ∥ 𝑃𝑈 ≥
ln 2

2
𝔼 𝑉2

Therefore,  

𝔼 ∥ 𝔼 𝑍|𝑌𝑡−1 ∥2
2 = ෍

𝑖

𝔼 𝔼 𝑍𝑖|𝑌𝑡−1 2 ≤
2

ln 2
෍

𝑖

𝐼 𝑍𝑖 ∧ 𝑌𝑡−1

2dTV 𝐪𝑌𝑛
∥ 𝐮𝑌𝑛 2

≤ 𝑐 ⋅ ε2 max
W∈𝒲

∥ H W ∥OP ⋅ ෍

𝑡=1

𝑛
2

𝑘
෍

𝑖

𝐼 𝑍𝑖 ∧ 𝑌𝑡−1
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The average information bound for testing:

2dTV 𝐪Yn
∥ 𝐮Yn 2

≤ 𝑐 ⋅ ε2 max
W∈𝒲

∥ H W ∥OP ⋅ ෍

𝑡=1

𝑛
2

𝑘
෍

𝑖

𝐼 𝑍𝑖 ∧ 𝑌𝑡−1

Earlier we saw:

2

𝑘
෍

𝑖

𝐼 𝑍𝑖 ∧ 𝑌𝑡−1 ≤ 𝑐 ⋅ 𝑡 − 1 ⋅
𝜀2

𝑘2
max
W∈𝒲

∥ H W ∥∗

which gives

2dTV 𝐪Yn
∥ 𝐮Yn 2

≤ 𝑐.
𝑛2𝜀4

𝑘2 max
W∈𝒲

∥ H W ∥OP ⋅ max
W∈𝒲

∥ H W ∥∗

whereby

𝑛 ≥ Ω
𝑘

𝜀2 max
W∈𝒲

∥ H W ∥OP ⋅ max
W∈𝒲

∥ H W ∥∗



Take away 3: All chi-square contraction bounds

• Lower bounds for identity testing under information constraints

∥ 𝒲 ∥≝ max
𝑊∈𝒲

∥ 𝐻(𝑊) ∥

Classic Private-coin 
SMP

Public-coin 
SMP

Sequentially Interactive

Ω
𝑘

𝜀2
Ω

𝑘3/2

𝜀2 ∥ 𝒲 ∥∗

Ω
𝑘

𝜀2 ∥ 𝒲 ∥F
Ω

𝑘

𝜀2 ∥ 𝒲 ∥𝑂P∥ 𝒲 ∥∗

• For the sequentially interactive lower bound:

o Can be improved, in general, using the same recipe

o We can find an example of constraints where interaction helps
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1. Communication constraints: 𝒲ℓ = {𝑊: 𝒳 → 0,1 ℓ }

∥ 𝒲ℓ ∥F≤ 2ℓ ,    ∥ 𝒲ℓ ∥∗≤ 2ℓ,    ∥ 𝒲ℓ ∥OP≤ 2

2. LDP constraints: 𝒲𝜚 = 𝑊: max{𝑥,𝑥′∈𝒳,𝑦∈ 𝒴}
𝑊 𝑦 𝑥
𝑊 𝑦 𝑥′

≤ 𝑒𝜚

∥ 𝒲𝜌 ∥F≤ 𝒪(𝜌2),    ∥ 𝒲𝜌 ∥∗≤ 𝒪(𝜌2),    ∥ 𝒲𝜌 ∥OP≤ 𝒪(𝜌2)

Private-coin Public-coin Sequentially Interactive

Ω
𝑘3/2

𝜀22ℓ
Ω

𝑘

𝜀2 2ℓ
Ω

𝑘

𝜀2 2ℓ

Private-coin Public-coin Sequentially Interactive

Ω
𝑘3/2

𝜀2𝜌2
Ω

𝑘

𝜀2𝜌2
Ω

𝑘

𝜀2𝜌2

• These bounds will be seen to be tight

• Interaction doesn’t help, but public coins do



3. High-dimensional mean testing

(under communication constraints)
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1. Chi-square bound (we didn’t see it earlier, but it’s easy)

D 𝔼 [𝐩𝑍
𝑊𝑛

] ∥ 𝐩𝑊𝑛
≤ 𝔼𝑍 D 𝐩𝑍

𝑊𝑛
∥ 𝐩𝑊𝑛

= ෍

𝑖

𝔼Z D 𝐩𝑍
𝑊𝑖 ∥ 𝐩𝑊𝑖

which upon bounding divergence with d𝜒2 gives

D 𝔼 [𝐩𝑍
𝑊𝑛

] ∥ 𝐩𝑊𝑛
≤ 𝑛 ⋅ max

𝑊∈𝒲ℓ

𝔼𝑍 ෍

𝑦

𝔼𝑋 𝛿𝑍 𝑋 𝑊 𝑦 𝑋 2

𝔼𝑋 𝑊 𝑦 𝑋

2. Decoupled chi-square bound (Ingster’s method)

d𝜒2 𝔼 [𝐩𝑍
𝑊𝑛

], 𝐩𝑊𝑛
≤

max
𝑊𝑛

𝔼𝑍𝑍′ 𝑒
σ𝑖=1

𝑛 σ𝑦

𝔼𝑋 𝛿𝑍 𝑋 𝑊𝑖 𝑦 𝑋 𝔼𝑋 𝛿
𝑍′ 𝑋 𝑊𝑖 𝑦 𝑋

𝔼𝑋 𝑊 𝑦 𝑋 −1
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𝐩 prod Bernoulli dist. on 𝒳 = −1, +1 𝑑 with mean 𝟎

