May, 2014 - April 29, 2015

In this (short) note, we focus on two techniques used to prove lower bounds for distribution *learning* and *testing*, respectively Assouad's lemma and Le Cam's method. (We do not cover here Fano's lemma, another and somewhat more general result than Assouad's – the interested reader is referred to [Yu97].)

Hereafter, we let (Ω, \mathcal{B}) be a measurable space, and $\Delta(\Omega)$ be the set of all probability distributions on it. Let $d_{TV}(\cdot, \cdot)$ denote the total variation distance (the theorem would actually apply to any metric d on $\Delta(\Omega)$), and $d_{H}(\cdot, \cdot)$ be the *Hellinger distance*, defined as

$$d_{\rm H}(D,D') \stackrel{\text{def}}{=} \frac{1}{2} \|\sqrt{D} - \sqrt{D'}\|_2 = \frac{1}{2} \sqrt{\sum_{x \in \Omega} \left(\sqrt{D(x)} - \sqrt{D'(x)}\right)^2} = \sqrt{1 - \sum_{x \in \Omega} \sqrt{D(x)D'(x)}}$$

(the last two expressions holding when Ω is countable).

1 Learning Lower Bounds: Assouad's Lemma

Definition 1.1 (Minimax Risk). Let $C \subseteq \Delta(\Omega)$ be a family of probability distributions, and $m \ge 1$. The *minimax risk for* C *with* m *samples* (with relation to the total variation distance) is defined as

$$R_{m}(\mathcal{C}) \stackrel{\text{def}}{=} \inf_{A \in \mathcal{A}_{m}} \sup_{D \in \mathcal{C}} \mathbb{E}_{s_{1},\dots,s_{m} \sim D} \Big[d_{\text{TV}} \Big(D, \hat{D}_{A} \Big) \Big]$$

$$= \inf_{A \in \mathcal{A}_{m}} \sup_{D \in \mathcal{C}} \int_{\Omega^{m}} d_{\text{TV}}(D, A(\mathbf{s})) D^{\otimes m}(d\mathbf{s})$$
(1)

where \mathcal{A}_m is the set of (deterministic) learning algorithms A which take m samples and output a hypothesis distribution \hat{D}_A .

In other terms, $R_m(\mathcal{C})$ is the minimum expected error of any *m*-sample learning algorithm A when run on the worst possible target distribution (from \mathcal{C}) for it. It is immediate from the definition that for any $\mathcal{H} \subseteq \mathcal{C}$, one has $R_m(\mathcal{C}) \ge R_m(\mathcal{H})$.

To prove lower bounds on learning a family C, a very common method is to come up with a (sub)family of distributions in which, as long as a learning algorithm does not take enough samples, there always exist two (far) distributions which still could have yielded indistinguishable "transcripts". In other terms, after running any learning algorithm A on m samples, an adversary can still exhibit two very different distributions (depending on A)¹ that *ought* to be distinguished, yet *could not* possibly have been from only m samples. This is formalized by the following theorem, due to Assound:

Theorem 1.2 (Assouad's Lemma [Ass83]). Let $C \subseteq \Delta(\Omega)$ be a family of probability distributions. Suppose there exists a family of $\mathcal{H} \subseteq C$ of 2^r distributions and constants $\alpha, \beta > 0$ such that, writing $\mathcal{H} = \{D_z\}_{z \in \{0,1\}^r}$,

¹Note that this differs from the standard methodology for proving lower bounds for property testing, where two families of distributions (yes and no-instances) are defined beforehand, and a couple of distributions is "committed to" *before* the algorithm gets to make its move.

