Are Few Bins Enough: Testing Histogram Distributions

Clément L. Canonne

September 29, 2015

Abstract

A probability distribution over an ordered universe \([n] = \{1, \ldots, n\} \) is said to be a \(k \)-histogram if it can be represented as a piecewise-constant function over at most \(k \) contiguous intervals. We study the following question: given samples from an arbitrary distribution \(D \) over \([n] \), one must decide whether \(D \) is a \(k \)-histogram, or is far in \(\ell_1 \) distance from any such succinct representation. We obtain a sample and time-efficient algorithm for this problem, complemented by a nearly-matching information-theoretic lower bound on the number of samples required for this task. Our results significantly improve on the previous state-of-the-art, due to Indyk, Levi, and Rubinfeld [ILR12] and Canonne, Diakonikolas, Gouleakis, and Rubinfeld [CDGR15].

1 Introduction

1.1 Motivation and background

Large datasets have become the norm over the past decades, a trend that if anything has been hastening lately – and most likely will for the foreseeable future. This rapid increase in the amount of information to store, analyze, and process comes with many challenges; and in particular calls for succinct ways of representing the data, as well as (very) fast algorithms to operate on it.

One of the oldest and most widely used representations is that of histograms, where the range of possible values the data can take is divided into groups, or “bins” [Pea95]. The number of records from the dataset falling in each bin is then recorded, and serves as summary of the records themselves. Whenever the dataset can be well-approximated by histograms with few bins, this provides a space-efficient and flexible way of storing, querying, and analyzing the data and its distribution; specifically, whenever the number of bins \(k \) is much smaller than the size \(n \) of the universe. For these reasons, the study of histograms and algorithms that operate on them has received significant interest in databases [Koo80, PIHS96, GMP97, CMN98, JKM+98, WJLY04, XZX+13] and many other fields, such as statistics [Sco79, FD81, Bir87], streaming [GGI+02, TGIK02, GKS06], and learning theory [ILR12, CDSS13, CDSS14, GSW04, ADH+15] (see also [Ioa03] for a survey).

In this work we will be concerned with the framework of property testing of distributions, as first introduced in the seminal work of Batu et al. [BFR+00] (see also [Ron08, Ron10, Can15] for surveys on property and distribution testing). In this setting, access to the data is provided via random samples drawn
independently from the dataset (that is, from the probability distribution that underlies it). The algorithm must then decide, after looking at as a few samples as possible, whether this probability distribution satisfies some fixed property of interest — e.g., if the records are uniformly distributed. We consider here the following testing question: given some input parameters k and ε, can the distribution of the data be represented as a histogram on at most k bins, or is it significantly different (at distance at least ε) from any such “k-histogram” representation?

1.2 Our results

We obtain an efficient algorithm, complemented by a nearly matching lower bound, that together settle the question of testing whether an unknown probability distribution can be represented as a k-histogram, for any k in the range of interest (with regard to the size of the universe $\Omega = \{1, \ldots, n\}$). Specifically, we prove the following theorems:

Theorem 1.1 (Upper Bound). For any $1 \leq k \leq n$, there exists an efficient testing algorithm for the class of k-histograms with sample complexity $O\left(\frac{\sqrt{n}}{\varepsilon^2} \log k + \frac{k}{\varepsilon^3} \log^2 k\right)$.

Theorem 1.2 (Lower Bound). For any $1 \leq k \leq \frac{n}{120}$, any (non-necessarily efficient) testing algorithm for the class of k-histograms must have sample complexity $\Omega\left(\frac{\sqrt{n}}{\varepsilon^2} + \frac{1}{\varepsilon} \log k\right)$.

Indeed, this essentially resolves the sample complexity of testing k-histograms, up to polylogarithmic factors in k and the dependence on ε of the second term. Moreover, we note that the proof of Theorem 1.2 implies the same lower bound on the sample complexity of testing k-modal distributions, that is the class of distributions whose probability mass function is allowed to go “up and down” or “down and up” at most k times.

Comparison with previous work. Our results significantly improve upon the previous algorithmic results of Indyk, Levi, and Rubinfeld [ILR12], which required $O\left(\frac{\sqrt{kn}}{\varepsilon^3} \log n\right)$ samples; as well as on later work by Canonne, Diakonikolas, Gouleakis, and Rubinfeld [CDGR15], where this upper bound is brought down to $O\left(\frac{\sqrt{n}}{\varepsilon^2} \log n\right)$. Moreover, these results crucially left open the question of the interplay between the domain size n and the parameter k of the class to be tested.

At a high level, our results (almost) answer this question, by “decoupling” these two parameters. In particular, ignoring ε in the statement of Theorem 1.1 one can see the first term as capturing the (sublinear) dependence on the domain size, while the other second only depends on the complexity of the class to be tested.

Turning to the negative results, prior to our work the best lower bounds for this question were due to Paninski [Pan08], who establishes an $\Omega\left(\frac{\sqrt{n}}{\varepsilon^2}\right)$ sample lower bound for testing uniformity (that is, the case $k = 1$), and to Indyk, Levi, and Rubinfeld [ILR12] where a lower bound of $\Omega\left(\frac{\sqrt{kn}}{\varepsilon^2}\right)$ samples is proven for $k \leq 1/\varepsilon$. Theorem 1.2 unifies and extends both results, obtaining a nearly-tight lower bound featuring the same decoupling between n and k as in our upper bound.

