FIFTY SHADES OF ADAPTIVITY (IN PROPERTY TESTING)

An Adaptivity Hierarchy Theorem for Property Testing

Clément Canonne (Columbia University)
April 5, 2017

Joint work with Tom Gur (Weizmann Institute)
“PROPERTY TESTING?”
WHY?

Sublinear,
Sublinear, approximate,
Sublinear, approximate, randomized
Sublinear, approximate, randomized decision algorithms that make queries
Sublinear, approximate, randomized decision algorithms that make queries

- Big object: too big
Sublinear, approximate, randomized decision algorithms that make queries

- Big object: too big
- Expensive access: pricey data
Sublinear, approximate, randomized decision algorithms that make queries

- Big object: too big
- Expensive access: pricey data
- “Model selection”: many options
- Good Enough: a priori knowledge
Sublinear, approximate, randomized decision algorithms that make queries

- Big object: too big
- Expensive access: pricey data
- “Model selection”: many options
- Good Enough: a priori knowledge

Need to infer information – one bit – from the data: quickly, or with very few lookups.
Known space (say, \(\{0, 1\}^N\))

Property \(\mathcal{P} \subseteq \{0, 1\}^N\)

Query (oracle) access to unknown \(x \in \{0, 1\}^N\)

Proximity parameter \(\varepsilon \in (0, 1]\)
Known space (say, \{0, 1\}^N)

Property \(\mathcal{P} \subseteq \{0, 1\}^N \)

Query (oracle) access to unknown \(x \in \{0, 1\}^N \)

Proximity parameter \(\varepsilon \in (0, 1] \)

Must decide:

\[x \in \mathcal{P} \]
Known space (say, \(\{0, 1\}^N \))

Property \(\mathcal{P} \subseteq \{0, 1\}^N \)

Query (oracle) access to unknown \(x \in \{0, 1\}^N \)

Proximity parameter \(\varepsilon \in (0, 1] \)

Must decide:

\[x \in \mathcal{P}, \text{ or } d(x, \mathcal{P}) > \varepsilon? \]
Known space (say, \(\{0, 1\}^N\))

Property \(\mathcal{P} \subseteq \{0, 1\}^N\)

Query (oracle) access to unknown \(x \in \{0, 1\}^N\)

Proximity parameter \(\varepsilon \in (0, 1]\)

Must decide:

\[x \in \mathcal{P}, \text{ or } d(x, \mathcal{P}) > \varepsilon? \]

(and be correct on any \(x\) with probability at least 2/3)
Property Testing:
Property Testing:
Property Testing:

in an (egg)shell.
Many flavors...

... one-sided vs. two-sided,
Many flavors...

... one-sided vs. two-sided, query-based vs. sample-based,
Many flavors...

... one-sided vs. two-sided, query-based vs. sample-based, uniform vs. distribution-free,
Many flavors...

... one-sided vs. two-sided, query-based vs. sample-based, uniform vs. distribution-free, **adaptive vs. non-adaptive**
ADAPTIVITY
Our focus: Adaptivity

Non-adaptive algorithm

Makes all its queries **upfront**:

\[Q \subseteq [N] = Q(\epsilon, r) = \{i_1, \ldots, i_q\} \]

Adaptive algorithm

Each query can **depend arbitrarily** on the previous answers:
SOME OBSERVATIONS

Dense graph model

At most a quadratic gap between adaptive and non-adaptive algorithms: \(q \) vs. \(2q^2 \) [AFKS00, GT03],[GR11]

Boolean functions

At most an exponential gap between adaptive and non-adaptive algorithms: \(q \) vs. \(2^q \)

Bounded-degree graph model

Everything is possible: \(O(1) \) vs. \(\Omega(\sqrt{n}) \). [RS06]
Of course

Fewer queries is *always* better.
WHY SHOULD WE CARE?

Of course

Fewer queries is always better.

But

Many parallel queries can beat few sequential ones.
Of course
Fewer queries is always better.

But
Many parallel queries can beat few sequential ones.

Understanding the benefits and tradeoffs of adaptivity is crucial.
A closer look

Does the power of testing algorithms smoothly grow with the "amount of adaptivity?"
A closer look

Does the power of testing algorithms smoothly grow with the “amount of adaptivity?”

