Cookbook: Lower Bounds for Statistical Inference in Distributed and Constrained Settings

Jayadev Acharya, Clement Canonne, Himanshu Tyagi

FOCS 2020

Part II: Lower bounds for learning

Two recalls

$$\mathbf{p}(Y = y) = \sum_{x} \mathbf{p}(x) \cdot W(y|x) = \mathbb{E}_{X \sim \mathbf{p}}[W(y|X)]$$

For distributions \mathbf{p} , \mathbf{q} $D(\mathbf{p} \parallel \mathbf{q}) \coloneqq \sum_{x} \mathbf{p}(x) \log[\mathbf{p}(x)/\mathbf{q}(x)]$ $d_{\chi^2}(\mathbf{p}, \mathbf{q}) \coloneqq \sum_{x} (\mathbf{p}(x) - \mathbf{q}(x))^2 / \mathbf{q}(x)$

 $\mathsf{D}(\mathbf{p} \parallel \mathbf{q}) \leq \mathsf{d}_{\chi^2}(\mathbf{p}, \mathbf{q})$

SMP protocols

(Sequentially) interactive protocols

Estimation

 $\Theta \subseteq \mathbb{R}^d$: space of parameters $\mathcal{P}_{\Theta} = \{\mathbf{p}_{\theta} : \theta \in \Theta\}$, distributions over \mathcal{X} indexed by Θ \mathbf{p}_{θ} X_n $\in \mathcal{W}$ W_2 W_1 W_n Y_n Y_{2} → $\hat{\theta}(Y^n, U)$: estimate of θ R

Objective: ℓ_p estimation of θ Given $\varepsilon > 0, p \ge 1$ $\sup_{\theta} \mathbb{E}_{\mathbf{p}_{\theta}} \Big[\ell_p \big(\widehat{\theta}(Y^n, U), \theta \big)^p \Big]^{1/p} \le \varepsilon$

where

$$\ell_p(u,v)^p = \sum |u_i - v_i|^p$$

Sample complexity: Smallest n for which such a $\hat{\theta}$ exists

Example: Discrete distributions (Δ_k)

• Parameter space

$$\Theta = \{\theta \in [0,1]^k \colon \Sigma \theta_i = 1\}$$

• Underlying domain

$$\mathcal{X} = \{1, \dots, k\}$$

• For $x \in \mathcal{X}$

$$\mathbf{p}_{\theta}(x) = \theta_x$$

heta denotes the probability mass function of $\mathbf{p}_{ heta}$

Example: Product Bernoulli (\mathcal{B}_d)

• Parameter space

$$\Theta = \{\theta \in [-1,1]^d\}$$

• Underlying domain

$$\mathcal{X} = \{-1, 1\}^d$$

• For
$$x = (x_1, ..., x_d) \in \mathcal{X}$$

 $\mathbf{p}_{\theta}(x) = \prod_i \mathbf{p}_{\theta_i}(x_i)$
 $\mathbf{p}_{\theta_i}(1) = \frac{1+\theta_i}{2}, \mathbf{p}_{\theta_i}(-1) = \frac{1-\theta_i}{2}$

Therefore, $\mathbb{E}_{\theta}[x_i] = \theta_i$

 $\boldsymbol{\theta}$ is the distribution mean

Example: Gaussians (\mathcal{G}_d)

• Parameter space

$$\Theta = \{\theta \in [-1,1]^d\}$$

• Underlying domain

$$\mathcal{X} = \mathbb{R}^d$$

$$\mathbf{p}_{\theta} = N(\theta, \mathbb{I})$$

 $\boldsymbol{\theta}$ is the distribution mean

Estimation Tasks in this tutorial

Discrete distribution estimation (Δ_k)

Product Bernoulli mean estimation (\mathcal{B}_d)

Gaussian mean estimation (\mathcal{G}_d)

• Results qualitatively same as \mathcal{B}_d (details can be messy)

Aim of the tutorial

Provide general methods

Discrete distribution estimation (Δ_k) $p = 1: \ell_1$ distance

Product Bernoulli estimation (\mathcal{B}_d)

p = 2: Euclidean distance

Information constraints

1. Communication constraints

 ℓ -bit communication constraints

$$\mathcal{W}_{\ell} = \{ W \colon \mathcal{X} \to \{0,1\}^{\ell} \}$$

Q-LDP channels

$$\mathcal{W}_{\varrho} = \left\{ W: \max_{\{x, x' \in \mathcal{X}, y \in \mathcal{Y}\}} \frac{W(y|x)}{W(y|x')} \le e^{\varrho} \right\} \quad \checkmark$$

