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𝐩 𝑌 = 𝑦 =%
!

𝐩 𝑥 ⋅ 𝑊 𝑦 𝑥 = 𝔼𝑿∼𝐩[𝑊 𝑦 𝑋 ]

For distributions 𝐩, 𝐪
D(𝐩 ∥ 𝐪) ≔ ∑!𝐩 𝑥 log[𝐩 𝑥 /𝐪 𝑥 ]
d%!(𝐩, 𝐪) ≔ ∑! 𝐩 𝑥 − 𝐪 𝑥 &/𝐪(𝑥)

D(𝐩 ∥ 𝐪) ≤ d%!(𝐩, 𝐪)
2

Two recalls

𝑊𝑋 𝑌𝐩



SMP protocols
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𝑊* = 𝑓*(𝑈)

𝑋! 𝑋" .  .  .   𝑋#

𝑊! 𝑊" 𝑊#

𝑌! 𝑌" .  .  .   𝑌#

𝐩

ℜ

∈ 𝒲𝑈
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𝑊* = 𝑓* 𝑌*,-, 𝑈 = 𝑊."#$

(Sequentially) interactive protocols

𝑋! 𝑋" .  .  .   𝑋#

𝑊! 𝑊" 𝑊#

𝑌! 𝑌" .  .  .   𝑌#

𝐩

ℜ

∈ 𝒲𝑈



Estimation
Θ ⊆ ℝ/: space of parameters
𝒫0 = 𝐩1: 𝜃 ∈ Θ , distributions over 𝒳 indexed by Θ

5

G𝜃(𝑌2, 𝑈): estimate of 𝜃

𝑋! 𝑋" .  .  .   𝑋#

𝑊! 𝑊" 𝑊#

𝑌! 𝑌" .  .  .   𝑌#

𝐩$

ℜ

∈ 𝒲𝑈



Objective: ℓH estimation of 𝜃
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Given 𝜀 > 0, 𝑝 ≥ 1

sup
1
𝔼𝐩% ℓ3 G𝜃 𝑌2, 𝑈 , 𝜃 3 -/3

≤ 𝜀

where

ℓ3 𝑢, 𝑣 3 =% 𝑢5 − 𝑣5 3

Sample complexity: Smallest 𝑛 for which such a G𝜃 exists
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• Parameter space 
Θ = 𝜃 ∈ 0,1 6: ∑𝜃5 = 1

• Underlying domain
𝒳 = {1,… , 𝑘}

• For 𝑥 ∈ 𝒳
𝐩1 𝑥 = 𝜃!

𝜃 denotes the probability mass function of 𝐩1

Example: Discrete distributions (Δ!)
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• Parameter space 
Θ = 𝜃 ∈ −1,1 /

• Underlying domain
𝒳 = −1, 1 !

• For 𝑥 = 𝑥-, … , 𝑥/ ∈ 𝒳

𝐩1 𝑥 =Z
5

𝐩1& 𝑥5

𝐩1& 1 =
1 + 𝜃5
2 , 𝐩1& −1 =

1 − 𝜃5
2

Therefore, 𝔼1 𝑥5 = 𝜃5

𝜃 is the distribution mean

Example: Product Bernoulli (ℬ")
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• Parameter space 
Θ = 𝜃 ∈ −1,1 /

• Underlying domain
𝒳 = ℝ!

𝐩1 = 𝑁 𝜃, 𝕀
𝜃 is the distribution mean

Example: Gaussians (𝒢")
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Discrete distribution estimation (Δ6)

Product Bernoulli mean estimation (ℬ/)

Gaussian mean estimation (𝒢/)
• Results qualitatively same as ℬ/ (details can be messy)

Estimation Tasks in this tutorial
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Provide general methods

Discrete distribution estimation (Δ6)
𝑝 = 1: ℓ- distance 

Product Bernoulli estimation (ℬ/)
𝑝 = 2: Euclidean distance

Aim of the tutorial
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1. Communication constraints
ℓ-bit communication constraints

