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Part I: What is this all about?



Techniques and recipes for distributed
learning and testing under constraints
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An example: high-dimensional Gaussian
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𝑋𝑛 ≔ 𝑋1, … , 𝑋𝑛 : samples from an unknown 𝒩(𝝁, 𝕀𝐝). 

Goal: learn 𝝁 to ℓ2 error ε.
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𝑋𝑛 ≔ 𝑋1, … , 𝑋𝑛 : samples from an unknown 𝒩(𝝁, 𝕀𝐝). 

Goal: learn 𝝁 to ℓ2 error ε.

Theorem. Without constraints, in the centralized setting, 𝑛 =

Θ
𝑑

𝜀2
samples are necessary and sufficient.



An example: high-dimensional Gaussian
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𝑋𝑛 ≔ 𝑋1, … , 𝑋𝑛 : samples from an unknown 𝒩(𝝁, 𝐈𝐝). 

Goal: learn 𝝁 to ℓ2 error ε.

Theorem. Without constraints, in the centralized setting, 𝑛 =

Θ
𝑑

𝜀2
samples are necessary and sufficient.

“Folklore/easy”
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𝑋𝑛 ≔ 𝑋1, … , 𝑋𝑛 : samples from an unknown 𝒩(𝝁, 𝐈𝐝). 

Goal: learn 𝝁 to ℓ2 error ε.

Theorem. Without constraints, in the centralized setting, 𝑛 =

Θ
𝑑

𝜀2
samples are necessary and sufficient.

But how do we prove an analogue under local privacy (LDP)? Under 
communication constraints? With/without interaction?
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𝑋𝑛 ≔ 𝑋1, … , 𝑋𝑛 : samples from an unknown 𝒩(𝝁, 𝐈𝐝). 

Goal: learn 𝝁 to ℓ2 error ε.

Theorem. Without constraints, in the centralized setting, 𝑛 =

Θ
𝑑

𝜀2
samples are necessary and sufficient.

But how do we prove an analogue under local privacy (LDP)? Under 
communication constraints? With/without interaction?

Theorem. Under 𝜌–LDP, 𝑛 = Θ
𝑑2

𝜀2𝜌2
samples are necessary and 

sufficient.



Goal of this tutorial, refined
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General, re-usable techniques to establish 
lower bounds on the sample complexity of 

such distributed/constrained statistical 
problems (in various settings)



Some definitions before we start
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𝑛 users, user 𝑖 observes 𝑋𝑖 and sends message 𝑌𝑖

𝒳: domain of the unknown 𝐩 𝒴: message space

𝑊𝑖 𝑦 𝑥 ≔ Pr(𝑌𝑖 = 𝑦|𝑋𝑖 = 𝑥)

𝑊𝑖𝑋𝑖 𝑌𝑖

𝒲: a set of allowed (randomized) channels ⇔ the constraints

The algorithm/protocol dictates how user 𝑖 chooses 𝑊𝑖 from 𝒲
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Modeling the constraints [ACT20c]



Example 1: Communication constraints

𝒲ℓ = {𝑊:𝒳 → 0,1 ℓ }

Each 𝑋𝑖 is mapped to ℓ bits.
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Tight bandwidth 
constraints

[Sha14,HMÖW18,ACT20d…]



Example 2: Local Differential Privacy (LDP)

𝑊:𝒳 → 0,1 ∗ is 𝜚-LDP if ∀𝑥, 𝑥′ ∈ 𝒳, ∀𝑦,

𝑊 𝑦 𝑥

𝑊 𝑦 𝑥′
≤ 𝑒𝜚 ≈ 1 + 𝜚

𝒲𝜚 = all ϱ − LDP channels
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Privacy guarantees even 
“against” the server

[Warner65, EPR03, KLNRS11]



Types of protocols
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𝑋1 𝑋2 .  .  .   𝑋𝑛

𝑊1 𝑊2 𝑊𝑛

𝑌1 𝑌2 .  .  .   𝑌𝑛

𝐩

ℜ

Private-coin SMP protocols

Noninteractive (“simultaneous message-passing”),
no common random seed

∈ 𝒲
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𝑋1 𝑋2 .  .  .   𝑋𝑛

𝑊1 𝑊2 𝑊𝑛

𝑌1 𝑌2 .  .  .   𝑌𝑛

𝐩

ℜ

Public-coin SMP protocols

∈ 𝒲𝑈

Noninteractive (“simultaneous message-passing”),
but common random seed



Types of protocols
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𝑋1 𝑋2 .  .  .   𝑋𝑛