Sample complexity for the applications

Problem		Ś
Δ_k , ℓ_1	$\frac{k}{\varepsilon^2} \cdot \frac{k}{\min\{2^\ell, k\}}$	$\frac{k}{\varepsilon^2} \cdot \frac{k}{\varrho^2}$
\mathcal{B}_d , ℓ_2	$\frac{d}{\varepsilon^2} \cdot \frac{d}{\min\{\ell, d\}}$	$\frac{d}{\varepsilon^2} \cdot \frac{d}{\varrho^2}$
\mathcal{G}_d, ℓ_2	$\frac{d}{\varepsilon^2} \cdot \frac{d}{\min\{\ell, d\}}$	$\frac{d}{\varepsilon^2} \cdot \frac{d}{\varrho^2}$

Centralized sample complexity × blow-up due to constraints

Lower bounds for SMP protocols

Reference	Distribution	Constraints
[GMN14, ZDJW14]	Gd	
[DJW17]	Δ_k, \mathcal{G}_d	
[HOW18, HMOW18]	$\Delta_k, {\mathcal B}_d$, ${\mathcal G}_d$	Ŵ
[ACT19]	Δ_k	

SMP vs interactive

SMP protocols:

Fixed *U* lower bounds for **independent** channels

SMP vs interactive

Interactive protocols:

Several dependencies possible, harder to handle

The plan for this hour

Three methods to establish interactive lower bounds

- 1. Classic Cramer-Rao/van Trees inequality [BHO19, BCO20]
 - Unified results for Δ_k , \mathcal{B}_d , \mathcal{G}_d
 - Results hold for ℓ_2 loss
- 2. Strong Data Processing + Assouad's method [BGMNW16, DR19]
 - Lower bounds for \mathcal{B}_d , \mathcal{G}_d under ℓ_2 loss
 - Naturally extends to other ℓ_p loss functions
- 3. Chi-squared contractions + Assouad's method [ACLST20, ACT20]
 - Unified bounds for Δ_k , \mathcal{B}_d , \mathcal{G}_d
 - Works under ℓ_p for $p \ge 1$

Plan for each part

- 1. General methodology
- 2. Application

Proving lower bounds in statistical inference

Recall the goal

$$\sup_{\theta} \mathbb{E}_{\mathbf{p}_{\theta}} \Big[\ell_p \big(\widehat{\theta}(Y^n, U), \theta \big)^p \Big]^{1/p} \le \varepsilon$$

1. Prior π is a distribution over Θ $\pi \to \Theta \to X \to Y$ 2. Show that for any $\hat{\theta}$

$$\mathbb{E}_{\pi}\left[\mathbb{E}_{\mathbf{p}_{\theta}}\left[\ell_{p}\left(\widehat{\theta}(Y^{n},U),\theta\right)^{p}\right]^{1/p}\right] > \varepsilon$$

 $\mathbb{E} \leq \max \Rightarrow$ a lower bound on nAll lower bounds will involve choosing a π at some point

Observation: Given π , suffices to prove lower bound for a fixed U = u and denote (Y^n, u) by Y^n

Proving lower bounds in statistical inference

- 1. Design a prior π over Θ
- 2. Show that for any $\hat{\theta}$

$$\mathbb{E}_{\pi}\left[\mathbb{E}_{\mathbf{p}_{\theta}}\left[\ell_{p}\left(\widehat{\theta}(Y^{n}),\theta\right)^{p}\right]^{1/p}\right] > \varepsilon$$

1. CR/van Trees inequality

Outline for method 1

- Univariate Cramer Rao (CR) bound
 - Bounds error in terms of Fisher information
- High-dimensional CR
- Bayesian CR bound/van Trees inequality
- Error bounds under information constraints
- Application

Cramer Rao bound (for d = 1)

 $\Theta \subseteq \mathbb{R}$

Fisher information:

$$I_X(\theta) \coloneqq \mathbb{E}_{X \sim \mathbf{p}_{\theta}} \left[\left(\frac{\partial}{\partial \theta} \ln \mathbf{p}_{\theta}(X) \right)^2 \right]$$

 $\hat{\theta}$: any unbiased estimator of θ , i.e., $\mathbb{E}[\hat{\theta}] = \theta$

Theorem.

$$\operatorname{Var}(\widehat{\theta}) \geq \frac{1}{I_X(\theta)}$$

Example: Bernoulli mean estimation

$$\mathcal{X} = \{0,1\}, \mathbf{p}_{\theta}(1) = \theta, X_1, \dots, X_n \sim_{iid} \mathbf{p}_{\theta}$$
$$I_{X_1}(\theta) = \frac{1}{\theta(1-\theta)}$$