(and what does “amount of adaptivity” even mean?)
Definition (Round-Adaptive Testing Algorithms)

Let \(\Omega \) be a domain of size \(n \), and \(k, q \leq n \). A randomized algorithm is said to be a \((k, q)\)-round-adaptive tester for \(\mathcal{P} \subseteq 2^{\Omega} \), if, on input \(\varepsilon \in (0, 1] \) and granted query access to \(f: \Omega \rightarrow \{0, 1\} \):

(i) Query Generation: The algorithm proceeds in \(k + 1 \) rounds, such that at round \(\ell \), it produces a set of queries \(Q_\ell := \{x(\ell); 1; \ldots; x(\ell); j\} \subseteq \Omega \), based on its own internal randomness and the answers to the previous sets of queries \(Q_0; \ldots; Q_\ell \), and receives \(f(Q_\ell) = f(f(x(\ell); 1); \ldots; f(x(\ell); j) \).

(ii) Completeness: If \(f \in \mathcal{P} \), then it outputs accept with probability at least \(\frac{2}{3} \).

(iii) Soundness: If \(\text{dist}(f; \mathcal{P}) > \varepsilon \), then it outputs reject with probability at least \(\frac{2}{3} \).

The query complexity \(q \) of the tester is the total number of queries made to \(f \), i.e., \(q = \sum_{\ell=0}^{k} |Q_\ell| \).
Definition (Round-Adaptive Testing Algorithms)

Let Ω be a domain of size n, and $k, q \leq n$. A randomized algorithm is said to be a (k, q)-round-adaptive tester for $\mathcal{P} \subseteq 2^\Omega$, if, on input $\varepsilon \in (0, 1]$ and granted query access to $f: \Omega \rightarrow \{0, 1\}$:

(i) Query Generation: The algorithm proceeds in $k + 1$ rounds, such that at round $\ell \geq 0$, it produces a set of queries $Q_\ell := \{x^{(\ell), 1}, \ldots, x^{(\ell), |Q_\ell|}\} \subseteq \Omega$, based on its own internal randomness and the answers to the previous sets of queries $Q_0, \ldots, Q_{\ell-1}$, and receives $f(Q_\ell) = \{f(x^{(\ell), 1}), \ldots, f(x^{(\ell), |Q_\ell|})\}$;
Definition (Round-Adaptive Testing Algorithms)

Let Ω be a domain of size n, and $k, q \leq n$. A randomized algorithm is said to be a (k, q)-round-adaptive tester for $\mathcal{P} \subseteq 2^\Omega$, if, on input $\varepsilon \in (0, 1]$ and granted query access to $f: \Omega \rightarrow \{0, 1\}$:

(i) Query Generation: The algorithm proceeds in $k + 1$ rounds, such that at round $\ell \geq 0$, it produces a set of queries $Q_\ell := \{x^{(\ell),1}, \ldots, x^{(\ell),|Q_\ell|}\} \subseteq \Omega$, based on its own internal randomness and the answers to the previous sets of queries $Q_0, \ldots, Q_{\ell-1}$, and receives $f(Q_\ell) = \{f(x^{(\ell),1}), \ldots, f(x^{(\ell),|Q_\ell|})\}$;

(ii) Completeness: If $f \in \mathcal{P}$, then it outputs accept with probability $2/3$;

(iii) Soundness: If dist$(f, \mathcal{P}) > \varepsilon$, then it outputs reject with probability $2/3$.
Definition (Round-Adaptive Testing Algorithms)

Let Ω be a domain of size n, and $k, q \leq n$. A randomized algorithm is said to be a (k, q)-round-adaptive tester for $\mathcal{P} \subseteq 2^{\Omega}$, if, on input $\varepsilon \in (0, 1]$ and granted query access to $f: \Omega \rightarrow \{0, 1\}$:

(i) Query Generation: The algorithm proceeds in $k + 1$ rounds, such that at round $\ell \geq 0$, it produces a set of queries $Q_\ell := \{x^{(\ell),1}, \ldots, x^{(\ell),|Q_\ell|}\} \subseteq \Omega$, based on its own internal randomness and the answers to the previous sets of queries $Q_0, \ldots, Q_{\ell-1}$, and receives $f(Q_\ell) = \{f(x^{(\ell),1}), \ldots, f(x^{(\ell),|Q_\ell|})\}$;

(ii) Completeness: If $f \in \mathcal{P}$, then it outputs accept with probability $2/3$;

(iii) Soundness: If $\text{dist}(f, \mathcal{P}) > \varepsilon$, then it outputs reject with probability $2/3$.