1.3 Techniques

Upper bound. To obtain our algorithmic result, we follow an approach similar to that of Acharya, Daskalakis, and Kamath [ADK15], who show how to apply the “testing by learning” paradigm to the

1See Section 2 for the formal definition of the model.
setting of distribution testing. At a high-level, the idea is to first learn an approximation of the unknown distribution as if it satisfied the property of interest (which can usually be achieved with relatively few samples); before verifying that the output of this learning stage is both (a) close to having the property and (b) close to the unknown distribution. While standard in property testing of functions, this method was believed to inherently fail in the case of probability distributions, due to the hardness of efficiently estimating the distance between distributions from samples [VV10] – as required for (b). Namely, the result of [VV10] implies that this last step would by itself cost a prohibitive number of samples, almost linear in the domain size n. The main idea of [ADK15] is to circumvent this impossibility result by first choosing to learn the unknown distribution not with regard to the total variation, but instead in χ^2 distance; and showing that the corresponding variant of distance estimation (deciding whether two distributions are close in χ^2 distance, versus far in total variation) can be achieved with only \sqrt{n} samples.²

In order to establish Theorem 1.1, we adapt the above approach, with several crucial modifications. Namely, applying the ideas of [ADK15] out-of-the-box would require an efficient algorithm to learn the class of k-histograms in χ^2 distance, i.e. one with sample complexity $\text{poly}(k, 1/\varepsilon)$ (independent of n). To the best of our knowledge, such learning algorithm does not appear in the literature, and it is not clear whether one can even exist. Instead, we settle for a weaker guarantee: that of learning a good approximation of an unknown k-histogram except on a small (but unknown) portion of the domain, where the accuracy can be arbitrarily poor. To handle this, we then need to adapt the second stage (testing in χ^2 vs. total variation) to identify and discard this small portion of the domain. This is done by iteratively applying (a modification of) the testing algorithm of [ADK15] several times, removing “bad chunks of the domain” one at a time. The challenge here is to do this in a careful and controlled manner, in order to keep the number of such iterations (and therefore samples) as small as possible. (Intuitively, this is where the $\log k$ factor in the first term of the sample complexity stems from – a union bound over k outcomes of the testing subroutine.)

Lower bound. Turning now to the converse result, we split the proof of Theorem 1.2 in two parts, establishing separately each term of the lower bound. The first one, $\Omega(\sqrt{n}/\varepsilon^2)$, is essentially a direct modification of the lower bound of Paninski on testing uniformity (i.e., 1-histograms). The second term, however, proves to be much less straightforward: the main ingredient in our $\Omega(k/\log k)$ bound is a reduction from a seemingly unrelated question, that of estimating the support size [VV10]. A key aspect of this reduction is to lift the corresponding lower bound of Valiant and Valiant – which heavily relies on the support size to be a symmetric property,³ to our setting – a property that is clearly not symmetric, and thus at first glance intrinsically different. Perhaps surprisingly, we manage to connect these two questions in a black-box and conceptually simple way; moreover, we believe our reduction to be of independent interest, and applicable to other properties as well.

1.4 Organization

After introducing the required definitions and notations in Section 2, we establish our algorithmic result, Theorem 1.1, in Section 3. Finally, Section 4 contains the details of our lower bound, Theorem 1.2.

²The use and analysis of a χ^2-based statistic to obtain optimal testing algorithms already appears in [CDVV14], where the authors consider the (related) question of distinguishing whether two distributions are equal vs. far in total variation distance.

³That is, a property invariant to relabeling of the domain elements: D has a property if and only if, for every permutation σ of the domain, $D \circ \sigma$ has the property.
2 Notations and Preliminaries

All throughout this paper, we denote by $[n]$ the set $\{1, \ldots, n\}$, and by \log the logarithm in base 2. We write $\Delta([n])$ for the set of discrete probability distributions over domain $[n]$, i.e. the set of all real-valued functions $D: [n] \to [0, 1]$ such that $\sum_{i=1}^{n} D(i) = 1$. A property of distributions over $[n]$ is a subset $P \subseteq \Delta([n])$, consisting of all distributions that have the property.

For any fixed $1 \leq k \leq n$, we let $H_k \subseteq \Delta([n])$ denote the class of k-histograms, i.e. the property of being piecewise-constant with at most k “pieces.” Formally, $D \in H_k$ if and only if there exists a partition $I = (I_1, \ldots, I_k)$ of $[n]$ into k intervals such that D is constant on each I_j.

In this work, we will measure the distance between two distributions D_1, D_2 on $[n]$ by their total variation distance

$$d_{TV}(D_1, D_2) \overset{\text{def}}{=} \frac{1}{2} \| D_1 - D_2 \|_1 = \max_{S \subseteq [n]} (D_1(S) - D_2(S))$$

which takes value in $[0, 1]$. (Note that this metric, sometimes referred to as statistical distance, is one of the most stringent ones, and the standard distance measure in distribution testing.) For some of our results, we will also require the definition of the (asymmetric) χ^2-distance between two distributions $D_1, D_2 \in \Delta([n])$,

$$d_{\chi^2}(D_1 \parallel D_2) = \sum_{i=1}^{n} \frac{(D_1(i) - D_2(i))^2}{D_2(i)} = -1 + \sum_{i=1}^{n} \frac{D_1(i)^2}{D_2(i)}.$$

Finally, recall that a testing algorithm for a fixed property P is a randomized algorithm TESTER which takes as input $n, \varepsilon \in (0, 1]$, and is granted access to independent samples from an unknown distribution D:

(i) if $D \in P$, the algorithm outputs accept with probability at least 2/3;

(ii) if $d_{TV}(D, D') \geq \varepsilon$ for every $D' \in P$, it outputs reject with probability at least 2/3.

That is, TESTER must accept if the unknown distribution has the property, and reject if it is ε-far from having it. The sample complexity of the algorithm is the number of samples it draws from the distribution in the worst case.