𝑊1 𝑊2 𝑊𝑛

𝑌1 𝑌2 .  .  .   𝑌𝑛

𝐩

ℜ

Sequentially Interactive 
protocols

∈ 𝒲𝑈

Interactive (“one-pass, sequential”),
and common random seed



Types of protocols
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𝑋1 𝑋2 .  .  .   𝑋𝑛

𝑊1 𝑊2 𝑊𝑛

𝑌1 𝑌2 .  .  .   𝑌𝑛

𝐩

ℜ

Blackboard protocols

∈ 𝒲𝑈

Fully interactive (“many passes”),
and common random seed



Types of protocols

Each of these models is at least as powerful as the previous

private-coin ≼ public-coin ≼ sequentially interactive ≼ blackboard

Each has its pros and cons (both in theory and practice), and may 
require different techniques to analyze.



Types of problems

Estimation (learning): Design ෝ𝐩(𝑌𝑛) such that

𝔼 d ෝ𝐩, 𝐩 ≤ 𝜀

d ⋅,⋅ is a distance/loss ⇝ e.g., total variation or parameter distance

𝜀: accuracy parameter
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Types of problems

Estimation (learning): Design ෝ𝐩(𝑌𝑛) such that

𝔼 d ෝ𝐩, 𝐩 ≤ 𝜀

d ⋅,⋅ is a distance/loss ⇝ e.g., total variation or parameter distance

Hypothesis testing: given two sets of “yes” and “no” distributions 
ℋ0, ℋ𝜀 “with separation 𝜀,”* design 𝑇 𝑌𝑛 such that 

Pr 𝑇 𝑌𝑛 = 0 > 0.9, if 𝐩 ∈ ℋ0

Pr 𝑇 𝑌𝑛 = 1 > 0.9, if 𝐩 ∈ ℋ𝜀

𝜀: accuracy parameter

24* I.e., d 𝐩, 𝐪 > 𝜀 for every 𝐩 ∈ ℋ0, 𝐪 ∈ ℋ𝜀



Types of problems: Estimation
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1. Distribution learning

Dimension = 𝑘 − 1,  Accuracy = 𝜀

𝒑: unknown distribution on 𝒳= 𝑘 , distance/loss: total variation*

𝔼 TV ෝ𝐩, 𝐩 ≤ 𝜀

Sample complexity = Θ
𝑘

𝜀2
(without constraints)

* 𝑇𝑉 𝒑, 𝒒 = sup
𝑆⊆[𝑘]

(𝒑 𝑆 − 𝒒(𝑆))



Types of problems: Estimation
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2. High-dimensional mean learning

Dimension = 𝑑,  Accuracy = 𝜀

𝒑 assumed to product distribution over 𝒳 = ℝ𝑑 w mean 𝝁 = 𝔼𝒑 𝑋 , 

distance/loss: ℓ2

𝔼 ෝ𝝁 − 𝝁 2
2 ≤ 𝜀2

Sample complexity* = Θ
𝑑

𝜀2
(without constraints)

*Families of interest: Gaussians, Product Bernoulli 



Types of problems: Hypothesis testing
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1. Identity testing 

Dimension = 𝑘 − 1,  Accuracy = 𝜀

𝐪: reference distribution on 𝒳= 𝑘 , distance/loss: total variation

ℋ0 = {𝒒} , ℋ𝜀 = {𝒑′: 𝑇𝑉 𝒑′, 𝒒 > 𝜀}

Sample complexity = Θ
𝑘

𝜀2
(without constraints)



Types of problems: Hypothesis testing
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2. High-dimensional mean testing

Dimension = 𝑑,  Accuracy = 𝜀

𝒑 assumed to product distribution over 𝒳 = ℝ𝑑, distance/loss: ℓ2

ℋ0 = {𝒑′: 𝔼𝒑′ 𝑋 = 𝟎} , ℋ𝜀 = {𝒑′: 𝔼𝒑′ 𝑋 2
> 𝜀}

Sample complexity* = Θ
𝑑

𝜀2
(without constraints)

*Families of interest: Gaussian, Product Bernoulli 
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Some references and previous work
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Too many for a single slide, or two. Starts, more or less, 
with Tsitsiklis’89, picks up again in the mid-2000’s with a 
slightly different focus: local privacy, various types of 
communication constraints, ML-related motivations…

For a detailed bibliography:
www.cs.columbia.edu/~ccanonne/tutorial-

focs2020/bibliography.html

http://www.cs.columbia.edu/~ccanonne/tutorial-focs2020/bibliography.html


Plan for the tutorial
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I. Introduction Clément

II. Lower Bounds for Estimation Jayadev

III. Lower Bounds for Testing Himanshu

IV. Some upper bounds, and discussion Clément