By additivity of Fisher information

$$I_{X^n}(\theta) = n \cdot I_{X_1}(\theta) = n \cdot \frac{1}{\theta(1-\theta)}$$

For any unbiased $\hat{\theta}(X^n)$

$$\operatorname{Var}(\hat{\theta}) \ge \frac{\theta(1-\theta)}{n}$$

Achieved by

$$\hat{\theta} = (X_1 + \dots + X_n)/n$$

Multivariate Cramer Rao bound

$$\Theta \subseteq \mathbb{R}^d$$

 $d \times d$ Fisher information matrix:

$$\left(\mathbf{I}_{X}(\theta)\right)_{i_{1},i_{2}} \coloneqq \mathbb{E}_{X}\left[\frac{\partial^{2}}{\partial\theta_{i_{1}}\partial\theta_{i_{2}}}\ln\mathbf{p}_{\theta}(X)\right]$$

Theorem (CR). For any unbiased $\hat{\theta}(X)$ $\operatorname{Cov}\left(\hat{\theta}(X)\right) \ge \left(I_X(\theta)\right)^{-1}$

Corollary.

$$\ell_2(\hat{\theta}(X),\theta)^2 = \sum (\hat{\theta}_i - \theta_i)^2 \ge \operatorname{Tr}\left(\left(I_X(\theta)\right)^{-1}\right) \ge \frac{d^2}{\operatorname{Tr}\left(I_X(\theta)\right)}$$

Last step uses $Tr(A) \cdot Tr(A^{-1}) \ge d^2$ for p.s.d. A

van Trees inequality [vT68, GL95]

Unbiasedness a strong assumption

van Trees inequality: a Bayesian CR bound

- π : a prior distribution over Θ
- Lower bound for error under π

van Trees inequality [vT68, GL95]

Let $\pi \coloneqq \pi_1 \times \cdots \times \pi_d$ be a product prior over $\Theta \subseteq \mathbb{R}^d$, i.e., $\pi(\theta) = \pi_1(\theta_1) \dots \pi_d(\theta_d)$

Theorem. Under some mild assumptions

$$\mathbb{E}_{\pi}\mathbb{E}_{X\sim \mathbf{p}_{\theta}}\left[\ell_{2}\left(\widehat{\theta}(X),\theta\right)^{2}\right] \geq \frac{d^{2}}{\mathbb{E}_{\pi}\left[\mathrm{Tr}\left(\mathrm{I}_{X}(\theta)\right)\right] + \mathrm{I}(\pi)^{2}}$$

where $I(\pi) = I(\pi_1) + \dots + I(\pi_d)$

$$I(\pi_i) \coloneqq \mathbb{E}_{\pi_i} \left[\left(\frac{\partial}{\partial \theta_i} \ln \pi_i(\theta_i) \right)^2 \right]$$

[GL95] R. D. Gill, B. Y. Levit, "Applications of the van Trees inequality: a Bayesian Cramer-Rao bound" *Bernoulli, 1995*

van Trees inequality [vT68, GL95]

Theorem. Under some mild assumptions

$$\mathbb{E}_{\pi}\mathbb{E}_{X\sim \mathbf{p}_{\theta}}\left[\ell_{2}\left(\widehat{\theta}(Y^{n}),\theta\right)^{2}\right] \geq \frac{d^{2}}{\mathbb{E}_{\pi}\left[\mathrm{Tr}\left(\mathrm{I}_{Y^{n}}(\theta)\right)\right] + \mathrm{I}(\pi)}.$$

Design a π to upper bound

 $\mathbb{E}_{\pi}\big[\mathrm{Tr}\big(\mathrm{I}_{Y^{n}}(\theta)\big)\big] + \mathrm{I}(\pi)$

[GL95] R. D. Gill, B. Y. Levit, "Applications of the van Trees inequality: a Bayesian Cramer-Rao bound" *Bernoulli, 1995* $\mathbb{E}_{\pi}[\mathrm{Tr}(I_{Y^{n}}(\theta))]$ under interactive protocols [BHO19]

Fix θ . By the chain rule of Fisher information,

$$\operatorname{Tr}(I_{Y^n}(\theta)) = \sum_t \mathbb{E}_{Y^{t-1}}\left[\operatorname{Tr}(I_{Y_t|Y^{t-1}}(\theta))\right]$$

Given
$$\theta$$
, X_t indep Y^{t-1} . Using this
 $\operatorname{Tr}(I_{Y^n}(\theta)) \leq n \cdot \sup_{W \in \mathcal{W}} \operatorname{Tr}(I_Y(\theta))$

Consider worst θ in the support of π $\mathbb{E}_{\pi}[\mathrm{Tr}(\mathrm{I}_{Y^{n}}(\theta))] \leq n \cdot \sup_{\theta \in \mathrm{supp}(\pi)} \sup_{W \in \mathcal{W}} \mathrm{Tr}(\mathrm{I}_{Y}(\theta))$

$$\theta \longrightarrow X \longrightarrow W \longrightarrow Y$$

 $I(\pi)$

Fact [Borovkov95]. Given $A = [a - \Delta, a + \Delta] \subset \Theta$ there exists μ s.t.

$$I(\mu) = \frac{3.14159265358 \dots^2}{\Delta^2}.$$

This is the smallest possible value.