𝒲ℓ = {𝑊:𝒳 → 0,1 ℓ }

2. Local differential privacy constraints
𝜚-LDP	channels

𝒲8 = 𝑊:max{!,!'∈𝒳,=∈ 𝒴}
𝑊 𝑦 𝑥
𝑊 𝑦 𝑥′ ≤ 𝑒8

Information constraints
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Sample complexity for the applications

Problem

Δ% , ℓ!
𝑘
𝜀"
⋅

𝑘
min 2ℓ, 𝑘

𝑘
𝜀"
⋅
𝑘
𝜚"

ℬ' , ℓ" 𝑑
𝜀"
⋅

𝑑
min ℓ, 𝑑

𝑑
𝜀"
⋅
𝑑
𝜚"

𝒢' , ℓ" 𝑑
𝜀"
⋅

𝑑
min ℓ, 𝑑

𝑑
𝜀"
⋅
𝑑
𝜚"

Centralized sample complexity × blow-up due to constraints



Lower bounds for SMP protocols
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Reference Distribution Constraints

[GMN14, ZDJW14] 𝒢'

[DJW17] Δ%, 𝒢'

[HOW18, HMOW18] Δ% , ℬ' , 𝒢'

[ACT19] Δ%



SMP vs interactive
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SMP protocols: 
Fixed 𝑈 lower bounds for independent channels

𝑋! 𝑋" .  .  .   𝑋#

𝑊! 𝑊" 𝑊#

𝑌! 𝑌" .  .  .   𝑌#

𝐩

ℜ

∈ 𝒲𝑈



SMP vs interactive
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Interactive protocols:
Several dependencies possible, harder to handle

𝑋! 𝑋" .  .  .   𝑋#

𝑊! 𝑊" 𝑊#

𝑌! 𝑌" .  .  .   𝑌#

𝐩

ℜ

∈ 𝒲𝑈



The plan for this hour
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Three methods to establish interactive lower bounds

1. Classic Cramer-Rao/van Trees inequality [BHO19, BCO20]
• Unified results for Δ%, ℬ' , 𝒢'
• Results hold for ℓ" loss

2. Strong Data Processing + Assouad’s method [BGMNW16, DR19]
• Lower bounds for ℬ' , 𝒢' under ℓ" loss
• Naturally extends to other ℓ( loss functions

3. Chi-squared contractions + Assouad’s method [ACLST20, ACT20]
• Unified bounds for Δ%, ℬ' , 𝒢'
• Works under ℓ( for 𝑝 ≥ 1



Plan for each part
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1. General methodology

2. Application



Proving lower bounds in statistical inference
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Recall the goal

sup
1
𝔼𝐩% ℓ3 G𝜃 𝑌2, 𝑈 , 𝜃 3 -/3

≤ 𝜀

1. Prior 𝜋 is a distribution over Θ
2. Show that for any G𝜃

𝔼P 𝔼𝐩% ℓ3 G𝜃 𝑌2, 𝑈 , 𝜃 3 -/3
> 𝜀

𝔼 ≤ max ⇒ a lower bound on 𝑛
All lower bounds will involve choosing a 𝜋 at some point

Observation: Given 𝜋, suffices to prove lower bound for a fixed 𝑈 =
𝑢 and denote 𝑌2, 𝑢 by 𝑌2

𝜋 → Θ → 𝑋 → 𝑌



Proving lower bounds in statistical inference
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1. Design a prior 𝜋 over Θ

2. Show that for any G𝜃

𝔼P 𝔼𝐩% ℓ3 G𝜃 𝑌2 , 𝜃 3 -/3
> 𝜀



1. CR/van Trees inequality

21



Outline for method 1
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• Univariate Cramer Rao (CR) bound

• Bounds error in terms of Fisher information

• High-dimensional CR

• Bayesian CR bound/van Trees inequality

• Error bounds under information constraints

• Application



Cramer Rao bound (for 𝑑 = 1)
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Θ ⊆ ℝ

Fisher information:

ΙQ 𝜃 ≔ 𝔼Q∼𝐩%
R
R1
ln 𝐩1 𝑋

&

G𝜃: any unbiased estimator of 𝜃, i.e., 𝔼 G𝜃 = 𝜃

Theorem.

