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In this (short) note, we focus on two techniques used to prove lower bounds for distribution
learning and testing, respectively Assouad’s lemma and Le Cam’s method. (We do not cover here
Fano’s lemma, another and somewhat more general result than Assouad’s – the interested reader is
referred to [Yu97].)

Hereafter, we let (Ω,B) be a measurable space, and ∆(Ω) be the set of all probability distributions
on it. Let dTV(·, ·) denote the total variation distance (the theorem would actually apply to any
metric d on ∆(Ω)), and dH(·, ·) be the Hellinger distance, defined as
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(the last two expressions holding when Ω is countable).

1 Learning Lower Bounds: Assouad’s Lemma
Definition 1.1 (Minimax Risk). Let C ⊆ ∆(Ω) be a family of probability distributions, and m ≥ 1.
The minimax risk for C with m samples (with relation to the total variation distance) is defined as
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where Am is the set of (deterministic) learning algorithms A which take m samples and output a
hypothesis distribution D̂A.

In other terms, Rm(C) is the minimum expected error of any m-sample learning algorithm A when
run on the worst possible target distribution (from C) for it. It is immediate from the definition
that for any H ⊆ C, one has Rm(C) ≥ Rm(H).

To prove lower bounds on learning a family C, a very common method is to come up with
a (sub)family of distributions in which, as long as a learning algorithm does not take enough
samples, there always exist two (far) distributions which still could have yielded indistinguishable
“transcripts”. In other terms, after running any learning algorithm A on m samples, an adversary
can still exhibit two very different distributions (depending on A)1 that ought to be distinguished,
yet could not possibly have been from only m samples. This is formalized by the following theorem,
due to Assouad:

Theorem 1.2 (Assouad’s Lemma [Ass83]). Let C ⊆ ∆(Ω) be a family of probability distributions.
Suppose there exists a family of H ⊆ C of 2r distributions and constants α, β > 0 such that, writing
H = {Dz}z∈{0,1}r ,

1Note that this differs from the standard methodology for proving lower bounds for property testing, where two
families of distributions (yes and no-instances) are defined beforehand, and a couple of distributions is “committed to”
before the algorithm gets to make its move.
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(i) for all x, y ∈ {0, 1}r, the distance between Dx and Dy is at least proportional to the Hamming
distance:

dTV(Dx, Dy) ≥ α‖x− y‖1 (2)

(ii) for all x, y ∈ {0, 1}r with ‖x− y‖1 = 1, the squared Hellinger distance of Dx, Dy is small:

dH(Dx, Dy)2 ≤ β (3)

(or, equivalently, − ln(1− h2) ≤ ln 1
1−β )

Then, for all m ≥ 1,
Rm(H) ≥ 1

4αr(1− β)2m = Ω
(
αre−O(βm)

)
. (4)

In particular, to achieve error at most ε, any learning algorithm for C must have sample complexity
Ω
(

1
β log αr

ε

)
.

Remark 1.3 (High-level idea). Intuitively, every distribution in H is defined by making r distinct
“choices”2. With this interpretation, item (i) means that two distributions differing in many choices
should be far (so that a learning algorithm has to “figure out” most of the choices in order to achieve
a small error), while item (ii) requires that two distributions defined by almost the same choices be
very close (so that a learning algorithm cannot distinguish them too easily).
Remark 1.4 (Technical detail). The quantity 1− dH(p, q)2 is known as the Hellinger affinity; as the
Hellinger distance satisfies

1−
√

1− dTV(p, q)2 ≤ dH(p, q)2 ≤ dTV(p, q) (5)

it is sufficient for (3) to show that the (sometimes easier) condition holds:

dTV(Dx, Dy) ≤ β.

Note that, with (2) this imposes that α ≤ β; while working with the Hellinger distance only requires
α2 ≤ 2β − β2 (from (5) and (2)).

An example of application. To prove a lower bound of Ω
(

logn
ε3

)
for learning monotone distri-

butions over [n], Birgé [Bir87] invokes Assouad’s Lemma, defining a family H achieving parameters
r = Θ

(
logn
ε

)
, α = Θ(ε/r) and β = Θ

(
ε2/r

)
. This example shows a very neat feature of Assouad’s

Lemma – it enables us to get a dependence on ε in the lower bound.

2 Testing Lower Bounds: Le Cam’s Method
We now turn to another lower bound technique, better suited for proving lower bounds on property
testing or parameter estimation – i.e., where the quantity of interest is a functional of the unknown
distribution, instead of the distribution itself. We begin with some terminology that will be useful
in stating the main result of this section.