3 Upper bound: an efficient testing algorithm

In this section, we prove our upper bound, Theorem 1.1. More specifically, we establish the following, more detailed, result:

Theorem 3.1. For any $k \geq 1$, there exists a testing algorithm for H_k with sample complexity

$$O\left(\frac{\sqrt{n}}{\varepsilon^2} \log k + \frac{k}{\varepsilon^3} \log k + \frac{k}{\varepsilon} \log^2 \frac{k}{\varepsilon}\right).$$

Moreover, its running time is $\sqrt{n} \text{poly}(\log k, 1/\varepsilon) + \text{poly}(k, 1/\varepsilon)$.

We first state in the next subsection some results from the literature we shall rely upon, before delving into the proof of the theorem.
3.1 Tools from previous work

Our starting point will be a recent result of Acharya, Daskalakis, and Kamath, which shows how to efficiently perform a specific relaxation of tolerant identity testing, with regard to a χ^2 guarantee:

Theorem 3.2 ([ADK15], Rephrased). There exists an algorithm Tester that, on input n, $\varepsilon \in (0, 1]$ as well as the explicit description of a distribution $D^* \in \Delta([n])$, takes $O(\sqrt{n}/\varepsilon^2)$ samples from an unknown distribution $D \in \Delta([n])$ and satisfies the following.

(i) If $d_{\chi^2}(D || D^*) \leq \frac{\varepsilon^2}{500}$, then A outputs accept with probability at least 2/3;
(ii) If $d_{\text{TV}}(D, D^*) \geq \varepsilon$, then A outputs reject with probability at least 2/3.

Moreover, Tester runs in time $O(\sqrt{n}/\varepsilon^2)$.

For our purpose, instead of invoking this result as a blackbox we will rely on the following refinement (which already appears in the section of [ADK15] dealing with unimodality): given an explicit partition of $[n]$ on K intervals I_1, \ldots, I_K and a fully specified distribution D^*, the algorithm from Theorem 3.2 computes the K (independent) statistics Z_1, \ldots, Z_K defined as

$$Z_j = \sum_{i \in I_j \cap \mathcal{A}_x} \frac{(N_i - mD^*(i))^2 - N_i}{mD^*(i)}$$

where $\mathcal{A}_x = \{ i \in [n] : D^*(i) \geq \frac{\varepsilon^2}{500} \}$ and N_i is the number of occurrences of $i \in [n]$ among the Poisson(m) samples drawn from D. Letting $Z = \sum_{i=1}^{K} Z_j$, we have that $\mathbb{E} Z_j = m \sum_{i \in I_j \cap \mathcal{A}_x} \frac{(D(i) - D^*(i))^2}{D^*(i)}$.

Acharya, Daskalakis, and Kamath show the following result on Z:

Proposition 3.3 ([ADK15, Lemmata 2 and 3]). The statistic Z above has the following guarantees.

- If $d_{\chi^2}(D || D^*) \leq \frac{\varepsilon^2}{500}$, then $\mathbb{E} Z \leq \frac{m^2\varepsilon^4}{500000}$, which implies $\text{Var} Z \leq \frac{m^2\varepsilon^4}{500000}$.
- If $d_{\text{TV}}(D, D^*) \geq \varepsilon$, then $\mathbb{E} Z \geq \frac{m^2\varepsilon^2}{5}$, which implies $\text{Var} Z \leq \frac{\mathbb{E} Z^2}{100}$.

Moreover, for any $j \in [K]$ such that $\mathbb{E} Z_j \geq \frac{m^2\varepsilon^2}{5}$, we have $\text{Var} Z_j \leq \frac{\mathbb{E} Z_j^2}{100}$ (as per the second item).

We will also leverage another characteristic of the tester of Theorem 3.2; namely, that it also works for subdistributions (i.e., considering only a portion of the domain, on which the two distributions do not necessarily sum to one nor to the same value), considering the natural restrictions of χ^2 and total variation to intervals (the latter as half the ℓ_1 norm, as defined above).\footnote{In tolerant identity testing, the goal is, provided the full description of a distribution D^* and samples from an unknown distribution D, to distinguish between $d_{\text{TV}}(D, D^*) \leq \varepsilon$ and $d_{\text{TV}}(D, D^*) \geq 2\varepsilon$. Valiant and Valiant [VV10] showed that even in the case of D^* being the uniform distribution, $\Omega(\frac{n}{\log n})$ samples were required for this task.}

Finally, we will make use of the fact below, which can be shown by a standard application of Chernoff bounds.

Proposition 3.4 ([ADK15, Claim 1]). There exists an algorithm APPROXPART that, given a parameter $b > 1$, takes $O(b \log b)$ samples from a distribution D and, with probability at least 9/10, outputs a partition of $[n]$ in $K \leq 3b + 2$ intervals I_1, \ldots, I_K such that the following holds:

(i) For each $i \in [n]$ such that $D(i) \geq 1/b$, there exists $\ell \in [K]$ such that $I_\ell = \{i\}$;
(ii) There are at most two intervals $\{I_1, I_2\}$ such that $D(I) < 1/(2b)$;
(iii) Every other interval is such that $D(I) \in [1/(2b), 2/b]$.

Moreover, the algorithm runs in time $O(b \log b)$.\footnote{Namely, for an interval I define $\ell_2(D_1 || D_2) = \sum_{i \in I} \frac{(D_1(i) - D_2(i))^2}{D_2(i)}$ and $\ell_{TV}(D_1, D_2) = \frac{1}{2} \sum_{i \in I} |D_1(i) - D_2(i)|$.}
3.2 Proof of Theorem 3.1

As described in Section 1.3, our algorithm relies on two main components: the first is an (almost) learning procedure for \(k \)-histograms which outputs an approximation \(\hat{D} \) of an unknown distribution \(D \), with the guarantee that if \(D \in \mathcal{H}_k \), then \(\hat{D} \) is close to \(D \) in \(\chi^2 \) distance except possibly on a small but unknown portion \(S \) of the domain. The second is a testing procedure, inspired by the work of [ADK15], which takes this \(\hat{D} \) as input and iteratively “sieves” the domain, in order to discard a set \(S' \) (the algorithm’s “guess” for \(S \)); and eventually checks if \(\hat{D} \) and \(D \) are indeed close in \(\chi^2 \) distance on the sieved domain \([n] \setminus S'\).