Choosing $\pi = \mu \times \cdots \times \mu$ (each $\pi_i = \mu$), $I(\pi) = d \cdot 3.14 \dots^2 / \Delta^2$.

Information-constrained lower bounds

$$\mathbb{E}_{\pi}\left[\mathrm{Tr}\left(\mathrm{I}_{(Y^{n},U)}(\theta)\right)\right] + \mathrm{I}(\pi) \leq n \cdot \sup_{\theta \in A^{d}} \sup_{W \in \mathcal{W}} \mathrm{Tr}\left(\mathrm{I}_{Y}(\theta)\right) + \frac{d \cdot 3.15^{2}}{\Delta^{2}}$$

Therefore,

$$\varepsilon^{2} \geq \frac{d^{2}}{n \cdot \sup_{\theta \in A^{d}} \sup_{W \in \mathcal{W}} \operatorname{Tr}(I_{Y}(\theta)) + \frac{d \cdot 3.15^{2}}{\Delta^{2}}}$$

Application 1: \mathcal{B}_d

A = [-0.5, 0.5]

$$(W) \quad [BHO19] \quad \sup_{\theta \in A^d} \sup_{W \in \mathcal{W}_{\ell}} \operatorname{Tr}(I_Y(\theta)) = O(\ell)$$
$$n \geq \frac{d^2}{\varepsilon^2 \cdot \ell}$$

[BC019] sup sup
$$\operatorname{Sup}_{\theta \in A^d} \operatorname{Sup}_{W \in \mathcal{W}_{\varrho}} \operatorname{Tr}(I_Y(\theta)) = O(\varrho^2)$$

$$n \ge \frac{d^2}{\varepsilon^2 \cdot \varrho^2}$$

Application 2: Δ_k under ℓ_2

$$A = \begin{bmatrix} \frac{1}{4k}, \frac{1}{3k} \end{bmatrix}$$

$$(BH019) \quad \sup_{\theta \in A^d} \sup_{W \in \mathcal{W}_{\ell}} \operatorname{Tr}(I_Y(\theta)) = O(k \cdot 2^{\ell})$$

$$n \ge \frac{k}{\varepsilon^2 \cdot 2^{\ell}}$$

$$(BC019) \quad \sup_{\theta \in A^d} \sup_{W \in \mathcal{W}_{\ell}} \operatorname{Tr}(I_Y(\theta)) = O(k \cdot \varrho^2)$$

$$n \ge \frac{k}{\varepsilon^2 \cdot \varrho^2}$$

Conclusion

- Tight bounds for ℓ_2 estimation
- Works for Δ_k , \mathcal{B}_d , and under

• Does not yield ℓ_1 bounds

Detour: Assouad's method

Method 2 and 3 use classic Assouad's method

The method

 $\mathcal{Z} \coloneqq \{-1, 1\}^m$ for some m $\Theta_{\mathcal{Z}} = \{\theta_z : z \in \mathcal{Z}\} \subseteq \Theta$, such that

$$\ell_p(\theta_z, \theta_{z'})^p \ge \frac{d_{\text{ham}}(z, z')}{m} \cdot \varepsilon^p$$

 $\theta_z, \theta_{z'}$ are far if z, z' are far

Prior π is the uniform distribution over $\Theta_{\mathcal{Z}}$

•
$$Z \sim_{uar} Z$$

• $\theta = \theta_Z$

Estimate θ_Z under $\pi \Rightarrow$ Estimate Z in Hamming distance $\Rightarrow Y^n$ gives information about Z
Assouad's method

