
ENGI E1006
Percolation Handout

NOTE: This is not your assignment. These are notes from
lecture about your assignment. Be sure to actually read
the assignment as posted on Courseworks and follow the
instructions provided there.

Percolation is the process of a fluid slowly traveling
through a porous material. Example: If a liquid is poured
on top of a layer of soil, will it manage to filter down
through the soil and into what lies below? If it does we
say it percolates.

We can model this phenomenon using a a grid consisting
of blocked and open (vacant) sites to represent the soil.

!Blocked site

Open site "

We imagine pouring a liquid onto the top of the grid and
consider how it would flow through the open and blocked

sites.

!Blocked site

Open site "

!Full site

If the liquid can find a path through the grid, then it
percolates in this instance. There are many other
applications of the percolation model beyond liquid
moving through soil. The model may be used to describe
gas moving through a gas mask filter, electricity through a
network of resistors, natural gas through semi porous
rock, and many other important phenomena.

Question: Okay, so if we're supposed to be modeling
some porous material with this grid, how do we determine
which sites are blocked and which sites are open?

Answer: We'll use randomization. Let each site have a
probability of being vacant (open) or blocked. Very porous
materials will have a high site vacancy probability and less
porous materials will have a low site vacancy probability.
Let's call this site vacancy probability p. Using a
pseudorandom number generator we can generate n x n

grids for any p we're interested in.

Question: So if some material has a site vacancy
probability p, will a corresponding n x n grid allow
percolation or not?

Answer: That's the million dollar question! First of all,
notice that the answer to this question will be a
probability. Since we are randomly generating the grid, we
could get really lucky even with a low p and end up with a
grid that allows percolation. Similarly even with a very
high p we could end up with a system that does not
percolate. So our answer will not be yes or no but rather a
percolation probability. Fine, so how do we figure that
out? The only way we know how to do that is via
simulation. That is, we'll generate a whole bunch of these
grids and then check each one to see if they permit
percolation. The fraction of grids that get percolation is
our estimate for the percolation probability. In a nutshell,
that's what you'll be doing in the current project.

Question: How are we going to do this using Python?

Answer: We will use two-dimensional numpy arrays to
model a grid. We'll learn about numpy arrays and how
exactly one does this in the next lecture. For now think of
them as very similar to lists in Python. In fact, we could do
this just using lists but it would be very inefficient and take
way too much time. That's where numpy will come in. So
let's break it down a bit more:

Ultimate Goal: The question we want to answer is "Given
an n x n grid with site vacancy probability p, whats the
percolation probability of the system? We'll ultimately
answer this by generating a graph of percolation
probability versus site vacancy probability. Suppose we're
considering a 10 by 10 grid and consider a single point on
the graph: We're given a site vacancy and we want to
determine the corresponding percolation probability.
Here's what you need to do:

1) Randomly generate a 2-dimensional numpy array
made up of zeros and ones. Each entry in the array
will be 1 with probability p.

2) Determine what the system would look like if we
poured liquid on the top. (Create an array
representing the one with the orange in it above.)

3) Determine if the array you made in (2) is percolating
or not. (Just check to see if any of the bottom sites
are filled.)

4) Repeat the process a whole bunch of times keeping
track of how many times it percolates. The fraction of
times it percolates is the estimate for the percolation
probability.

5) Graph your results.

That's it. That's all you have to do. That doesn't seem too
bad, does it? Well, how do you do (2)? That is a good
question. That part can be tricky. To help with all of this
we will break the assignment into two parts. For Part 1

we're going to simplify step 2 by only modeling vertical
percolation. That means that the liquid can only move
vertically. So when you generate the flow matrix in step
two, the only way a site can get filled is if it is vacant and
the site above it is filled. That should make step 2 quite a
bit easier. Next week will figure out how to remove this
restriction and consider the more general percolation
model. Here's Part 1 of your assignment below:

Percolation Part 1

Write a Percolation module in Python to solve the vertical
percolation problem we saw in class. Your module should
make use of the functions we designed in class.
Specifically:

1. Functions to read and write N x N arrays (use numpy)
of binary numbers representing a grid of blocked/
open sites (from or to text files). Please use the
format below for text files.

2. A function that takes one of the arrays from (1) as
input and outputs an array of vacant/full sites.

3. A function that takes as input the output from (2) and
outputs a boolean indicating whether the system
percolates or not.

4. A function that takes as input a number between
0-1 p, an integer N, and generates a random NxN
array of blocked/open sites where each site is open
with probability p. This function will be useful for
testing your code.

5. I have provided function definitions in the attached

percolation.py file. I have provided a main function to
test your code in a separate file hw5_1.py. Your code
must work with the main function I have provided.

1. For section (1) above please use the following text file
format: The first row of the text file should contain the
integer N. That is the number of rows and columns in
the system. The next N rows should contain N 1s
and 0s each separated by a space. The 0 indicates a
blocked site and the 1 indicates an open site. So for
example:

3

0 1 0

1 1 0

0 0 1

would represent a 3x3 system where the first row consists
of a blocked site, an open site, and a blocked site.

 NOTE: Please make sure your code works with the
main function provided on Courseworks.

