February, 2016 - May 14, 2019 (Latest version) A short note on Poisson tail bounds

The goal of this short note is to provide a proof and references for the “folklore fact” that Poisson random
variables enjoy good concentration bounds — namely, subexponential. Thanks to Gautam Kamath for bringing
the topic to my attention, and making me realize I originally had neither of the two.

May 2019: Further thanks to Vitaly Feldman for pointing out a typo in the statement of Theorem 1.

Let h: [-1,00) — R be the function defined by h(u) def g Utu) In(l4u) —u

u2
Theorem 1. Let X ~ Poisson(\), for some parameter A > 0. Then, for any x > 0, we have
2

Pr(X > A 2] < e &(5) (1)

and, for any 0 < x < A,
Pr[X <A—x] <e 5h(-%), (2)

:C2
In particular, this implies that Pr[ X > A+ 2], Pr[X <A —z] <e 20Fa for x > 0; from which

132
Pr[|X — A\ > x| < 2e” 20F9) x> 0. (3)
Proof. Equations (1) and (2) are proven in Fact 5 and Fact 6, respectively. We show how they imply (3).
By Fact 3, it is the case that, for every z > 0, h(%) > H_%, or equivalently %h(%) > 2(;7—7-1) Thus, from (1)
A
2 2
we get Pr[X > A+ 2] < exp(—4h(%)) < exp(—m).
% > Q(Awij_x), which with (2) and Fact 2 implies Pr[X <A —2z] <
7)2 X .’L'2 ./1)2 1'2
exp(—gyh(=%)) < exp(=551(0)) = exp(—55) < exp(—557)- 0

Thus, we are left with proving Fact 5 and Fact 6, which we do next.

Similarly, for any 0 < x < A we have

1 Establishing (1) and (2)

Fact 2. We have h(—1) = 2, h(0) = 1, and h decreasing on [—1,00) with lim, o h(u) = 0. In particular,
h>0.

Proof. The first two properties are immediate by continuity, as, for u ¢ {—1,0},

. (1—|—u)1n(1+u)—u O—(—l)_
h(u) =2 3 —2 SR 2
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The third property follows from differentiating the function on (—1,0) U (0, 00) and showing its derivative is
negative; or, more cleverly, following [Poll5, Exercise 14, (ii)]. The fourth (which together with the third

implies the last) directly comes from observing that h(u) ~y— 0 21;1". O

Fact 3. For any u > 0, we have h(u) > p%u

Proof. Consider the function g: [0,00) — R defined by g(u) = (1 + w)h(u). We then have g(0) = 1, and
g(t) ~uoo 2Inu — o Moreover, by differentiation(s) (and tedious computations), one can show that g
u o0

is increasing on [0, 00), which implies the claim. O


http://www.gautamkamath.com/

We follow the outline of [Poll5, Exercise 15]. For a random variable X, we denote by M its moment-
generating function, i.e. Mx: 0 € R— E[eQX ] (provided it is well-defined). In what follows, X is a random
variable following a Poisson(\) distribution.

Fact 4. We have Mx () = <"~ for every 0 € R.

Proof. This is a standard fact, we give the derivation for completeness. For any 6 € R,

0X A o on A" A S (69/\)n A e Ae?—1
Mx(0) =E[e"*] =€~ Ze"ﬁze_ Z - =e et A =MD,
n=0 : n=0 :

Fact 5. Foranyxz >0, Pr[X > A+z] < e~ (%),

Proof. Fix x > 0. For any 0 € R,
Pr[ X >\+z]|= Pr[eex > ee()‘ﬂ)} = Pr[ee(xf)‘ﬂ”) > 1} < E[ee(fof‘”)}

recalling that if Y is a discrete random variable taking values in N, Pr[Y > 0] = Pr[Y > 1] =57 Pr[Y =n] <

n=1

>ooo  nPr[Y =n] = E[Y]. Rearranging the terms and taking the infimum over all # > 0, we have

Pr[ X >A+z] < gn%E[eex] e 0O+2) — ein% M’ 1) =0 (A+a) (Fact 4)
> >
— inf eMe' D=0 +x) _ ginfeso(A(e’ ~1)—0(A+a))
6>0

It is a simple matter of calculus to find that infg~o(A(e? — 1) — (X + z)) is attained for 6* ef In(1+ %) >0,
from which

22

Pr[X > A+ 2] < 7 D0 OF) — N+ 05 -5) — o~ rh(

)

>g

as claimed. O
Fact 6. Forany 0 <ax <\, Pr[X <A —z] < e~ ixh(=%) <e X,
Proof. Fix 0 < z < A. As before, for any 0 € R,

Pr[X <A—z]= Pr[eex < eG(A—x)j| _ Pr[ee(,\—z—X) > 1} < E[e—ex] IO—2)
Rearranging the terms and taking the infimum over all § > 0, we have

Pr[X < XA —z] < inf E[e™?¥] ?O=2) = jnf eMe 1) fA-2) (Fact 4)
6>0 >0

_ einf9>g()\(e’6—1)+9(k—az)).

It is again straightforward to check, e.g. by differentiation, that infg~o(A(e™% — 1) + O(\ — z)) is attained for

g 1 In(1 — §) > 0, from which

>s

Pr(X <A—z]< AT =1)H0" (A=) _ j—r—(A—2)In(1-%) _ ,~M(1-$)In(1-$)+%) _ efgh(f )

as claimed. The last step is to observe that, by Fact 2, e~ sxh(=%) < e 50 = 5, O



2 An alternative proof of (1)

Recall that if (Y(”))nzl is a sequence of independent random variables such that Y™ follows a Bin(n, %)

distribution, then (Y (), >, converges in law to X, a random variable with Poisson()) distribution.! In

particular, since convergence in law corresponds to pointwise convergence of distribution functions, this
implies that, for any t € R,

Pr[Y(”)Zt} —— Pr[X >t]. (4)

For any fixed n > 1, we can by definition write Y (") as Y (") = Sory Yk(n), where Yl(n), ey Yn(n) are i.i.d.

random variables with Bern(2) distribution. Note that E[Y(™] = X and Var[Y(™] = A\(1 — 2) < A, As

E[Y;")] = % and |Yk(n)| < 1forall 1 <k <n, we can apply Bennett’s inequality ([BLM13, Chapter 2],[Poll5,
Chapter 2.5]), to obtain, for any ¢ > 0,

P

Pr[Y(”) > )\—l—x} = Pr[Y(") > E[YW} —&—:c} < e 5h(3)

22 xz
Taking the limit as n goes to co, we obtain by (4) that Pr[X > A+ z] < eiﬁh(X), re-establishing (1).

Remark 7. We note that a qualitatively similar statement (yet quantitatively weaker) can be obtained by
observing that Poisson distributions are in particular (discrete) log-concave, and that any log-concave (discrete
or continuous) has subexponential tail [An95].

Remark 8. As another way to establish the result, we refer the reader to [Goll7, Proposition 11.15],
where bounds on individual summands of the Poisson tails are obtained. From there, one can attempt to
derive Theorem 1, specifically (3).
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OThis approach is inspired by [Poll5, Exercise 16]).
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