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“property testing?”



why?

Property testing of Boolean functions:

sublinear, approximate,
randomized algorithms that make membership queries

∙ Big Dataset: too big
∙ Expensive access: pricey data
∙ Preliminary check: before deciding, learning, reconstructing…

Need to infer information – one bit – from the data: fast, or with very
few queries.
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how?

Property Testing:

in an (egg)shell.
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how?

Known domain (here [n]d = {1, . . . ,n}d) and range
(here {0, 1})
Property (or class) C ⊆ {0, 1}[n]d

Blackbox access to unknown f ∈ {0, 1}[n]d

Distance parameter ε ∈ (0, 1]

Must decide:

f ∈ C, or d(f, C) > ε?

(and be correct on any f with probability at least 2/3)
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what?

one-sided vs. two-sided

adaptive vs. non-adaptive

regular vs. tolerant
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monotone functions

For circuit complexity theorists:

Definition

A Boolean function f : {0, 1}d → {0, 1} is monotone if it is computed
by a Boolean circuit with no negations (only AND and OR gates).

For analysis of Boolean functions enthusiasts:

Definition

A Boolean function f : {0, 1}d → {0, 1} is monotone if for any x ⪯ y in
{0, 1}d, f(x) ≤ f(y).

For people with a twisted mind:

Definition

A Boolean function f : {0, 1}d → {0, 1} is monotone if f(0n) ≤ f(1n)
and f changes value at most once on any ascending chain.

(These definitions are equivalent.)
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monotone functions

Examples.

The majority function (1 iff at least half the votes are positive): more
votes cannot make a candidate lose.

The s-clique function (1 iff the input graph contains a clique of size
s): more edges cannot remove a clique.

The dictator function (1 iff x1 = 1): more voters have no influence
anyway.
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monotone functions

Can we learn them?

Theorem

Learning the class M of monotone Boolean functions from uniform
examples (to error ε) can be done in time 2Õ(

√
d/ε). [BT96]

Theorem

Learning the class M of monotone Boolean functions with
membership queries (to error ε) requires 2Ω(

√
d/ε) queries.

[BT96, BCO+15]

So…
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√
d/ε). [BT96]

Theorem

Learning the class M of monotone Boolean functions with
membership queries (to error ε) requires 2Ω(

√
d/ε) queries.

[BT96, BCO+15]

So…

8



monotone functions

Can we learn them?

Theorem

Learning the class M of monotone Boolean functions from uniform
examples (to error ε) can be done in time 2Õ(
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√
d/ε). [BT96]

Theorem

Learning the class M of monotone Boolean functions with
membership queries (to error ε) requires 2Ω(

√
d/ε) queries.

[BT96, BCO+15]

So…

8



monotone functions

Can we test them?

Theorem

Testing the class M of monotone Boolean functions can be done
with Õ(

√
d/ε), non-adaptively, with one-sided error. [GGL+00, KMS15]

Theorem

Testing the class M of monotone Boolean functions requires Ω(
√
d)

queries*, non-adaptively, with two-sided error. [CST14, CDST15]

Theorem

Testing the class M of monotone Boolean functions requires Ω(d1/4)

queries, adaptively, with two-sided error. [BB15]

So…
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and it goes on!

Also…

Many results on testing monotonicity over different
domains, ranges [DGL+99, FR10, CS13, FLN+02], or in
different distances [BRY14].
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and it goes on!

So…

Let’s forget about monotonicity.
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k-monotone functions

For circuit complexity theorists:

Definition

A Boolean function f : {0, 1}d → {0, 1} has inversion complexity t if it
can be computed by a Boolean circuit with t negations (besides AND
and OR gates), but no less.

For people with a twisted mind:

Definition

A Boolean function f : {0, 1}d → {0, 1} is k-alternating if f changes
value at most k times on any increasing chain from 0n to 1n.

(Analysis of Boolean functions enthusiasts, don’t go yet?)

(These definitions are equivalent [Mar57].)
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k-monotone functions

Examples.

The “not-too-many” function (1 iff between 40% and 60% of the
votes are positive): more votes can harm a candidate.

The s-clique-but-no-Hamiltonian function (1 iff the input graph
contains a clique of size s, but no Hamiltonian cycle): more edges
can make things worse.

The Highlander function (1 iff exactly one of the xi’s is 1): there shall
be only one.

13



k-monotone functions

Why should we care?

Circuit lower bounds [Mar57, Juk12],

learning theory [BCO+15],
cryptography [GMOR15], …
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our results

General k k = 2 k = 1 (monotonicity)
d = 1 Θ( k

ε ) 1.s.-n.a., Õ(
1
ε7

) 2.s.-n.a. O( 1
ε ) 1.s.-n.a. Θ( 1

ε ) 1.s-n.a.
d = 2 Õ( k2

ε3
) 2.s.-n.a. (from below) Θ( 1

ε ) 2.s.-a. Θ( 1
ε log 1

ε ) 1.s-n.a., Θ( 1
ε ) 1.s-a.

d ≥ 3 Õ( 1
ε2

( 5kd
ε

)d
) 2.s.-n.a., Õ( 1

ε2
( 10d

ε

)d
) 2.s.-n.a. O( d

ε log d
ε ) 1.s-n.a.

2Õ(k
√

d/ε2) 2.s.-n.a. 2Õ(
√

d/ε2) 2.s.-n.a.

Table: Testing k-monotonicity of f : [n]d → {0, 1}. (Last column: not us.)