2E.g., by choosing, for each of r intervals partitioning the support, whether the distribution (a) is uniform on the
interval or (b) puts all its weight on the first half of the interval.
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Definition 2.1. Let C ⊆ ∆(Ω) be a family of probability distributions over Ω, and m ≥ 1.
The convex hull of m-product distributions from C, denoted convm(C), it the set of probability
distributions over Ωq defined as

convm(C) def=
{ ∑̀
k=1

αkD
⊗m
k : ` ≥ 1, D1, . . . , D` ∈ C, α1, . . . , α` ≥ 0,

∑̀
k=1

αk = 1
}
.

That is, convm(C) is the set of mixtures of m-wise product distributions from C. (Note that
distributions in convm(C) are not in general product distributions themselves.)

Definition 2.2 (Estimator). Let C ⊆ ∆(Ω) be a family of probability distributions over Ω, and
m ≥ 1. For any real-valued functional ϕ : C → [0, 1] (“scalar property”), we denote by Em the set of
estimators for ϕ: that is, the set of (deterministic) algorithms E taking m ≥ 1 independent samples
from a distribution D ∈ C and outputting an estimate ϕ̂E of ϕ(D).

We state the following lemma for estimators taking value in [0, 1] endowed with the distance |·|,
but it holds for more general metric spaces, and in particular for ([0, 1], ‖·‖2).

Theorem 2.3 (Le Cam’s Method [LC73, LC86, Yu97]). Let C ⊆ ∆(Ω) be a family of probability
distributions over Ω, and let ϕ : C → [0, 1] be a scalar property. Suppose there exists γ ∈ [0, 1],
subsets A1, A2 ⊆ [0, 1], and families D1,D2 ⊆ C such that the following holds.
(i) A1 and A2 are γ-separated: |α1 − α2| ≥ γ for all α1 ∈ A1, α2 ∈ A2;
(ii) ϕ(D1) ⊆ A1 and ϕ(D2) ⊆ A2.

Then, for all m ≥ 1,

inf
E∈Em

sup
D∈C

Es1,...,sm∼D[|ϕ̂E − ϕ(D)|] ≥ γ

2
(
1− inf

p1∈convm(D1)
p2∈convm(D2)

dTV(p1, p2)
)
. (6)

One particular interest of this result is that the infimum is taken over the convex hull of the
m-fold product distributions from the families D1 and D2, and not over the m-fold distributions
themselves. While this makes the computations much less straightforward (as a mixture of product
distributions is not in general itself a product distribution, one can no longer rely on using the
Hellinger distance as a proxy for total variation and leverage its nice properties with regard to
product distributions), it also usually yields much tighter bounds – as the infimum over the convex
hull is often significantly smaller.

We now state an immediate corollary in terms of property testing, where a testing algorithm
is said to fail if it outputs ACCEPT on a no-instance or REJECT on a yes-instance. Note as usual
that if the samples originate from a distribution which is neither a yes nor no-instance, then the any
output is valid and the tester cannot fail.

Corollary 2.4. Fix ε ∈ (0, 1), and a property P ⊆ ∆(Ω). Let D1,D2 ⊆ ∆(Ω) be families of
respectively yes- and no-instances, i.e. such that D1 ⊆ P, while any D ∈ D2 has dTV(D,P) > ε.
Then, for all m ≥ 1,

inf
T∈Tm

sup
D∈∆(Ω)

Pr
s1,...,sm∼D

[T (s1, . . . , sm) fails ] ≥ 1
2
(
1− inf

p1∈convm(D1)
p2∈convm(D2)

dTV(p1, p2)
)
. (7)

where Tm is the set of (deterministic) testing algorithms T with sample complexity m.
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As any (possibly randomized) bona fide testing algorithm can only fail with probability 1/3, the
above combined with Yao’s Principle implies a lower bound of Ω(m) as soon as m and D1,D2 satisfy
infp1,p2 dTV(p1, p2) < 1/3 in (7).

Proof of Corollary 2.4. We apply Theorem 2.3 with the following parameters: A1 = {0}, A2 = {1},
γ = 1, and ϕ : D ∈ C 7→ 1P(D) ∈ {0, 1}, where C = P ∪ { D ∈ ∆(Ω) : dTV(D,P) > ε } is the set
of valid instances.

An example of application. To prove a lower bound of Ω
(√
n/ε2) for testing uniformity over [n],

Paninski [Pan08] defines the families D1 = P = {Un} and D2 as the set of distributions D obtained
by perturbing each disjoint pair of consecutive elements (2i− 1, 2i) by either ( εn ,−

ε
n) or (− ε

n ,
ε
n)

(for a total of 2
n
2 distinct distributions). He then analyzes the total variation distance between U⊗mn

and the uniform mixture
p

def= 1
2

n
2

∑
D∈D2

D⊗m.

By an approach similar as that of [Pol03, Section 14.4], Paninski shows that infp2∈convm(D2) dTV(U⊗mn , p2) ≤
dTV(U⊗mn , p) ≤ 1

2

√
em2ε4/n − 1, which for m ≤ c

√
n

ε2 is less than 1/3 – establishing the lower bound.
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