Var G𝜃 ≥
1

ΙQ 𝜃



Example: Bernoulli mean estimation
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𝒳 = {0,1}, 𝐩1 1 = 𝜃, 𝑋-, … , 𝑋2 ∼55/ 𝐩1

ΙQ$ 𝜃 =
1

𝜃 1 − 𝜃

By additivity of Fisher information

ΙQ( 𝜃 = 𝑛 ⋅ ΙQ$ 𝜃 = 𝑛 ⋅
1

𝜃 1 − 𝜃

For any unbiased G𝜃 𝑋2

Var G𝜃 ≥
𝜃 1 − 𝜃

𝑛

Achieved by
G𝜃 = (𝑋- +⋯+ 𝑋2)/𝑛



Multivariate Cramer Rao bound 
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Θ ⊆ ℝ/

𝑑×𝑑 Fisher information matrix:

ΙQ 𝜃 5$,5!
≔ 𝔼Q

R!

R1&$R1&!
ln 𝐩1 𝑋

Theorem (CR). For any unbiased G𝜃 𝑋
Cov G𝜃 𝑋 ≥ ΙQ 𝜃 ,-

Corollary. 

ℓ& G𝜃(𝑋), 𝜃 & = ∑ G𝜃5 − 𝜃5
& ≥ Tr ΙQ 𝜃 ,- ≥

𝑑&

Tr IQ 𝜃

Last step uses Tr 𝐴 ⋅ Tr 𝐴,- ≥ 𝑑& for p.s.d. 𝐴



van Trees inequality [vT68, GL95]
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Unbiasedness a strong assumption 

van Trees inequality: a Bayesian CR bound

• 𝜋: a prior distribution over Θ

• Lower bound for error under 𝜋



van Trees inequality [vT68, GL95]
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Let 𝜋 ≔ 𝜋-×⋯×𝜋/ be a product prior over Θ ⊆ ℝ/, i.e., 
𝜋 𝜃 = 𝜋- 𝜃- …𝜋/ 𝜃/

Theorem. Under some mild assumptions

𝔼P𝔼Q∼𝐩% ℓ& G𝜃 𝑋 , 𝜃 & ≥
𝑑&

𝔼P Tr IQ 𝜃 + I 𝜋
,

where I 𝜋 = I 𝜋- +⋯+ I 𝜋/

I 𝜋5 ≔ 𝔼P&
𝜕
𝜕𝜃5

ln 𝜋5 𝜃5
&

[GL95] R. D. Gill, B. Y. Levit, “Applications of the van Trees inequality: a Bayesian Cramer-
Rao bound” Bernoulli, 1995



van Trees inequality [vT68, GL95]
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Theorem. Under some mild assumptions

𝔼P𝔼Q∼𝐩% ℓ& G𝜃 𝑌2 , 𝜃 & ≥
𝑑&

𝔼P Tr I.( 𝜃 + I 𝜋
.

Design a 𝜋 to upper bound

𝔼P Tr I.( 𝜃 + I 𝜋

[GL95] R. D. Gill, B. Y. Levit, “Applications of the van Trees inequality: a Bayesian Cramer-
Rao bound” Bernoulli, 1995



𝔼! Tr I"$ 𝜃 under interactive protocols [BHO19]
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Fix 𝜃. By the chain rule of Fisher information,

Tr I.( 𝜃 =%
*

𝔼."#$ Tr I."|."#$ 𝜃

Given 𝜃, 𝑋* indep 𝑌*,-. Using this
Tr I.( 𝜃 ≤ 𝑛 ⋅ sup

T∈𝒲
Tr I. 𝜃

Consider worst 𝜃 in the support of 𝜋
𝔼P Tr I.( 𝜃 ≤ 𝑛 ⋅ sup

1∈VWXX (P)
sup
T∈𝒲

Tr I. 𝜃

𝑊𝑋 𝑌𝜃



I 𝜋

30

Fact [Borovkov95]. Given 𝐴 = 𝑎 − Δ, 𝑎 + Δ ⊂ Θ there exists 𝜇 s.t.