Sorry…

… about your eyes.
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rest of the talk



outline

1. The case of the line [n]: “Two-sidedness, magic, and k”
2. The case of the grid [n]2: “L1 Testing: an unexpected journey”
3. The case of the hypergrid [n]d: “There be Fourier.”
4. Discussion: the hypercube [2]d.

18



i walk the line

Theorem

There exists a one-sided non-adaptive tester for k-monotonicity of
f : [n] → {0, 1} with query complexity O( kε ).

… and this is tight.*

19



i walk the line

Proof.

1. Blocks of size εn
k : block coarsening g : [n] → {0, 1} of f.

∙ f k-monotone⇝ g k-monotone and close to f
∙ f far from it⇝ g (i) far from k-monotone, or (ii) far from f
∙ g “simple.”

2. Learn g: cheap.
3. Test if g is close to f: very cheap…
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∙ f k-monotone⇝ g k-monotone and close to f
∙ f far from it⇝ g (i) far from k-monotone, or (ii) far from f
∙ g “simple.”

2. Learn g: cheap.
3. Test if g is close to f: very cheap…

But two-sided.

Need another small trick to get one-sidedness.
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i walk the line (but fall sometimes)

Theorem

There exists a two-sided non-adaptive tester for k-monotonicity of
f : [n] → {0, 1} with query complexity O( 1

ε7 ), independent of k.

… and did not see that coming.

20



i walk the line (but fall sometimes)

Proof.

1. Blocks of size εn
k : block coarsening g : [K] → {0, 1} of f.

2. Function g⇝ distribution Dg over [s] (blocks), where
“s = kmonotonicity(f)”

3. Have sample access to Dg and query access to its pmf

Idea

Do support size estimation on Dg in the extended access model of
[CR14].
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i walk the line (but fall sometimes)

Challenges

∙ Do not have (efficient) sample access to Dg

∙ Do not have (efficient) query access to its pmf
∙ Support size estimation is a promise problem

Solutions

∙ Have (efficient) (sample + query) access to Dg+(capped) pmf
∙ The block coarsening is helping us keeping the promise
∙ Getting our hands (a bit) dirty.

20



getting griddy

Theorem (k = 2)

There exists a two-sided adaptive tester for 2-monotonicity of
f : [n]2 → {0, 1} with query complexity O( 1ε ).

21



getting griddy

Proof.

1. Blocks of size εn
k : block coarsening g : [n]× [K] → {0, 1} of f. (“as

usual”)
2. Assume g is 2-column-wise monotone.

∙ Can actually provide access to a “fixed” version of g that is.
∙ This helps: reduces the problem to tolerant monotonicity testing
in L1 distance of two functions f : [n] → [0, 1]

∙ … and we know how to do that*: [BRY14]

21



getting griddy

“Overall”

f : [n]2 → {0, 1}⇝ g : [n]× [K] → {0, 1}⇝ g̃ : [n]× [K] → {0, 1} with g̃
2-column-wise monotone, and

∙ f 2-monotone⇝ g̃ 2-monotone and close to f;
∙ f far from it⇝ g̃ either far from 2-monotone or far from f; if the
former, then L1 testing will find out.

21



getting griddy

Challenges

∙ Provide efficient access to g̃;
∙ This does not work.*

*(namely, only leads to O(1/ε2) query complexity. Damn.)

21



getting griddy

Solution

Add yet another layer: f⇝ g⇝ g̃⇝ ġ… with ġ defined so that we can
amortize the queries.
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getting hyper

Theorem

There exists a two-sided non-adaptive tester for k-monotonicity of
f : [n]d → {0, 1} with query complexity min(Õ( 1

ε2

( 5kd
ε

)d
), 2Õ(k

√
d/ε2)).

… and this is actually tolerant.

22



getting hyper

Proof.

Actually, two different (tolerant) testers.

1. A block-based one:
∙ Partition the domain into (hyper)blocks.
∙ Learn the block coarsening of f on this partition.
∙ Hope for the best.

2. A Fourier-based one:
∙ Fourier analysis on [n]d

∙ Generalize the influence lemma of [BCO+15]
∙ Agnostic learning via [KKMS08]
∙ Connection between agnostic learning and tolerant testing.

22



getting hyper

Proof.

Actually, two different (tolerant) testers.

1. A block-based one:
∙ Partition the domain into (hyper)blocks.
∙ Learn the block coarsening of f on this partition.
∙ Hope for the best.

2. A Fourier-based one:
∙ Fourier analysis on [n]d

∙ Generalize the influence lemma of [BCO+15]
∙ Agnostic learning via [KKMS08]
∙ Connection between agnostic learning and tolerant testing.

Upshot

Who cares about n? (and also… connections!)
22



discussion: {0, 1}d

A very cube problem.

Can we get a 2oε(
√
d) tester for k-monotonicity of f : {0, 1}d → {0, 1}?

How hard can it be?

Monotonicity is local. k-monotonicity is not.

Lower bounds, ideas, and hopes.

Some of each.
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current state: {0, 1}d

Constant k upper bound 1.s.-n.a. l.b. 2.s.-n.a. l.b. 2.s.-a. l.b.
k = 1 O(

√
d) [KMS15] Ω(d1/2) [FLN+02] Ω(d1/2−o(1)) [CDST15] Ω(d1/4) [BB15]

k ≥ 2 O(dk
√

d) [BCO+15] Ω(dk/4) Ω(d1/2−o(1)) Ω(d1/4)

Table: Testing k-monotonicity of a function f : {0, 1}d → {0, 1}
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