The query complexity q of the tester is the total number of queries made to f, i.e., $q = \sum_{\ell=0}^{k} |Q_\ell|$.
THAT WAS A MOUTHFUL, BUT... (I CAN’T DRAW)
· Other possible choices: e.g., tail-adaptive
Some remarks

- Other possible choices: e.g., tail-adaptive
- Probability amplification
· Other possible choices: e.g., tail-adaptive
· Probability amplification
· Similar in spirit to...
... now, what do we do with it?

Does the power of testing algorithms smoothly grow with the “amount of adaptivity” number of rounds of adaptivity?
OUR RESULTS
... and we have an answer.

Yes, the power of testing algorithms smoothly grows with the number of rounds of adaptivity.
... and we have an answer.

Yes, the power of testing algorithms smoothly grows with the number of rounds of adaptivity.

Theorem (Hierarchy Theorem I)

For every $n \in \mathbb{N}$ and $0 \leq k \leq n^{0.33}$ there is a property $\mathcal{P}_{n,k}$ of strings over \mathbb{F}_n such that:

(i) there exists a k-round-adaptive tester for $\mathcal{P}_{n,k}$ with query complexity $\tilde{O}(k)$, yet

(ii) any $(k - 1)$-round-adaptive tester for $\mathcal{P}_{n,k}$ must make $\tilde{\Omega}(n/k^2)$ queries.
It’s only natural.

Yes, that also happens for actual things people care about.
It’s only natural.

Yes, that also happens for actual things people care about.

Theorem (Hierarchy Theorem II)

Let $k \in \mathbb{N}$ be a constant. Then,

(i) there exists a k-round-adaptive tester with query complexity $O(1/\varepsilon)$ for $(2k + 1)$-cycle freeness in the bounded-degree graph model; yet

(ii) any $(k - 1)$-round-adaptive tester for $(2k + 1)$-cycle freeness in the bounded-degree graph model must make $\Omega(\sqrt{n})$ queries, where n is the number of vertices in the graph.
OUTLINE OF THE PROOF
Main Idea

Getting a hierarchy theorem directly for property testing seems hard; but we know how to get one easily in the decision tree complexity model. Can we lift it to property testing?
Main Idea

Getting a hierarchy theorem directly for property testing seems hard; but we know how to get one easily in the decision tree complexity model. Can we lift it to property testing?

Function f hard to compute in k rounds (but easy in $k + 1$)

\[\uparrow\]

Property C_f hard to test in k rounds (but easy in $k + 1$)
Fix any \(\alpha > 0 \). Let \(C : \mathbb{F}_n^n \to \mathbb{F}_n^m \) be a code with constant relative distance \(\delta(C) > 0 \), with

- **linearity**: \(\forall i \in [m] \), there is \(a^{(i)} \in \mathbb{F}_n^n \) s.t. \(C(x)_i = \langle a^{(i)}, x \rangle \) for all \(x \);
- **rate**: \(m \leq n^{1+\alpha} \);
- **testability**: \(C \) is a one-sided LTC* with non-adaptive tester;
- **decodability**: \(C \) is a LDC.*
Fix any $\alpha > 0$. Let $C : \mathbb{F}_n^n \to \mathbb{F}_n^m$ be a code with constant relative distance $\delta(C) > 0$, with

- **linearity**: $\forall i \in [m]$, there is $a^{(i)} \in \mathbb{F}_n^n$ s.t. $C(x)_i = \langle a^{(i)}, x \rangle$ for all x;
- **rate**: $m \leq n^{1+\alpha}$;
- **testability**: C is a one-sided LTC* with non-adaptive tester;
- **decodability**: C is a LDC.*

Theorem ([GGK15])

These things exist.*
YOU HAVE AWAKENED ME FROM THE LAMP. YOU MAY HAVE THREE WISHES. WHAT DOES YOUR HEART DESIRE?