I 𝜇 =
3.14159265358…&

Δ& .

This is the smallest possible value.

Choosing 𝜋 = 𝜇×⋯×𝜇 (each 𝜋5 = 𝜇), I 𝜋 = 𝑑 ⋅ 3.14…&/Δ&.



Information-constrained lower bounds
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𝔼P Tr I .(,\ 𝜃 + I 𝜋 ≤ 𝑛 ⋅ sup
1∈])

sup
T∈𝒲

Tr I. 𝜃 +
𝑑 ⋅ 3.15&

Δ&

Therefore, 

𝜀& ≥
𝑑&

𝑛 ⋅ sup
1∈])

sup
T∈𝒲

Tr I. 𝜃 + 𝑑 ⋅ 3.15
&

Δ&



Application 1: ℬ"
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𝐴 = [−0.5, 0.5]

sup
1∈])

sup
T∈𝒲ℓ

Tr I. 𝜃 = 𝑂 ℓ

𝑛 ≥
𝑑&

𝜀& ⋅ ℓ

sup
1∈])

sup
T∈𝒲+

Tr I. 𝜃 = 𝑂 𝜚&

𝑛 ≥
𝑑&

𝜀& ⋅ 𝜚&

[BHO19]

[BCO19]



Application 2: Δ! under ℓ#
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𝐴 = [ -
^6
, -
_6
]

sup
1∈])

sup
T∈𝒲ℓ

Tr I. 𝜃 = 𝑂 𝑘 ⋅ 2ℓ

𝑛 ≥
𝑘

𝜀& ⋅ 2ℓ

sup
1∈])

sup
T∈𝒲+

Tr I. 𝜃 = 𝑂 𝑘 ⋅ 𝜚&

𝑛 ≥
𝑘

𝜀& ⋅ 𝜚&

[BHO19]

[BCO19]



Conclusion
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• Tight bounds for ℓ& estimation

• Works for Δ6, ℬ/, and under

• Does not yield ℓ- bounds



Detour: Assouad’s method
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Method 2 and 3 use classic Assouad’s method



The method
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𝒵 ≔ −1, 1 ` for some 𝑚
Θ𝒵 = 𝜃b: 𝑧 ∈ 𝒵 ⊆ Θ, such that

ℓ3 𝜃b, 𝜃b' 3 ≥
𝑑cde 𝑧, 𝑧f

𝑚 ⋅ 𝜀3

𝜃b, 𝜃b' are far if 𝑧, 𝑧′ are far

Prior 𝜋 is the uniform distribution over Θ𝒵
• 𝑍 ∼ghi 𝒵
• 𝜃 = 𝜃j

Estimate 𝜃j under 𝜋 ⇒ Estimate 𝑍 in Hamming distance 
⇒ 𝑌2 gives information about 𝑍



Assouad’s method
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Theorem. If 

𝔼P 𝔼𝐩% ℓ3 G𝜃 𝑌2 , 𝜃 3 -/3
≤

𝜀
10 ,

then

%
5

𝐼 𝑍5 ∧ 𝑌2 = Ω 𝑚 .