Theorem. If

$$\mathbb{E}_{\pi}\left[\mathbb{E}_{\mathbf{p}_{\theta}}\left[\ell_{p}\left(\widehat{\theta}(Y^{n}),\theta\right)^{p}\right]^{1/p}\right] \leq \frac{\varepsilon}{10},$$

then

$$\sum_{i} I(Z_i \wedge Y^n) = \Omega(m).$$

Example: \mathcal{B}_d under ℓ_2 $m = d, Z = \{-1, 1\}^d$ For $z \in \mathbb{Z}$, $\theta_z \coloneqq \frac{2\varepsilon}{\sqrt{d}} \cdot z = \mathbb{E}_{X \sim \mathbf{p}_z}[X]$ $\Pr(X_i = 1) = 0.5 + \frac{\varepsilon Z_i}{\sqrt{d}}$ Therefore,

$$\ell_2(\theta_z, \theta_{z'})^2 = d_{\text{ham}}(z, z') \cdot \frac{16\varepsilon^2}{d}$$

 $\mathbf{p}_{ heta_z}$ denoted by \mathbf{p}_z

Example: Δ_k under ℓ_1 [Paninski08]

$$m = k/2, \mathcal{Z} = \{-1, 1\}^{k/2}$$

For $j = 1, ..., k/2$, let
$$\mathbf{p}_{z}(2j-1) = \frac{1+z_{j}\varepsilon}{k}, \mathbf{p}_{z}(2j) = \frac{1-z_{j}\varepsilon}{k}$$

2. SDPI + Assouad

Background

[DJWZ14, GMN14] use SDPI for SMP protocols

[BGMNW16] generalize to interactive protocols for

Outline for method 2

- For d = 1:
 - Strong data processing constant
 - Distributed SDPI for interactive protocols
- Extend to d > 1 by a direct sum result
- Application

Strong data processing constant (d = 1)

 $\mathbf{p}_1, \mathbf{p}_{-1}$ two distributions Let $Z \sim_{uar} \{-1,1\}$, and $X \sim \mathbf{p}_Z$

 $\beta(\mathbf{p}_1, \mathbf{p}_{-1})$ be smallest β such that for any Z - X - Y

 $I(Z \wedge Y) \leq \boldsymbol{\beta} \cdot I(X \wedge Y)$

Y tells about Z at most β fraction of what it tells about X

Can be shown:

- $I(X \land Y) \leq \ell$ for $I(X \land Y) \leq O(\varrho^2)$ for $I(X \land Y) \leq O(\varrho^2)$ for

A distributed SDPI [BGMNW15]

 $Z \sim_{uar} \{-1,1\}$ and $X^n \sim \mathbf{p}_Z$

Guess Z from Y^n

A distributed SDPI [BGMNW15]

Theorem. Suppose $\mathbf{p}_{-1}(x) = \Theta(\mathbf{p}_{+1}(x))$. Then for any *blackboard* protocol

 $I(Z \wedge Y^n) = O(\boldsymbol{\beta} \cdot I(X^n \wedge Y^n)).$

 Y^n tells about Z at most $\boldsymbol{\beta}$ fraction of what it tells about X^n

SMP protocols: follows by tensorization of SDPI [Raginsky14]

Interactive protocols: cut-paste property of Hellinger distance from communication complexity [BYJKS04, Jayaram09]

Example: Bernoulli

 $\mathbf{p}_{\pm 1} = \operatorname{Bern}(0.5 \pm \delta)$

 $\beta(\mathbf{p}_{+1},\mathbf{p}_{-1}) = O(\delta^2)$

 $I(Z \wedge Y^n) = O(\delta^2 \cdot I(X^n \wedge Y^n))$

Under information constraints

$$I(X^{n} \wedge Y^{n}) \leq n\ell$$
[BGMNW15] $I(Z \wedge Y^{n}) = \Omega(1) \Rightarrow \qquad n = \Omega\left(\frac{1}{\ell\delta^{2}}\right).$

$$I(X^{n} \wedge Y^{n}) = O(n\varrho^{2})$$
[DR19] $I(Z \wedge Y^{n}) = \Omega(1) \Rightarrow \qquad n = \Omega\left(\frac{1}{\varrho^{2}\delta^{2}}\right).$

Generalization to d > 1

$$\mathcal{Z} = \{-1,1\}^d, \, \delta = \frac{\varepsilon}{\sqrt{d}} \qquad \Theta_{\mathcal{Z}} = \operatorname{Bern}\left(0.5 \pm \frac{\varepsilon}{\sqrt{d}}\right)^{\oplus d}$$

[BGMNW15] Prove a direct sum result

$$\sum_{i} I(Z_i \wedge Y^n) = \Omega(d) \Rightarrow \qquad n = \Omega\left(d \cdot \frac{d}{\ell \varepsilon^2}\right)$$

 $\sum_{i} I(Z_i \wedge Y^n) = \Omega(d) \Rightarrow \qquad n = \Omega\left(d \cdot \frac{d}{o^2 \varepsilon^2}\right)$