Algorithm 1

<table>
<thead>
<tr>
<th>Require: Parameters (k) and (\varepsilon \in (0, 1]); sample access to a distribution (D) over ([n])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Set (b \defeq \frac{20k \log k}{\varepsilon}), and (\varepsilon' \defeq \frac{13\varepsilon}{60}).</td>
</tr>
<tr>
<td>2: Learning</td>
</tr>
<tr>
<td>3: Run APPROXPART (from Proposition 3.4) with parameter (b); let (\mathcal{I}) be the partition of ([n]) into (K) intervals it outputs.</td>
</tr>
<tr>
<td>4: Run LEARNER (from Lemma 3.5) with parameters (K, \frac{\varepsilon}{60},) and (\mathcal{I}); let (\hat{D} \in \mathcal{H}_K) be its output.</td>
</tr>
<tr>
<td>5:</td>
</tr>
<tr>
<td>6: Sieving</td>
</tr>
<tr>
<td>7: Identify (O(k \log k)) intervals from (\mathcal{I}) to discard (with regard to (D, \hat{D}))), as detailed in Section 3.2.1.</td>
</tr>
<tr>
<td>Let (\mathcal{I}' \subseteq \mathcal{I}) be the set of remaining intervals, and (G = \bigcup_{I \in \mathcal{I}'} I).</td>
</tr>
<tr>
<td>8:</td>
</tr>
<tr>
<td>9: Checking</td>
</tr>
<tr>
<td>10: Check there exists (D^* \in \mathcal{H}k) such that (d{TV}^G(\hat{D}, D^*) \leq \frac{\varepsilon}{60}); otherwise, return reject. (\triangleright) Can be done in time (\text{poly}(k, 1/\varepsilon)) by dynamic programming, as in [CDGR15, Lemma 4.11]</td>
</tr>
<tr>
<td>11:</td>
</tr>
<tr>
<td>12: Testing</td>
</tr>
<tr>
<td>13: Run TESTER (from Theorem 3.2) on (D) with parameters (n, \varepsilon'), and (\hat{D}), restricted to the subdomain (G);</td>
</tr>
<tr>
<td>if the tester rejects, return reject.</td>
</tr>
<tr>
<td>14: return accept</td>
</tr>
</tbody>
</table>

A learning lemma. Let \(\mathcal{I} \) be a partition of \([n] \) into intervals. For a subset of intervals \(\mathcal{J} \subseteq \mathcal{I} \) define \(\hat{D}\mathcal{J} \) as follows. For every \(i \notin \bigcup_{J \in \mathcal{J}} J \), \(\hat{D}\mathcal{J}(i) = D(i) \) and otherwise \(\hat{D}\mathcal{J}(i) = D(I)/|I| \) where \(I \) is such that \(I \in \mathcal{I} \) and \(i \in I \).

Lemma 3.5. There exists an algorithm LEARNER that, on input \(n \), a partition of \([n] \) into \(k \) intervals \(\mathcal{I} = \{I_1, \ldots, I_k\} \) and \(\varepsilon \in (0, 1] \), takes \(O(k/\varepsilon^2) \) samples from an unknown distribution \(D \in \Delta([n]) \) and outputs (the succinct description of) a distribution \(\hat{D} \in \mathcal{H}_k \) that satisfies the following. For every \(k \leq \ell \), if \(D \in \mathcal{H}_k \) and \(\mathcal{J} = \{J_1, \ldots, J_{k-1}\} \subseteq \mathcal{I} \) are the breakpoints intervals of \(D \), then \(d_{\chi^2} \left(\hat{D}\mathcal{J} \mid \hat{D} \right) \leq \varepsilon^2 \) with probability at least \(9/10 \). Moreover, the algorithm runs in time \(O(k/\varepsilon^2) \).

Proof. We follow the analysis of the Laplace estimator from [KOPS15], first defining a modified estimator (from \(m \) independent samples from a distribution \(D \) on \([n] \)) by

\[
\hat{D}(j) \overset{\text{def}}{=} \frac{m_{I_i} + 1}{m + \ell} \cdot \frac{1}{|I_i|}, \quad i \in [\ell], j \in I_i
\]
where \(m_i \defeq \sum_{j \in I_i} m_j \) and \(m_i \defeq \left| \{ j \in [m] : s_j = i \} \right| \).

Suppose \(D \) is a \(k \)-histogram. The expected value of \(d_{\chi^2} \left(\bar{D}^J \mid \hat{D} \right) \), over the draws of the \(m \) samples, can be written

\[
\mathbb{E} \left[d_{\chi^2} \left(\bar{D}^J \mid \hat{D} \right) \right] = -1 + \sum_{I \in \mathcal{I}} |I| \cdot \mathbb{E} \left[\frac{(D(I))^{2}}{m_I + 1} \cdot \frac{1}{|I|} \right] = -1 + \sum_{I \in \mathcal{I}} \mathbb{E} \left[\frac{D(I)^2(m + \ell)}{m_I + 1} \right]
\]

Now, for a fixed \(I \in \mathcal{I} \), we have

\[
\mathbb{E} \left[\frac{1}{m_I + 1} \right] = \sum_{s=0}^{m} \frac{1}{s + 1} \binom{m}{s} D(I)^s (1 - D(I))^{m-s} \leq \frac{1}{D(I)(m + 1)}.
\]

Plugging it back, this implies

\[
\mathbb{E} \left[d_{\chi^2} \left(\bar{D}^J \mid \hat{D} \right) \right] \leq -1 + \sum_{I \in \mathcal{I}} \frac{D(I)(m + \ell)}{m + 1} \leq \frac{\ell}{m}
\]

Letting \(m \geq c \cdot \frac{\ell}{\varepsilon^2} \) (where \(c > 0 \) is an absolute constant), this together with Markov’s inequality yields the result.