Example: ℬ! under ℓ"
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𝑚 = 𝑑,𝒵 = −1, 1 /

For 𝑧 ∈ 𝒵,

𝜃b ≔
2𝜀
𝑑
⋅ 𝑧 = 𝔼Q∼𝐩, 𝑋

Pr 𝑋5 = 1 = 0.5 +
𝜀𝑧5
𝑑

Therefore,

ℓ& 𝜃b, 𝜃b' & = 𝑑cde 𝑧, 𝑧f ⋅
16𝜀&

𝑑

𝐩1, denoted by 𝐩b



Example: Δ# under ℓ$ [Paninski08]
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𝑚 = 𝑘/2, 𝒵 = −1, 1 6/&

For 𝑗 = 1,… , 𝑘/2,	let

𝐩b 2𝑗 − 1 =
1 + 𝑧k𝜀
𝑘 , 𝐩b 2𝑗 =

1 − 𝑧k𝜀
𝑘

𝜃b ∈ 0,1 6, 𝜃b 𝑗 = 𝐩b 𝑗

ℓ- 𝜃b, 𝜃b' = ℓ-(𝐩b, 𝐩b') = 𝑑cde 𝑧, 𝑧f ⋅
2𝜀
𝑘

1 2 3 4 5 6

𝑧!=1 𝑧"=1 𝑧#=−1

…

…

1/𝑘



2. SDPI + Assouad
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Background

[DJWZ14, GMN14] use SDPI for SMP protocols

[BGMNW16] generalize to interactive protocols for  

[DR19] 

41



Outline for method 2
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• For 𝑑 = 1: 

• Strong data processing constant

• Distributed SDPI for interactive protocols

• Extend to 𝑑 > 1 by a direct sum result 

• Application



Strong data processing constant (𝑑 = 1)
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𝐩-, 𝐩,- two distributions 
Let 𝑍 ∼ghi {−1,1}, and 𝑋 ∼ 𝐩j

Can be shown:
• 𝐼 𝑋 ∧ 𝑌 ≤ ℓ for
• 𝐼 𝑋 ∧ 𝑌 ≤ 𝑂 𝜚& for

𝜷 𝐩-, 𝐩,- be smallest 𝜷 such that for any 𝑍 − 𝑋 − 𝑌

𝐼 𝑍 ∧ 𝑌 ≤ 𝜷 ⋅ 𝐼(𝑋 ∧ 𝑌)

𝑌 tells about 𝑍 at most 𝜷 fraction of what it tells about 𝑋

𝑊𝑋 𝑌𝑍 Guess 𝑍 from 𝑌



A distributed SDPI [BGMNW15]
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𝑍 ∼ghi {−1,1} and 𝑋2 ∼ 𝐩j

Guess 𝑍 from 𝑌2

𝑋! 𝑋" .  .  .   𝑋#

𝑊! 𝑊" 𝑊#

𝑌! 𝑌" .  .  .   𝑌#

𝐩)

ℜ



A distributed SDPI [BGMNW15]
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Theorem. Suppose 𝐩,- 𝑥 = Θ 𝐩m- 𝑥 . Then for any blackboard
protocol

𝐼 𝑍 ∧ 𝑌2 = 𝑂 𝜷 ⋅ 𝐼 𝑋2 ∧ 𝑌2 .

𝑌2 tells about 𝑍 at most 𝜷 fraction of what it tells about 𝑋2

SMP protocols: follows by tensorization of SDPI [Raginsky14]

Interactive protocols: cut-paste property of Hellinger distance from 
communication complexity [BYJKS04, Jayaram09]



Example: Bernoulli
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𝐩±- = Bern 0.5 ± 𝛿

𝛽 𝐩m-, 𝐩,- = 𝑂 𝛿&

𝐼 𝑍 ∧ 𝑌2 = 𝑂 𝛿& ⋅ 𝐼 𝑋2 ∧ 𝑌2



Under information constraints
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𝐼 𝑋2 ∧ 𝑌2 ≤ 𝑛ℓ

[BGMNW15] 𝐼 𝑍 ∧ 𝑌2 = Ω 1 ⇒ 𝑛 = Ω -
ℓo!

.

𝐼 𝑋2 ∧ 𝑌2 = 𝑂 𝑛𝜚&

[DR19] 𝐼 𝑍 ∧ 𝑌2 = Ω 1 ⇒ 𝑛 = Ω -
8!o!