(i) for all $x, y \in \{0, 1\}^r$, the distance between D_x and D_y is at least proportional to the Hamming distance:

$$d_{\rm TV}(D_x, D_y) \ge \alpha \|x - y\|_1 \tag{2}$$

(ii) for all $x, y \in \{0, 1\}^r$ with $||x - y||_1 = 1$, the squared Hellinger distance of D_x, D_y is small:

$$d_{\rm H}(D_x, D_y)^2 \le \beta \tag{3}$$

(or, equivalently, $-\ln(1-h^2) \le \ln \frac{1}{1-\beta}$) Then, for all $m \ge 1$,

$$R_m(\mathcal{H}) \ge \frac{1}{4}\alpha r (1-\beta)^{2m} = \Omega\Big(\alpha r e^{-O(\beta m)}\Big).$$
(4)

In particular, to achieve error at most ε , any learning algorithm for C must have sample complexity $\Omega\left(\frac{1}{\beta}\log\frac{\alpha r}{\varepsilon}\right)$.

Remark 1.3 (High-level idea). Intuitively, every distribution in \mathcal{H} is defined by making r distinct "choices"². With this interpretation, item (i) means that two distributions differing in many choices should be far (so that a learning algorithm has to "figure out" most of the choices in order to achieve a small error), while item (ii) requires that two distributions defined by almost the same choices be very close (so that a learning algorithm cannot distinguish them too easily).

Remark 1.4 (Technical detail). The quantity $1 - d_H(p,q)^2$ is known as the *Hellinger affinity*; as the Hellinger distance satisfies

$$1 - \sqrt{1 - d_{\rm TV}(p,q)^2} \le d_{\rm H}(p,q)^2 \le d_{\rm TV}(p,q)$$
(5)

it is sufficient for (3) to show that the (sometimes easier) condition holds:

$$\mathrm{d}_{\mathrm{TV}}(D_x, D_y) \le \beta.$$

Note that, with (2) this imposes that $\alpha \leq \beta$; while working with the Hellinger distance only requires $\alpha^2 \leq 2\beta - \beta^2$ (from (5) and (2)).

An example of application. To prove a lower bound of $\Omega\left(\frac{\log n}{\varepsilon^3}\right)$ for learning monotone distributions over [n], Birgé [Bir87] invokes Assouad's Lemma, defining a family \mathcal{H} achieving parameters $r = \Theta\left(\frac{\log n}{\varepsilon}\right)$, $\alpha = \Theta(\varepsilon/r)$ and $\beta = \Theta(\varepsilon^2/r)$. This example shows a very neat feature of Assouad's Lemma – *it enables us to get a dependence on* ε *in the lower bound.*

2 Testing Lower Bounds: Le Cam's Method

We now turn to another lower bound technique, better suited for proving lower bounds on property testing or parameter estimation - i.e., where the quantity of interest is a functional of the unknown distribution, instead of the distribution itself. We begin with some terminology that will be useful in stating the main result of this section.

²E.g., by choosing, for each of r intervals partitioning the support, whether the distribution (a) is uniform on the interval or (b) puts all its weight on the first half of the interval.

Definition 2.1. Let $\mathcal{C} \subseteq \Delta(\Omega)$ be a family of probability distributions over Ω , and $m \geq 1$. The convex hull of *m*-product distributions from \mathcal{C} , denoted $\operatorname{conv}_m(\mathcal{C})$, it the set of probability distributions over Ω^q defined as

$$\operatorname{conv}_{m}(\mathcal{C}) \stackrel{\text{def}}{=} \left\{ \sum_{k=1}^{\ell} \alpha_{k} D_{k}^{\otimes m} : \ell \geq 1, D_{1}, \dots, D_{\ell} \in \mathcal{C}, \alpha_{1}, \dots, \alpha_{\ell} \geq 0, \sum_{k=1}^{\ell} \alpha_{k} = 1 \right\}.$$

That is, $\operatorname{conv}_m(\mathcal{C})$ is the set of mixtures of *m*-wise product distributions from \mathcal{C} . (Note that distributions in $\operatorname{conv}_m(\mathcal{C})$ are not in general product distributions themselves.)