Outline and correctness. The idea is to first run the algorithm APPROXPART of Proposition 3.4 on \(D \) with parameter \(b \) set to \((20k \log k)/\varepsilon \), getting \(K = O(k \log k)/\varepsilon \) intervals \(I_1, \ldots, I_K \) (meeting the stated guarantee with probability at least \(9/10 \)), after taking \(O(K \log K) \) samples. We then run the \(\chi^2 \) learner of Lemma 3.5 with parameter \(\frac{\varepsilon}{60} \) (which requires \(O \left(\frac{K}{\varepsilon^2} \right) \) samples from \(D \)) to output a histogram \(\hat{D} \) on this partition.

- In the completeness case, \(D \in \mathcal{H}_k \): meaning that there exists a fixed and fully determined, albeit unknown, subset \(B \) of at most \(k \) intervals among the \(K \) which contain the “breakpoints” for the piecewise-constant \(D \) (Note that the only possible intervals that can be “bad” must be non-singletons). Conditioning on the learning algorithm to meet its guarantees on \(G \defeq \bigcup_{j \in [K] \setminus B} I_j \) (which happens with probability at least \(9/10 \)), we obtain that \(d_{\chi^2}^G \left(D \mid \hat{D} \right) \leq \frac{\varepsilon^2}{3000} \).

- In the soundness case, \(d_{\text{TV}}(D, \mathcal{H}_k) \geq \varepsilon \). Since \(D(I) \leq \frac{2}{\ell} \) for any non-singleton interval, this implies that no matter which set \(B \) of at most \(k \log k \) intervals we discard, it amounts for no more than \(\frac{\varepsilon}{40} \) total probability weight under \(D \), and we can safely ignore it in the rest of the procedure. Indeed, for any such \(B \) and the corresponding remaining domain \(G = \bigcup_{j \in [K] \setminus B} I_j \), \(d_{\text{TV}}^G(D, D') \geq \frac{9\varepsilon}{20} \) for any \(D' \in \mathcal{H}_k \).

The goal is therefore to remove \(k \log k \) (non-singleton) intervals, out of the \(K \) intervals, which together contribute the maximum amount to \(\tilde{Z} \); that is, to remove \(Z_{i_1}, \ldots, Z_{i_k} \) such that \(\sum_{\ell=1}^{k} \mathbb{E} Z_{i_\ell} \) is maximized (call this stage (\(\mathcal{T} \))). Indeed, assuming this has been done (which corresponds to identifying a good restricted domain \(G \)), the two items above together ensure correctness of Algorithm 1, conditioning on all subroutines meeting their specification (which by a union bound happens with probability at least \(2/3 \)). In more detail, assuming the sieving stage to have gone through, the algorithm will check that (a) \(\hat{D} \) is \(\frac{\varepsilon}{60} \)-close in “total variation restricted to \(G \)” to some \(k \)-histogram \(D' \) (as it should if \(D \in \mathcal{H}_k \)); and then (b) run the tester of Theorem 3.2 on \(D, \hat{D} \) (on \(G \)) with parameter \(\varepsilon' \defeq \frac{13\varepsilon}{30} \).
Completeness. if $D \in \mathcal{H}_k$ then the learning algorithm of Step 4 outputs \hat{D} such that $d_{\chi^2}^2(D \parallel \hat{D}) \leq \frac{e^2}{3600}$, so that TESTER will accept in Step 13; and as this also implies $d_{TV}^{G}(D, \hat{D}) \leq \frac{\varepsilon}{100}$, Step 10 accepts as well.

Soundness. Conversely, suppose $d_{TV}(D, \mathcal{H}_k) \geq \varepsilon$ and the algorithm accepts in Step 10 there is a $D^* \in \mathcal{H}_k$ such that $d_{TV}^G(D, D^*) \leq \frac{\varepsilon}{100}$. But by the above discussion we must have $d_{TV}^G(D, D^*) \geq \frac{9\varepsilon}{20}$, and from the triangle inequality $d_{TV}^G(D, \hat{D}) \geq d_{TV}^G(D, D^*) - d_{TV}^G(\hat{D}, D^*) \geq \frac{13\varepsilon}{30}$; the algorithm will output reject in Step 13.

The correctness having been established, the main question is therefore how to perform the “sieving stage” (\dagger), which we detail next.

3.2.1 Sieving: removing up to $k \log k$ possible bad intervals.

In what follows, we will compute the statistics Z_j from Proposition 3.3 several times, computed independently each time. Furthermore, by standard arguments (repeating the test, and taking the median value), we can assume the probability of success/correctness of this test to be $1 - \delta$, at the price of an extra $\log \frac{1}{\delta}$ factor in the sample complexity. (In particular, we shall take δ to depend on k, in order to apply a union bound over many tests.)

For simplicity, we deal with the following scenario (where the constants have been changed): among the K indices, there is a fixed but unknown subset $\mathcal{B} = \{i_1, \ldots, i_k\}$ of k indices such that

1. $\sum_{j \in \mathcal{B}} \mathbb{E}Z_j \leq m\alpha^2$;
2. $\sum_{j \in \mathcal{B}} \mathbb{E}Z_j > 100m\alpha^2$

and we want to remove a subset \mathcal{B}' of $2k$ indices such that $\sum_{j \notin \mathcal{B}'} \mathbb{E}Z_j \leq 100m\alpha^2$. (This will deal with the completeness case, and setting $\alpha = \frac{\varepsilon}{C}$ for some big enough constant C in the learning stage will give us what we want.)