𝐩𝑧, 𝑧 ∈ 𝑑 , prod Bernoulli dist. on 𝒳 = −1, +1 𝑑 with mean 𝜀𝒆𝑧

𝜹𝑧(𝑥) = 𝜀𝑥𝑧 (“linear perturbation”)

For the chi-square contraction bound: 

𝔼𝑍 ෍

𝑦

𝔼𝑋 𝛿𝑍 𝑋 𝑊 𝑦 𝑋 2

𝔼𝑋 𝑊 𝑦 𝑋
=

𝜀2

𝑑
෍

𝑦

𝔼𝑋 𝑋𝑊 𝑦 𝑋 2

𝔼𝑋 𝑊 𝑦 𝑋
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෍

𝑦

𝔼𝑍

𝔼𝑋 𝛿𝑍 𝑋 𝑊 𝑦 𝑋 2

𝔼𝑋 𝑊 𝑦 𝑋
=

𝜀2

𝑑
෍

𝑦

𝔼𝑋 𝑋𝑊 𝑦 𝑋 2

𝔼𝑋 𝑊 𝑦 𝑋

A measure change bound
(similar to Talagrand’s Gaussian transportation inequality)

For random vector 𝑋 as above (or Gaussian) and 𝑎: 𝒳 → 0,1 ,

𝔼 𝑋𝑎(𝑋) 2

𝔼 𝑎(𝑋) 2 ≤ 2 𝔼
𝑎 𝑋

𝔼 𝑎(𝑋)
log

𝑎 𝑋

𝔼 𝑎(𝑋)

Proof uses Gibbs variational formula and additivity of divergence

Chi-square bound ⇒

D 𝔼 [𝐩𝑍
𝑊𝑛

] ∥ 𝐩𝑊𝑛
≤ 𝑐 ⋅

𝑛 𝜀2

𝑑
⋅ max

W
H 𝔼[W ⋅ 𝑋 ] ≤ 𝑐 ⋅

𝑛 𝜀2

𝑑
⋅ ℓ
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We used:

D 𝔼 [𝐩𝑍
𝑊𝑛

] ∥ 𝐩𝑊𝑛
≤ 𝑛 ⋅ max

𝑊∈𝒲
𝔼𝑍 ෍

𝑦

𝔼𝑋 𝛿𝑍 𝑋 𝑊 𝑦 𝑋 2

𝔼𝑋 𝑊 𝑦 𝑋

Even for sequentially interactive protocol, we can show 

𝔼𝑍 D 𝐩𝑍
𝑊𝑛

∥ 𝐩𝑊𝑛
≤ 𝔼Z ෍

𝑖

𝔼Y𝑖−1 D 𝐩𝑍
𝑌𝑖|𝑌𝑖−1

∥ 𝐩𝑌𝑖|𝑌𝑖−1

≤ 𝑛 𝔼𝑍 max
𝑊∈𝒲ℓ

σ𝑦
𝔼𝑋 𝛿𝑍 𝑋 𝑊 𝑦 𝑋

2

𝔼𝑋 𝑊 𝑦 𝑋

But our previous bound requires us to take average over 𝑍 before taking the max

Alternatively, we can derive an average information bound for this case as well
[Shamir ‘14]
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𝐩 Gaussian distribution 𝒩(0, 𝕀𝑑)

𝐩𝑧, 𝑧 ∈ −1, +1 𝑑 , Gaussian distribution 𝒩
𝜀

𝑑
𝑧, 𝕀𝑑

The main difficulty: nonlinear perturbation (in 𝑥)

𝜹𝑧(𝑥) = 𝑒−𝜀2/2 𝑒
𝜀

𝑑
⟨𝑥,𝑧⟩

− 1

But we can still derive a partial bound (using the chi-square bound)
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𝜹𝑧(𝑥) = 𝑒−𝜀2/2 𝑒
𝜀

𝑑
⟨𝑥,𝑧⟩

− 1

Chi-square divergence bound for Gaussian mean testing

For ℓ ≤
𝑑

ε2 , 𝔼𝑍 σ𝑦
𝔼𝑋 𝛿𝑍 𝑋 𝑊(𝑦|𝑋) 2

𝔼𝑋 𝑊(𝑦|𝑋)
≤ 𝒪 max

𝜀2ℓ

𝑑
,

𝜀4ℓ2

𝑑

• It is tight for constant ℓ or small enough 𝜀
• The proof is tedious, uses level-𝑘 inequalities instead of our 

earlier Talagrand-type bound

• Does not work for interactive protocols –
we need to take expectation over Z and cannot handle

𝔼𝑍 max
𝑊

෍

𝑦

𝔼𝑋 𝛿𝑍 𝑋 𝑊(𝑦|𝑋) 2

𝔼𝑋 𝑊(𝑦|𝑋)



In conclusion

• Bounds seen 
o the chi-square contraction bounds for SMP protocols 
o the average information bound for sequentially 

interactive protocols

• The decoupled chi-square contraction bound obtained using 
Ingster’s method shows separation of private- and public-
coin protocols for identity testing 

• The average information bound can be used to obtain a 
family of channels where interaction helps for testing

• Only partial results available for high-dimensional mean 
testing – the basic approach extends, but difficulty handling 
the resulting terms