.



Generalization to 𝑑 > 1
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𝒵 = −1,1 /, 𝛿 = p
/

Θ𝒵 = Bern 0.5 ± p
/

⊕/

[BGMNW15] Prove a direct sum result 

∑5 𝐼 𝑍5 ∧ 𝑌2 = Ω 𝑑 ⇒ 𝑛 = Ω 𝑑 ⋅ /
ℓp!

[DR19] Use the direct sum result

∑5 𝐼 𝑍5 ∧ 𝑌2 = Ω 𝑑 ⇒ 𝑛 = Ω 𝑑 ⋅ /
8!p!



Conclusion

49

• Tight lower bounds for estimation ℬ/ , 𝒢/ under ℓ&

• Can naturally extend to other ℓ3 loss

• Does not yield desired bounds 𝛥6



3. 𝜒! contraction+ Assouad

50



Outline for method 3
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• Bounding mutual information by chi-squared contractions

• Bounding the chi squared contraction

• General plug and play bounds

• Application to Δ6
• Extensions to ℬ/



Bounding mutual information

52

By Assouad’s method, 

Bound ∑5 𝐼 𝑍5 ∧ 𝑌2 as a function of 𝒲

𝒲
Θ𝒵

Θ𝒵.



Notation

53

𝐩b: shorthand for 𝐩1,

𝐩b.
(: distribution of 𝑌2 when input distribution 𝐩b

𝑋! 𝑋" .  .  .   𝑋#

𝑊! 𝑊" 𝑊#

𝑌! 𝑌" .  .  .   𝑌#

𝐩)

ℜ



Information bound on one coordinate
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Fix 𝑖 ∈ 𝑚
Bound 𝐼 𝑍5 ∧ 𝑌2

average output distribution fixing 𝑍5 = ±1:

𝐩m5.
(
≔

1
26,- %

b:b&sm-

𝐩b.
(

𝐩,5.
(
≔

1
26,- %

b:b&s,-

𝐩b.
(

𝐼 𝑍5 ∧ 𝑌2 is large   ⇔𝐩m5.
(

and 𝐩,5.
(

must be far
⇒ bound distance between 𝐩m5.

(
and 𝐩,5.

(

How do channels shrink the distance?



Difficulty in handling distributions [ACLST20]
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𝐷 𝐩m5.
(
||𝐩,5.

(
=%

*

𝔼
𝐩-&
."#$ 𝐷 𝐩m5

."|."#$||𝐩,5
."|."#$

1. Interactivity in the protocols to choose channels
2. 𝐩m5 and 𝐩,5 mixture distributions, complicated expressions

Delicate to handle (see discussion in [ACLST20])



Convexity to handle mixtures [ACLST20]
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𝑧 ∈ −1,1 `, 𝑧⊕5 obtained by flipping the 𝑖th coordinate of 𝑧

Theorem.

𝐼 𝑍5 ∧ 𝑌2 ≤
1

2`m- %
b∈ ,-,- /

𝐷 𝐩b.
(||𝐩b⊕&

.( =
1
2 𝔼j 𝐷 𝐩j.

(||𝐩j⊕&
.(

Proof. Convexity of divergence to the definitions of 𝐩m5.
(

and 𝐩,5.
(
∎

Information about 𝑍5 bounded by average divergence in message 
distribution upon changing only 𝑍5



Focus on one 𝑧

57

By linearity of expectations

%
5

𝐼 𝑍5 ∧ 𝑌2 ≤
1
2 𝔼j %

5

𝐷 𝐩j.
(||𝐩j⊕&

.(

Therefore,

%
5

𝐼 𝑍5 ∧ 𝑌2 ≤
1
2maxb %

5

𝐷 pb.
(||pb⊕&

.(

𝑧
𝑧⊕!