Discarding the heavy ones: Let $\mathcal{B}^+ \subseteq \mathcal{B}$ be the indices such that $\mathbb{E}Z_j \geq 100m\alpha^2$. By assumption, $|\mathcal{B}^+| \leq k$, and this is a fixed (albeit unknown) set of indices fully determined by D. In particular, if we compute the statistics as in Proposition 3.3 with failure probability $\delta = \frac{1}{10(k+1)}$, by a union bound we can condition on (i) each $Z_j, j \in \mathcal{B}^+$ behaving as expected: $Z_j > 100m\alpha^2$, and (ii) the fixed set $[K] \setminus \mathcal{B}$ also behaving as expected, so that $\sum_{j \notin \mathcal{B}'} Z_j \leq 10m\alpha^2$. By removing all j’s such that $Z_j > 100m\alpha^2$, and outputting reject if there are more than k, we thus have filtered all intervals from \mathcal{B}^+ (with success probability at least $9/10$), and no other. Let ℓ' be the number of elements removed, and $k' = k - \ell$ the number of “possible remaining bad elements.”

Iteratively removing the rest: we therefore can now assume we have at most k' indices to remove (call this set \mathcal{B}^-), such that for each $\mathbb{E}Z_j < 100m\alpha^2$. In particular, $\sum_{j \in \mathcal{B}^-} \mathbb{E}Z_j < 100m\alpha^2$. We repeat the following at most $\log k$ times, until either the test accepts at some step, or we performed more than $O(\log k)$ such steps (in which cases we proceed to the last stage, the sieving part being over); or we removed more than k' indices in total (in the latter case, we output reject and stop)

- compute the statistics Z_j for all remaining indices, and check the value of their sum Z.
- if $Z < 10m\alpha^2$, accept.
- otherwise, sort the Z_j’s by decreasing order, and remove the first ℓ indices, where $\ell \leq k'$ is the smallest integer such that $\sum_{j \geq \ell} Z_j \leq 2m\alpha^2$.

8
Define $B_{\text{rem}} \subseteq B^-$ as the set of bad indices remaining at the current step. By a conditioning on the two subsets of indices B_{rem} and $[K] \setminus B$, we have that $\sum_{j \notin B} Z_j \leq 2m\alpha^2$, and if $\sum_{j \in B_{\text{rem}}} \mathbb{E}Z_j > 100m\alpha^2$ then $\sum_{j \in B_{\text{rem}}} Z_j > \frac{1}{2} \sum_{j \in B_{\text{rem}}} \mathbb{E}Z_j$.

By assumption, we remove at least $\frac{1}{2} \sum_{j \in B_{\text{rem}}} \mathbb{E}Z_j - 2m\alpha^2 > \frac{1}{3} \sum_{j \in B_{\text{rem}}} \mathbb{E}Z_j$ of the “bad weight” as long as $\sum_{j \in B_{\text{rem}}} \mathbb{E}Z_j > 100m\alpha^2$ and we know that at the beginning $\sum_{j \in B^-} \mathbb{E}Z_j < 100m\alpha^2$. This implies that after $O(\log k)$ such steps, we have that the sum of $\mathbb{E}Z_j$ for the remaining Z_j’s is at most $101m\alpha^2$ (from what remains in the “bad” intervals, and the contribution of the “good” ones). Moreover, in total we removed at most $O(\log k) \cdot k' = O(k \log k)$ intervals, and ran $O(\log k)$ “tests” with $\delta = \Theta\left(\frac{1}{\log k}\right)$ (which costs $O\left(\frac{\sqrt{n}}{\alpha^2} \log \log k\right)$ samples).

Overall, over these two stages we end up paying $O\left(\frac{\sqrt{n}}{\alpha^2} \log k\right) + O\left(\frac{\sqrt{n}}{\alpha^2} \log \log k\right) = O\left(\frac{\sqrt{n}}{\alpha^2} \log k\right)$ samples, and perform the “sieving” (†). This concludes the proof of Theorem 3.1: the total sample complexity is

$$O\left(\frac{\sqrt{n}}{\varepsilon^2} \log k\right) + O\left(\frac{k}{\epsilon^3} \log k\right) + O\left(\frac{k \log k}{\varepsilon} \log k\right) = O\left(\frac{\sqrt{n}}{\varepsilon^2} \log k\right) + O\left(\frac{k}{\varepsilon} \log k\right) + O\left(\frac{k}{\varepsilon} \log^2 k\right)$$

as stated. The running time of the overall algorithm is easily seen to be as claimed, as each of the learning and testing subroutines runs in time linear in the number of samples.

4 An information-theoretic lower bound

In this section, we prove Theorem 1.2, that is both an $\Omega\left(\sqrt{n}/\varepsilon^2\right)$ and an $\Omega\left(k/(\varepsilon \log k)\right)$ lower bound on testing k-histograms (the latter for $k = \omega(1)$):

Proposition 4.1. There exists an absolute constant $\varepsilon_0 > 0$ such that the following holds. For any $1 \leq k < \frac{n}{\varepsilon_0}$ and $\varepsilon \in (0, \varepsilon_0]$, any (non-necessarily efficient) testing algorithm for \mathcal{H}_k must take $\Omega\left(\frac{\sqrt{n}}{\varepsilon^2}\right)$ samples.

Proposition 4.2. There exists an absolute constant $\varepsilon_1 > 0$ such that the following holds. For any large enough $k \leq \frac{n}{120}$ and $\varepsilon \in (0, \varepsilon_1]$, any (non-necessarily efficient) testing algorithm for \mathcal{H}_k must take $\Omega\left(\frac{k}{\varepsilon \log k}\right)$ samples.

As mentioned earlier, the first lower bound builds on a proof of Paninski [Pan08] on testing uniformity; while our argument for the second will rely on a result of Valiant and Valiant [VV10], namely a lower bound on estimating a symmetric property: support size. While \mathcal{H}_k is clearly not a symmetric class (i.e., it is not invariant by permutation of the support), we show how one can still leverage this lower bound for our purpose.