 \frown

Conclusion

- Tight lower bounds for estimation \mathcal{B}_d , \mathcal{G}_d under ℓ_2
- Can naturally extend to other ℓ_p loss
- Does not yield desired bounds Δ_k

3. χ^2 contraction+ Assouad

Outline for method 3

- Bounding mutual information by chi-squared contractions
- Bounding the chi squared contraction
- General plug and play bounds
- Application to Δ_k
- Extensions to \mathcal{B}_d

Bounding mutual information

By Assouad's method,

Bound $\sum_i I(Z_i \wedge Y^n)$ as a function of \mathcal{W}

Notation

 \mathbf{p}_z : shorthand for \mathbf{p}_{θ_z}

 $\mathbf{p}_{z}^{Y^{n}}$: distribution of Y^{n} when input distribution \mathbf{p}_{z}

Information bound on one coordinate

Fix $i \in [m]$

Bound $I(Z_i \wedge Y^n)$

average output distribution fixing $Z_i = \pm 1$:

$$\mathbf{p}_{+i}^{Y^n} \coloneqq \frac{1}{2^{k-1}} \sum_{\substack{z:z_i = +1 \\ z:z_i = -1}} \mathbf{p}_z^{Y^n}$$
$$\mathbf{p}_{-i}^{Y^n} \coloneqq \frac{1}{2^{k-1}} \sum_{\substack{z:z_i = -1 \\ z:z_i = -1}} \mathbf{p}_z^{Y^n}$$

 $I(Z_i \wedge Y^n) \text{ is large } \Leftrightarrow \mathbf{p}_{+i}^{Y^n} \text{ and } \mathbf{p}_{-i}^{Y^n} \text{ must be far} \\ \Rightarrow \text{ bound distance between } \mathbf{p}_{+i}^{Y^n} \text{ and } \mathbf{p}_{-i}^{Y^n}$

How do channels shrink the distance?

Difficulty in handling distributions [ACLST20]

$$D\left(\mathbf{p}_{+i}^{Y^n}||\mathbf{p}_{-i}^{Y^n}\right) = \sum_{t} \mathbb{E}_{\mathbf{p}_{+i}^{Y^{t-1}}} \left[D\left(\mathbf{p}_{+i}^{Y_t|Y^{t-1}}||\mathbf{p}_{-i}^{Y_t|Y^{t-1}}\right) \right]$$

1. Interactivity in the protocols to choose channels 2. \mathbf{p}_{+i} and \mathbf{p}_{-i} mixture distributions, complicated expressions

Delicate to handle (see discussion in [ACLST20])

Convexity to handle mixtures [ACLST20]

 $z \in \{-1,1\}^m$, $z^{\bigoplus i}$ obtained by flipping the *i*th coordinate of z

Theorem.

$$I(Z_i \wedge Y^n) \leq \frac{1}{2^{m+1}} \sum_{z \in \{-1,1\}^m} D(\mathbf{p}_z^{Y^n} || \mathbf{p}_{z \oplus i}^{Y^n}) = \frac{1}{2} \mathbb{E}_Z \left[D(\mathbf{p}_z^{Y^n} || \mathbf{p}_{z \oplus i}^{Y^n}) \right]$$

Proof. Convexity of divergence to the definitions of $\mathbf{p}_{+i}^{Y^n}$ and $\mathbf{p}_{-i}^{Y^n}$

Information about Z_i bounded by average divergence in message distribution upon changing only Z_i

Focus on one z

Therefore,

By linearity of expectations

 $z^{\oplus 2}$

$$\sum_{i} I(Z_{i} \wedge Y^{n}) \leq \frac{1}{2} \mathbb{E}_{Z} \left[\sum_{i} D(\mathbf{p}_{Z}^{Y^{n}} || \mathbf{p}_{Z}^{Y^{n}}) \right]$$

$$\sum_{i} I(Z_i \wedge Y^n) \leq \frac{1}{2} \max_{z} \left[\sum_{i} D(\mathbf{p}_z^{Y^n} || \mathbf{p}_{z \oplus i}^{Y^n}) \right]$$

Bounding
$$\sum_i D(\mathbf{p}_z^{Y^n} || \mathbf{p}_{z \oplus i}^{Y^n})$$

By the chain rule of divergence

$$\sum_{i} D\left(\mathbf{p}_{Z}^{Y^{n}} || \mathbf{p}_{Z}^{Y^{n}}\right) = \sum_{t} \mathbb{E}_{\mathbf{p}_{Z}^{Y^{t-1}}} \left[\sum_{i} D\left(\mathbf{p}_{Z}^{Y_{t}|Y^{t-1}} || \mathbf{p}_{Z}^{Y_{t}|Y^{t-1}}\right) \right].$$

p_Z^{Y_t|Y^{t-1}}: Distribution of Y_t with input **p**_Z conditioned on Y^{t-1}
Channel at player t a function only of Y^{t-1}, denoted W^{Y^{t-1}}