𝑧⊕"

𝑧⊕+

𝒲#

𝑌#



Bounding ∑$𝐷 p%&
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By the chain rule of divergence

%
5

𝐷 𝐩b.
(||𝐩b⊕&

.( =%
*

𝔼
𝐩,.

"#$ %
5

𝐷 𝐩b
."|."#$||𝐩b⊕&

."|."#$ .

• 𝐩b
."|."#$: Distribution of 𝑌* with input 𝐩b conditioned on 𝑌*,-

• Channel at player 𝑡 a function only of 𝑌*,-, denoted 𝑊."#$

𝑧
𝑧⊕!

𝑧⊕"

𝑧⊕+

𝑊,!"#

𝑌- conditioned on 𝑌-.!
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𝑌*,- fixed (conditioning on 𝑌*,-), denote 𝑊."#$ by 𝑊*

𝐩b
." 𝑦 ≔ 𝐩b

."|."#$ 𝑦 =%
!

𝐩b 𝑥 𝑊* 𝑦 𝑥 = 𝔼Q"∼𝐩,[𝑊* 𝑦 𝑋* ]

Since KL ≤ 𝜒&,	plugging the expression above

%
5

𝐷 𝐩b
."||𝐩b⊕&

." ≤%
5

%
=

𝐩b
." 𝑦 − 𝐩b⊕&

." 𝑦
&

𝐩b⊕&
." 𝑦

=%
5

%
=

∑!(𝐩b 𝑥 − 𝐩b⊕& 𝑥 )𝑊*(𝑦|𝑥)
&

𝔼𝐩𝒛⊕& 𝑊* 𝑦 𝑋



An explicit bound at one user
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#
2

𝐷 𝐩3
4!|4!"#||𝐩3⊕%

4!|4!"# =#
2

#
6

∑7 𝐩3 𝑥 − 𝐩3⊕% 𝑥 𝑊8(𝑦|𝑥)
9

𝔼𝐩𝒛⊕% 𝑊8 𝑦 𝑋

𝑧
𝑧⊕!

𝑧⊕"

𝑧⊕+

𝑊-

Explicit bound on mutual information in terms of channels



Average information bound [ACLST20, ACT20]
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Theorem. 

%
5

𝐼 𝑍5 ∧ 𝑌2 ≤ 𝑛 ⋅ sup
b

sup
T∈𝒲

%
5

𝐻(𝑊, 𝑧, 𝑖)

where

𝐻 𝑊, 𝑧, 𝑖 ≔%
=

∑! 𝐩b 𝑥 − 𝐩b⊕& 𝑥 𝑊(𝑦|𝑥)
&

𝔼𝐩,⊕& 𝑊 𝑦 𝑋

𝑧

𝑧⊕!

𝑧⊕"

𝑧⊕+

𝑊



Applications
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[ACLST20]

• Bounds for estimating Δ6 under ℓ-
• Applications to testing distributions (in Part 3 of the tutorial)

[ACT20]

• Plug and play bounds for establishing lower bounds

• Bounds for estimating Δ6, ℬ/ , 𝒢/ under ℓ3 for 𝑝 ≥ 1



Estimating Δ! under ℓ"
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Example: Δ# under ℓ$ [ACLST20]
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Plugging into the definition of Paninski construction:

%
5

𝐻(𝑊, 𝑧, 𝑖) =
𝜀&

𝑘
⋅%

5

%
=

𝑊 𝑦 2𝑖 − 1 −𝑊 𝑦 2𝑖 &

∑!𝑊 𝑦 𝑥

Used for testing in next part:

∥ 𝐻 𝑊 ∥∗≔%
5

%
=

𝑊 𝑦 2𝑖 − 1 −𝑊 𝑦 2𝑖 &

∑!𝑊 𝑦 𝑥

A few lines of computation
sup
T∈𝒲ℓ

∥ 𝐻 𝑊 ∥∗ = min 2ℓ, 𝑘

sup
T∈𝒲+

∥ 𝐻 𝑊 ∥∗ = 𝑂 𝜚&



Example: Δ# under ℓ$ [ACLST20]
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Plugging in the theorem and requiring 

∑5 𝐼 𝑍5 ∧ 𝑌2 = Ω 𝑘 ⇒ 𝑛 = Ω 6!

p!evw &ℓ,6

∑5 𝐼 𝑍5 ∧ 𝑌2 = Ω 𝑘 ⇒ 𝑛 = Ω 6!

p!8!