4.1 Proof of Proposition 4.1

The result follows from adapting the proof of [Pan08], intended for the case of uniformity testing, or equivalently \mathcal{H}_1. In this argument, Paninski defines a family of distributions \mathcal{Q}, parameterized as follows. A distribution $D \in \mathcal{Q}_{\varepsilon}$ is defined by $\frac{n}{2}$ bits $z_1, \ldots, z_{n/2} \in \{-1, 1\}$, and

$$D(2i) = \frac{1 + (-1)^i \cdot c\varepsilon}{n}, \quad D(2i - 1) = \frac{1 - (-1)^i \cdot c\varepsilon}{n}$$
for \(i \in [n/2]\), where \(c > 0\) is a suitably chosen constant. The result then follows from observing that any distribution in \(Q_\varepsilon\) is \(\varepsilon\)-far from uniform, and yet that \(\Omega(\sqrt{n}/\varepsilon^2)\) samples are necessary to distinguish a uniformly chosen \(D \sim Q_\varepsilon\) from the uniform distribution with probability at least \(2/3\).

To apply this argument to our case, it is sufficient to observe that for \(k < \frac{n}{3}\) (and the right choice of the constant \(c\)), a random \(D \sim Q_\varepsilon\) will be \(\varepsilon\)-far from \(\mathcal{H}_k\) as well. To see why, fix \(D \in Q_\varepsilon\), and let \(D^* \in \mathcal{H}_k\) be a \(k\)-histogram minimizing \(d_{TV}(D, D^*)\). Define \(S \subseteq [n/2]\) as the set of indices such that \(D^*(2i-1) = D^*(2i)\); note that by the triangle inequality, for all \(i \in S\) we have \(|D(2i-1) - D^*(2i-1)| + |D(2i) - D^*(2i)| \geq |D(2i) - D(2i-1)| = \frac{2c\varepsilon}{n}\). Since one must have \(|S| \geq \frac{n}{2} - k + 1 > \frac{n}{8}\) as \(D^* \in \mathcal{H}_k\), this implies that

\[
2d_{TV}(D, D^*) = \sum_{i=1}^{n/2} (|D(2i-1) - D^*(2i-1)| + |D(2i) - D^*(2i)|) \\
\geq \sum_{i \in S} (|D(2i-1) - D^*(2i-1)| + |D(2i) - D^*(2i)|) \\
\geq \frac{n}{6} \cdot \frac{2c\varepsilon}{n} = \frac{c\varepsilon}{3}
\]

so that taking \(c \geq 6\) (and \(\varepsilon_0 \leq 1/c\)) yields the result. \(\square\)

Remark 4.3. We observe that a simpler proof of this lower bound, albeit restricted to the range \(k = o(\sqrt{n})\), can be obtained by applying the framework of [CDGR15]. Specifically, one can invoke [CDGR15, Theorem 6.1], using as a blackbox the uniformity testing lower bound of Paninski along with the fact that \(k\)-histograms can be learned agnostically from \(O(k/\varepsilon^2)\) samples ([ADLS15]).

4.2 Proof of Proposition 4.2

Outline. We start by considering a scalar symmetric property, support size. The corresponding problem \textsc{SuppSize}_m is as follows: given sample access to an unknown distribution \(D \in \Delta([m])\) with the promise that \(D(i) \in \{0\} \cup \left[\frac{1}{m}, 1\right]\) for all \(i \in [m]\), one must distinguish between (i) \(\text{supp}(D) \leq \frac{2m}{3} + 1\) and (ii) \(\text{supp}(D) \geq \frac{7m}{8}\). This problem is known to require \(c \cdot \frac{m}{\log m}\) samples, where \(c > 0\) is an absolute constant, for \(m\) sufficiently large ([VV10, Theorem 1]).

We then argue that any tester for the property of being a \(k\)-histogram can be used to solve this problem, with only a constant factor blowup in the sample complexity. Indeed, if \textsc{Tester} is a \textit{bona fide} \(q(n, k, \varepsilon)\)-sample tester for testing \(k\)-histograms (with probability of success \(2/3\)), then it can be converted to a symmetric tester \textsc{Tester}' for the weak support size problem as follows: first, pick uniformly at random a permutation \(\sigma \in S_n\), and given samples of a distribution \(D\), feed \textsc{Tester} with \(q\) samples from a distribution \(D_\sigma = D \circ \sigma^{-1}\) (“re-building” the identity of the samples according to \(\sigma\)). The key point is to argue that with high constant probability over the choice of \(\sigma\):

- If \(D\) has support size at most \(\frac{m}{3}\), then \(D_\sigma\) is a \(k\)-histogram for \(k \overset{\text{def}}{=} \frac{2m}{3} + 1\) (with probability one);
- If \(D\) has support size in \(\left[\frac{7m}{8}, m\right]\), then \(D_\sigma\) is far from any \(k\)-histogram, as with high constant probability its support is “sprinkled” over many isolated points – say at least \(\frac{3m}{4}\). Whenever this happens, \(D_\sigma\) needs at least \(\frac{6m}{4} - 1\) intervals to be a histogram, and incurs constant distance \(\varepsilon_1\) (where \(\varepsilon_1 = \left(\frac{3}{4}m - k + 1\right) \cdot \frac{1}{2m} = \frac{1}{24}\)) from any \(k\)-histogram, from a similar argument as in Proposition 4.1 and the lower bound \(1/m\) on any non-zero probability.