Bounding
$$\sum_{i} D\left(\mathbf{p}_{z}^{Y_{t}|Y^{t-1}} || \mathbf{p}_{z}^{Y_{t}|Y^{t-1}}\right)$$

 Y^{t-1} fixed (conditioning on Y^{t-1}), denote $W^{Y^{t-1}}$ by W_t

$$\mathbf{p}_{z}^{Y_{t}}(y) \coloneqq \mathbf{p}_{z}^{Y_{t}|Y^{t-1}}(y) = \sum_{x} \mathbf{p}_{z}(x)W_{t}(y|x) = \mathbb{E}_{X_{t}\sim\mathbf{p}_{z}}[W_{t}(y|X_{t})]$$

Since $KL \leq \chi^2$, plugging the expression above

$$\sum_{i} D\left(\mathbf{p}_{z}^{Y_{t}} || \mathbf{p}_{z}^{Y_{t}}\right) \leq \sum_{i} \sum_{y} \frac{\left(\mathbf{p}_{z}^{Y_{t}}(y) - \mathbf{p}_{z}^{Y_{t}}(y)\right)^{2}}{\mathbf{p}_{z}^{Y_{t}}(y)}$$

$$= \sum_{i} \sum_{y} \frac{\left(\sum_{x} (\mathbf{p}_{z}(x) - \mathbf{p}_{z \oplus i}(x)) W_{t}(y|x)\right)^{2}}{\mathbb{E}_{\mathbf{p}_{z \oplus i}}[W_{t}(y|X)]}$$

An explicit bound at one user

$$\sum_{i} D\left(\mathbf{p}_{z}^{Y_{t}|Y^{t-1}} || \mathbf{p}_{z}^{Y_{t}|Y^{t-1}}\right) = \sum_{i} \sum_{y} \frac{\left(\sum_{x} \left(\mathbf{p}_{z}(x) - \mathbf{p}_{z} \oplus i(x)\right) W_{t}(y|x)\right)^{2}}{\mathbb{E}_{\mathbf{p}_{z} \oplus i}[W_{t}(y|X)]}$$

Explicit bound on mutual information in terms of channels

Average information bound [ACLST20, ACT20]

Theorem.

$$\sum_{i} I(Z_i \wedge Y^n) \le n \cdot \sup_{z} \sup_{W \in \mathcal{W}} \sum_{i} H(W, z, i)$$

where

$$H(W, z, i) \coloneqq \sum_{y} \frac{\left(\sum_{x} \left(\mathbf{p}_{z}(x) - \mathbf{p}_{z} \oplus i(x)\right) W(y|x)\right)^{2}}{\mathbb{E}_{\mathbf{p}_{z} \oplus i}[W(y|X)]}$$

Applications

[ACLST20]

- Bounds for estimating Δ_k under ℓ_1
- Applications to testing distributions (in Part 3 of the tutorial)

[ACT20]

- Plug and play bounds for establishing lower bounds
- Bounds for estimating Δ_k , \mathcal{B}_d , \mathcal{G}_d under ℓ_p for $p \ge 1$

Estimating Δ_k under ℓ_1

Example: Δ_k under ℓ_1 [ACLST20]

Plugging into the definition of Paninski construction:

$$\sum_{i} H(W, z, i) = \frac{\varepsilon^2}{k} \cdot \sum_{i} \sum_{y} \frac{\left(W(y|2i-1) - W(y|2i)\right)^2}{\sum_{x} W(y|x)}$$

Used for testing in next part:

$$\| H(W) \|_{*} \coloneqq \sum_{i} \sum_{y} \frac{\left(W(y|2i-1) - W(y|2i) \right)^{2}}{\sum_{x} W(y|x)}$$

A few lines of computation

$$\sup_{W \in \mathcal{W}_{\ell}} \| H(W) \|_{*} = \min\{2^{\ell}, k\}$$
$$\sup_{W \in \mathcal{W}_{\varrho}} \| H(W) \|_{*} = O(\varrho^{2})$$

Example: Δ_k under ℓ_1 [ACLST20]

