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Part I: What is this all about?
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Theorem. Under p—LDP,n = 0 (

sufficient.

gzpz) samples are necessary and



Goal of this tutorial, refined

General, re-usable techniques to establish
lower bounds on the sample complexity of
such distributed/constrained statistical
problems (in various settings)



Some definitions before we start



Modeling the constraints [ACT20c]
n users, user i observes X; and sends message Y;

X : domain of the unknown p Y: message space

X; — W; m@ — Y]

W;(y|x) = Pr(¥; = y|X; = x)

W: a set of allowed (randomized) channels & the constraints

The algorithm/protocol dictates how user i chooses W; from W



Example 1: Communication constraints
[Shal4, HMOW18,ACT20d...]

W, = {W:X - {0,1} }

Each X; is mapped to ¥ bits.

Tight bandwidth %

constraints
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Example 2: Local Differential Privacy (LDP)
[Warner65, EPRO3, KLNRS11]

W:X - {0,1}" is o-LDP if Vx, x" € X, Vy,

W(vl|x
64 ,)Se9z1+g
W(ylx')

W, = {all @ — LDP channels}

Privacy guarantees even «;
o H 14
against” the server
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Public-coin SMP protocols P

e W

s Noninteractive (“simultaneous message-passing”),
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Types of protocols

Sequentially Interactive P

protocols
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Types of protocols

Blackboard protocols
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Types of protocols

Each of these models is at least as powerful as the previous
private-coin < public-coin < sequentially interactive < blackboard

Each has its pros and cons (both in theory and practice), and may
require different techniques to analyze.
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Types of problems

£: accuracy parameter
Estimation (learning): Design p(Y"™) such that

Eld(p,p)] < ¢

d(-,-) is a distance/loss » e.g., total variation or parameter distance

Hypothesis testing: given two sets of “yes” and “no” distributions
H,, H, “with separation &,”* design T(Y™) such that

Pr(T(Y™") =0)>0.9,ifp € H,
Pr(T(Y™) =1) > 0.9,if p € H.

*l.e.,d(p,q) >eforeveryp € Hy, q € H,



Types of problems: Estimation

1. Distribution learning
Dimension = k — 1, Accuracy = ¢
p: unknown distribution on X'=[k], distance/loss: total variation*

E[TV(p,p)] < ¢

Sample complexity = 0 (k) (without constraints)

*TV(p,q) = sup (p(S) — q(5))
SC[k]



Types of problems: Estimation

2. High-dimensional mean learning
Dimension = d, Accuracy = ¢

p assumed to product distribution over X = R* w mean u = E,[X],
distance/loss: £,

E[llg — pll3] < &2

Sample complexity* = © (;iz) (without constraints)

*Families of interest: Gaussians, Product Bernoulli

26



Types of problems: Hypothesis testing

1. Identity testing
Dimension = k — 1, Accuracy = ¢
q: reference distribution on X’=|k], distance/loss: total variation

Ho=1{q}, H.={p"TV(p',q) > ¢}

Sample complexity = 0 (ﬁ) (without constraints)
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Types of problems: Hypothesis testing

2. High-dimensional mean testing

Dimension = d, Accuracy = ¢

p assumed to product distribution over X’ = R%, distance/loss: £,
Ho={p"EplX]=0},  H.={p"|[E,X]], > e}

Sample complexity* = © (i—f) (without constraints)

*Families of interest: Gaussian, Product Bernoulli
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Some references and previous work

Too many for a single slide, or two. Starts, more or less,
with Tsitsiklis’89, picks up again in the mid-2000’s with a
slightly different focus: local privacy, various types of
communication constraints, ML-related motivations...

For a detailed bibliography:

www.cs.columbia.edu/~ccanonne/tutorial-
focs2020/bibliography.html
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“=| Plan for the tutorial

=

—Introduction Clément
Il. Lower Bounds for Estimation Jayadev
Ill. Lower Bounds for Testing Himanshu

V. Some upper bounds, and discussion Clément