Plug and play bounds
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Towards plug and play bounds [ACT20]
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%
5

%
=

∑! 𝐩b 𝑥 − 𝐩b⊕& 𝑥 𝑊(𝑦|𝑥)
&

𝔼𝐩𝒛⊕& 𝑊 𝑦 𝑋

Suppose some nice properties hold (and they do for Δ6, ℬ/)

A1 (nice densities): For some 𝛼, 
𝐩, ! ,𝐩,⊕& !

𝐩, !
= 𝛼 ⋅ 𝜙b,5(𝑥)

A2 (Boundedness): For some 𝜅, sup
=,T

𝔼;∼𝐩, T 𝑦 𝑋
𝔼;∼𝐩,⊕&

T 𝑦 𝑋 ≤ 𝜅

A3 (orthonormality): 𝔼Q∼𝐩, 𝜙b,5 𝑋 𝜙b,k 𝑋 = 𝛿5k



A variance plug and play bound [ACT20]
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Theorem. Under A1, A2, and A3, 

%
5

𝐼 𝑍5 ∧ 𝑌2 ≤ 𝑂 𝑛𝛼& ⋅ sup
b

sup
T∈𝒲

%
=

VarQ∼𝐩, 𝑊 𝑦 𝑋
𝔼Q∼𝐩, 𝑊 𝑦 𝑋

Variance of message distribution
Applications:

%
=

VarQ∼𝐩, 𝑊 𝑦 𝑋
𝔼Q∼𝐩, 𝑊 𝑦 𝑋 ≤ 𝒴 = 2ℓ

%
=

VarQ∼𝐩, 𝑊 𝑦 𝑋
𝔼Q∼𝐩, 𝑊 𝑦 𝑋 ≤ 𝑂(𝜚&)



Applications [ACT20]
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For Δ6, Paninski construction, 𝛼 = 𝜀/ 𝑘

∑5 𝐼 𝑍5 ∧ 𝑌2 = Ω 𝑘 ⇒ 𝑛 = Ω 6!

p!evw &ℓ,6

∑5 𝐼 𝑍5 ∧ 𝑌2 = Ω 𝑘 ⇒ 𝑛 = Ω 6!

p!8!

For ℬ/, 𝛼 = 𝜀/ 𝑑

∑5 𝐼 𝑍5 ∧ 𝑌2 = Ω 𝑑 ⇒ 𝑛 = Ω /!

8!p!



An information plug and play bound [ACT20]
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A4 (subgaussianity): For 𝑋 ∼ 𝐩b [𝜙b,- 𝑋 ,… , 𝜙b,`] is 𝜎&-subgaussian

Theorem. Under A1, A2, and A3, A4 

%
5

𝐼 𝑍5 ∧ 𝑌2 ≤ 𝑂 𝑛𝛼&𝜎& ⋅ sup
b

sup
T∈𝒲

𝐻 𝑝b. ,

where 𝑌 is message distribution with input 𝐩b, and 𝐻 is the entropy



Application [ACT20]
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For ℬ/, 𝛼 = 𝜀/ 𝑑, 𝜎 = 1

∑5 𝐼 𝑍5 ∧ 𝑌2 = Ω 𝑑 ⇒ 𝑛 = Ω /!

p!ℓ



Conclusion
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Three methods to prove lower bounds on distributed estimation

Cramer Rao bounds + Fisher information

Distributed strong data processing + Assouad’s method

Chi-squared contraction + Assouad’s method

Coming up

Hypothesis testing under information constraints

Thanks!