SWEET!
For any $f : F_n^n \rightarrow \{0, 1\}$, consider the subset of codewords

$$C_f := C(f^{-1}(1)) = \{ C(x) : x \in F_n^n, \ f(x) = 1 \} \subseteq C$$

Lemma. (LDT \leadsto PT)

k-round-adaptive tester for C_f with query complexity q implies k-round-adaptive LDT* algorithm for f with query complexity q.
For any $f : \mathbb{F}_n^n \to \{0, 1\}$, consider the subset of codewords

$$C_f := C(f^{-1}(1)) = \{ C(x) : x \in \mathbb{F}_n^n, f(x) = 1 \} \subseteq C$$

Lemma. (LDT \leadsto PT)

k-round-adaptive tester for C_f with query complexity q implies k-round-adaptive LDT* algorithm for f with query complexity q.

Lemma. (PT \leadsto DT)

k-round-adaptive DT algorithm for f with query complexity q implies k-round-adaptive tester for C_f with query complexity $\tilde{O}(q)$.

For any $f: \mathbb{F}_n^n \to \{0, 1\}$, consider the subset of codewords $C_f := C(f^{-1}(1)) = \{ C(x) : x \in \mathbb{F}_n^n, f(x) = 1 \} \subseteq C$

Lemma. (LDT \rightsquigarrow PT)

k-round-adaptive tester for C_f with query complexity q implies k-round-adaptive LDT* algorithm for f with query complexity q.

Lemma. (PT \rightsquigarrow DT)

k-round-adaptive DT algorithm for f with query complexity q implies k-round-adaptive tester for C_f with query complexity $\tilde{O}(q)$.

Transference lemmas
Putting it together

Apply the above for f being the k-iterated address function $f_k: \mathbb{F}_n^n \rightarrow \{0, 1\}$.

Lemma

For every $0 \leq k \leq \tilde{O}(n^{1/3})$, no k-round-adaptive LDT algorithm can compute f_{k+1} with $o(n/(k^2 \log n))$ queries.
Putting it together

Apply the above for \(f \) being the \textit{k-iterated address} function \(f_k: \mathbb{F}_n^k \rightarrow \{0,1\} \).

Lemma

For every \(0 \leq k \leq \tilde{O}(n^{1/3}) \), no \(k \)-round-adaptive LDT algorithm can compute \(f_{k+1} \) with \(o(n/(k^2 \log n)) \) queries.

Proof.

Reduction to communication complexity,* lower bound of [NW93] on the “pointer-following” problem.
OTHER RESULTS
THE END IS NIGH
OPEN QUESTIONS

- Can we swap the quantifiers in the theorems? ($\forall k \exists P_k \iff \exists P \forall k$)
· Can we swap the quantifiers in the theorems? ($\forall k \exists P_k \leadsto \exists P \forall k$)
· Can we prove that for t-linearity?
OPEN QUESTIONS

- Can we swap the quantifiers in the theorems? ($\forall k \exists P_k \rightarrow \exists P \forall k$)
- Can we prove that for t-linearity?
- Can we simulate k rounds with ℓ rounds?
OPEN QUESTIONS

- Can we swap the quantifiers in the theorems? ($\forall k \exists P_k \iff \exists P \forall k$)
- Can we prove that for t-linearity?
- Can we simulate k rounds with ℓ rounds?
- Other applications of the transference lemmas?
· A strong hierarchy theorem for adaptivity in property testing
• A strong hierarchy theorem for adaptivity in property testing
• Also holds for some natural properties
CONCLUSION

- A strong hierarchy theorem for adaptivity in property testing
- Also holds for some natural properties
- Some debatable choice of title
CONCLUSION

- A strong hierarchy theorem for adaptivity in property testing
- Also holds for some natural properties
- Some debatable choice of title
- Codes are great!
THANK YOU