Plugging in the theorem and requiring

$$\sum_{i} I(Z_i \wedge Y^n) = \Omega(\mathbf{k}) \Rightarrow \qquad n = \Omega\left(\frac{k^2}{\varepsilon^2 \min\{2^\ell, k\}}\right)$$

$$\sum_{i} I(Z_i \wedge Y^n) = \Omega(\mathbf{k}) \Rightarrow \qquad n = \Omega\left(\frac{k^2}{\varepsilon^2 \varrho^2}\right)$$

Plug and play bounds

Towards plug and play bounds [ACT20]

$$\sum_{i} \sum_{y} \frac{\left(\sum_{x} \left(\mathbf{p}_{z}(x) - \mathbf{p}_{z \oplus i}(x)\right) W(y|x)\right)^{2}}{\mathbb{E}_{\mathbf{p}_{z} \oplus i}[W(y|X)]}$$

Suppose some nice properties hold (and they do for Δ_k , \mathcal{B}_d)

A1 (nice densities): For some
$$\alpha$$
, $\frac{\mathbf{p}_{z}(x) - \mathbf{p}_{z \oplus i}(x)}{\mathbf{p}_{z}(x)} = \alpha \cdot \phi_{z,i}(x)$

A2 **(Boundedness):** For some
$$\kappa$$
, $\sup_{y,W} \frac{\mathbb{E}_{X \sim \mathbf{p}_{Z}}[W(y|X)]}{\mathbb{E}_{X \sim \mathbf{p}_{Z} \oplus i}[W(y|X)]} \leq \kappa$

A3 (orthonormality):
$$\mathbb{E}_{X \sim \mathbf{p}_{Z}} [\phi_{z,i}(X)\phi_{z,j}(X)] = \delta_{ij}$$

A variance plug and play bound [ACT20]

Theorem. Under A1, A2, and A3,

$$\sum_{i} I(Z_{i} \wedge Y^{n}) \leq O\left(n\alpha^{2} \cdot \sup_{z} \sup_{W \in \mathcal{W}} \sum_{y} \frac{\operatorname{Var}_{X \sim \mathbf{p}_{z}}(W(y|X))}{\mathbb{E}_{X \sim \mathbf{p}_{z}}[W(y|X)]}\right)$$

Variance of message distribution Applications:

$$\sum_{y} \frac{\operatorname{Var}_{X \sim \mathbf{p}_{z}} (W(y|X))}{\mathbb{E}_{X \sim \mathbf{p}_{z}} [W(y|X)]} \leq |\mathcal{Y}| = 2^{\ell}$$

$$\sum_{y} \frac{\operatorname{Var}_{X \sim \mathbf{p}_{z}}(W(y|X))}{\mathbb{E}_{X \sim \mathbf{p}_{z}}[W(y|X)]} \leq O(\varrho^{2})$$

Applications [ACT20]

For Δ_k , Paninski construction, $\alpha = \varepsilon/\sqrt{k}$

$$\sum_{i} I(Z_i \wedge Y^n) = \Omega(k) \Rightarrow \qquad n = \Omega\left(\frac{k^2}{\varepsilon^2 \min\{2^\ell, k\}}\right)$$

$$\sum_{i} I(Z_i \wedge Y^n) = \Omega(k) \Rightarrow$$

$$n = \Omega\left(\frac{k^2}{\varepsilon^2 \varrho^2}\right)$$

For
$$\mathcal{B}_d$$
, $\alpha = \varepsilon / \sqrt{d}$

$$\sum_{i} I(Z_i \wedge Y^n) = \Omega(d) \Rightarrow$$

$$n = \Omega\left(\frac{d^2}{\varrho^2 \varepsilon^2}\right)$$

An information plug and play bound [ACT20]

A4 (subgaussianity): For $X \sim \mathbf{p}_{z} [\phi_{z,1}(X), \dots, \phi_{z,m}]$ is σ^{2} -subgaussian

Theorem. Under A1, A2, and A3, A4

$$\sum_{i} I(Z_i \wedge Y^n) \le O\left(n\alpha^2 \sigma^2 \cdot \sup_{Z} \sup_{W \in \mathcal{W}} H(p_Z^Y)\right),$$

where Y is message distribution with input \mathbf{p}_z , and H is the entropy

Application [ACT20]

For
$$\mathcal{B}_d$$
, $\alpha = \varepsilon / \sqrt{d}$, $\sigma = 1$

$$\sum_i I(Z_i \wedge Y^n) = \Omega(d) \Rightarrow$$

$$n = \Omega\left(\frac{d^2}{\varepsilon^2 \ell}\right)$$

Conclusion

Three methods to prove lower bounds on distributed estimation

Cramer Rao bounds + Fisher information

Distributed strong data processing + Assouad's method

Chi-squared contraction + Assouad's method

Coming up

Hypothesis testing under information constraints

Thanks!