6That is, \(1/m\) is a lower bound on the probability weight of any element in the support.
Independently repeating a constant number of times this procedure (that is, drawing a new permutation \(\sigma \), and applying Tester on \(D_\sigma \) using fresh samples from \(D \)) and taking the majority vote then allows the test to succeed with probability at least \(\frac{5}{9} \). But this in turn implies a lower bound on \(q \), as otherwise it would contradict the lower bound on the number of samples required to tolerantly test the symmetric property \(\text{SUPPSIZE}_m \).

The last piece we need in our reduction is the guarantee that, when permuting the domain at random, (a) a distribution with support size at most \(\ell \) will be a \((2\ell + 1)\) histogram (this point is obvious); but also (b) with high probability over the permutation, a distribution with support size \(\ell \ll n \) will keep its support “sprinkled” over the domain, and therefore need much more than \((2\ell + 1)\) pieces to be represented as a histogram. The following lemma makes this intuition precise, showing that for reasonable values of \(\ell \) a random permutation will keep the points of the support isolated with constant probability:

Lemma 4.4. Let \(\ell \leq \frac{n}{70} \). For any set \(S \subseteq [n] \), define \(s = \text{cover}(S) \) as the minimum number of disjoint intervals \(I_1, \ldots, I_s \subseteq S \) necessary to cover \(S \). (That is, \(\text{cover}(S) \) is the number of disjoint “chunks” \(S \) induces in \([n]\)). Then, fixing \(S \subseteq [n] \) of size \(\ell \), we have

\[
\Pr_{\sigma \sim S_n} \left[\text{cover}(\sigma(S)) \leq \frac{6\ell}{7} \right] \leq \frac{7\ell}{n} \leq \frac{1}{10}
\]

where the probability is taken over a uniform choice of permutation \(\sigma \in S_n \).

Proof. Let \(X_1, \ldots, X_{n-1} \) be the \(n-1 \) (identically distributed, but non-independent) indicator random variables defined as follows. \(X_i \) is 1 if \(\sigma^{-1}(i) \leq \ell \), but \(\sigma^{-1}(i + 1) > \ell \) (that is, one of the \(\ell \) “good” points ends up on \(i \), but one of the \(n - \ell \) “bad points” ends up on \(i + 1 \)).

Let \(X = \sum_{i=1}^{n-1} X_i \) be their sum: note that \(X \) is a lower bound on the number of clusters, up to an additive one (\(X \) counts the number of “right borders,” and may only be off if the last cluster-interval ends at \(n \)). Moreover,

\[
\mathbb{E}X_i = \ell \cdot \frac{n - \ell}{n - 1}
\]

so that \(\mathbb{E}X = \ell \cdot \frac{n - \ell}{n} = \ell \left(1 - \frac{\ell}{n}\right) \) by linearity. Define \(Y = \ell - X \geq 0 \) (with \(\mathbb{E}Y = \frac{\ell^2}{n} \)); by Markov’s inequality

\[
\Pr \left[X \leq \frac{6\ell}{7} \right] = \Pr \left[Y \geq \frac{\ell}{7} \right] \leq \frac{\mathbb{E}Y}{\frac{\ell}{7}} = \frac{\ell n}{7} = \frac{7\ell}{n}.
\]

Now, this in particular imply that for \(m \leq \frac{n}{70} \), a distribution \(D \) with support size in \(\left[\frac{7m}{n}, m \right] \) will, after a random permutation \(\sigma \) of the larger domain \([n]\), have at least \(\frac{6}{7} \cdot \frac{7m}{n} = \frac{3m}{4} \) isolated “chunks.” But that also implies that \(D_{\sigma} \notin \mathcal{H}_{\frac{3m}{4}} \) (i.e., needs a partition of at least \(\frac{3m}{4} - 1 \) intervals to be a histogram).

Details. We can now make precise the reduction outlined above: assume we have a tester Tester for the property of being a histogram, which takes as input \(n, k, \varepsilon \) as well as \(q(n, k, \varepsilon) \) independent samples from an unknown distribution \(D \); and distinguishes with success probability at least \(2/3 \) between (a) \(D \in \mathcal{H}_k \) and (b) \(\ell_1(D, \mathcal{H}_k) > \varepsilon_1 \).

Given sufficiently large integer \(n \), and \(k \) satisfying \(k \leq \frac{n}{120} \), we define \(m \overset{\text{def}}{=} \left\lceil \frac{3}{2} (k - 1) \right\rceil \leq \frac{n}{70} \). Now, we can embed any instance \(D' \) of \(\text{SUPPSIZE}_m \) (i.e., a distribution \(D' \in \Delta([m]) \) meeting the promise of the problem) by seeing it as a distribution on \([n]\), and use Tester to solve \(\text{SUPPSIZE}_m \) as follows:
1. Draw uniformly a random a permutation $\sigma \in S_n$;
2. Run Tester on $D'_\sigma \in \Delta([n])$ with parameters n, k, and $\varepsilon_1 \equiv \frac{1}{24}$;
3. accept if and only if Tester accepted.

By the foregoing discussion and Lemma 4.4, the above test succeeds in solving $\text{SUPP}_{\text{SIZE}}$ with probability at least $1 - \frac{1}{10} - \frac{1}{3} = \frac{17}{30}$; repeating constantly many times independently and taking a majority vote brings this success probability to $2/3$. The overall sample complexity being $O(q(n,k))$, the lower bound of [VV10, Theorem 1] implies that, for some absolute constant $c > 0$ and k large enough, $q(n,k,\varepsilon_1) \geq c \cdot \frac{k}{\log k}$, as claimed.

Finally, using a standard “trick” (embedding the hard instance by adding an extra element with weight $1 - \frac{\varepsilon}{\varepsilon_1}$), this yields an $\Omega\left(\frac{1}{\varepsilon} \frac{k}{\log k}\right)$ lower bound on testing H_k, for any $\varepsilon \leq \varepsilon_1$.

Acknowledgements. We would like to thank Reut Levi for many insightful discussions and comments.

References