Definition 2.2 (Estimator). Let $C \subseteq \Delta(\Omega)$ be a family of probability distributions over Ω , and $m \geq 1$. For any real-valued functional $\varphi \colon C \to [0, 1]$ ("scalar property"), we denote by \mathcal{E}_m the set of *estimators* for φ : that is, the set of (deterministic) algorithms E taking $m \geq 1$ independent samples from a distribution $D \in C$ and outputting an estimate $\hat{\varphi}_E$ of $\varphi(D)$.

We state the following lemma for estimators taking value in [0, 1] endowed with the distance $|\cdot|$, but it holds for more general metric spaces, and in particular for $([0, 1], \|\cdot\|_2)$.

Theorem 2.3 (Le Cam's Method [LC73, LC86, Yu97]). Let $C \subseteq \Delta(\Omega)$ be a family of probability distributions over Ω , and let $\varphi \colon C \to [0,1]$ be a scalar property. Suppose there exists $\gamma \in [0,1]$, subsets $A_1, A_2 \subseteq [0,1]$, and families $\mathcal{D}_1, \mathcal{D}_2 \subseteq C$ such that the following holds.

(i) A_1 and A_2 are γ -separated: $|\alpha_1 - \alpha_2| \ge \gamma$ for all $\alpha_1 \in A_1, \alpha_2 \in A_2$;

(*ii*) $\varphi(\mathcal{D}_1) \subseteq A_1$ and $\varphi(\mathcal{D}_2) \subseteq A_2$.

Then, for all $m \geq 1$,

$$\inf_{E \in \mathcal{E}_m} \sup_{D \in \mathcal{C}} \mathbb{E}_{s_1, \dots, s_m \sim D}[|\hat{\varphi}_E - \varphi(D)|] \ge \frac{\gamma}{2} \Big(1 - \inf_{\substack{p_1 \in \operatorname{conv}_m(\mathcal{D}_1)\\p_2 \in \operatorname{conv}_m(\mathcal{D}_2)}} \mathrm{d}_{\mathrm{TV}}(p_1, p_2)\Big).$$
(6)

One particular interest of this result is that the infimum is taken over the *convex hull* of the m-fold product distributions from the families \mathcal{D}_1 and \mathcal{D}_2 , and not over the m-fold distributions themselves. While this makes the computations much less straightforward (as a mixture of product distributions is not in general itself a product distribution, one can no longer rely on using the Hellinger distance as a proxy for total variation and leverage its nice properties with regard to product distributions), it also usually yields much tighter bounds – as the infimum over the convex hull is often significantly smaller.

We now state an immediate corollary in terms of property testing, where a testing algorithm is said to *fail* if it outputs ACCEPT on a no-instance or REJECT on a yes-instance. Note as usual that if the samples originate from a distribution which is neither a yes nor no-instance, then the any output is valid and the tester cannot fail.

Corollary 2.4. Fix $\varepsilon \in (0,1)$, and a property $\mathcal{P} \subseteq \Delta(\Omega)$. Let $\mathcal{D}_1, \mathcal{D}_2 \subseteq \Delta(\Omega)$ be families of respectively yes- and no-instances, i.e. such that $\mathcal{D}_1 \subseteq \mathcal{P}$, while any $D \in \mathcal{D}_2$ has $d_{\mathrm{TV}}(D, \mathcal{P}) > \varepsilon$. Then, for all $m \geq 1$,

$$\inf_{T \in \mathcal{T}_m} \sup_{D \in \Delta(\Omega)} \Pr_{s_1, \dots, s_m \sim D} \left[T(s_1, \dots, s_m) \text{ fails} \right] \ge \frac{1}{2} \left(1 - \inf_{\substack{p_1 \in \operatorname{conv}_m(\mathcal{D}_1)\\p_2 \in \operatorname{conv}_m(\mathcal{D}_2)}} \operatorname{d}_{\mathrm{TV}}(p_1, p_2) \right).$$
(7)

where \mathcal{T}_m is the set of (deterministic) testing algorithms T with sample complexity m.

As any (possibly randomized) *bona fide* testing algorithm can only fail with probability 1/3, the above combined with Yao's Principle implies a lower bound of $\Omega(m)$ as soon as m and $\mathcal{D}_1, \mathcal{D}_2$ satisfy $\inf_{p_1, p_2} d_{\text{TV}}(p_1, p_2) < 1/3$ in (7).

Proof of Corollary 2.4. We apply Theorem 2.3 with the following parameters: $A_1 = \{0\}, A_2 = \{1\}, \gamma = 1, \text{ and } \varphi \colon D \in \mathcal{C} \mapsto \mathbb{1}_{\mathcal{P}}(D) \in \{0, 1\}, \text{ where } \mathcal{C} = \mathcal{P} \cup \{ D \in \Delta(\Omega) : d_{\mathrm{TV}}(D, \mathcal{P}) > \varepsilon \} \text{ is the set of valid instances.}$

An example of application. To prove a lower bound of $\Omega(\sqrt{n}/\varepsilon^2)$ for testing uniformity over [n], Paninski [Pan08] defines the families $\mathcal{D}_1 = \mathcal{P} = \{\mathcal{U}_n\}$ and \mathcal{D}_2 as the set of distributions D obtained by perturbing each disjoint pair of consecutive elements (2i - 1, 2i) by either $(\frac{\varepsilon}{n}, -\frac{\varepsilon}{n})$ or $(-\frac{\varepsilon}{n}, \frac{\varepsilon}{n})$ (for a total of $2^{\frac{n}{2}}$ distinct distributions). He then analyzes the total variation distance between $\mathcal{U}_n^{\otimes m}$ and the uniform mixture

$$p \stackrel{\text{def}}{=} \frac{1}{2^{\frac{n}{2}}} \sum_{D \in \mathcal{D}_2} D^{\otimes m}$$

By an approach similar as that of [Pol03, Section 14.4], Paninski shows that $\inf_{p_2 \in \operatorname{conv}_m(\mathcal{D}_2)} d_{\mathrm{TV}}(\mathcal{U}_n^{\otimes m}, p_2) \leq d_{\mathrm{TV}}(\mathcal{U}_n^{\otimes m}, p) \leq \frac{1}{2}\sqrt{e^{m^2\varepsilon^4/n}-1}$, which for $m \leq \frac{c\sqrt{n}}{\varepsilon^2}$ is less than 1/3 – establishing the lower bound.

References

- [Ass83] Patrice Assouad. Deux remarques sur l'estimation. Comptes Rendus des Séances de l'Académie des Sciences. Série I. Mathématique, 296(23):1021–1024, 1983. 1.2
- [Bir87] Lucien Birgé. Estimating a Density under Order Restrictions: Nonasymptotic Minimax Risk. The Annals of Statistics, 15(3):995–1012, 09 1987. 1
- [LC73] Lucien Le Cam. Convergence of estimates under dimensionality restrictions. The Annals of Statistics, 1:38–53, 1973. 2.3
- [LC86] Lucien Le Cam. Asymptotic methods in statistical decision theory. Springer Series in Statistics. Springer-Verlag, New York, 1986. 2.3
- [Pan08] Liam Paninski. A coincidence-based test for uniformity given very sparsely sampled discrete data. IEEE Transactions on Information Theory, 54(10):4750–4755, 2008.
- [Pol03] David Pollard. Asymptopia. http://www.stat.yale.edu/~pollard/Books/Asymptopia, 2003. Manuscript. 2
- [Yu97] Bin Yu. Assouad, Fano, and Le Cam. In David Pollard, Erik Torgersen, and Grace L. Yang, editors, *Festschrift for Lucien Le Cam*, pages 423–435. Springer New York, 1997. (document), 2.3