
ENGI E1006

PPM Image Format (Thanks to Joshua Guerin, Debby
Keen, and SIGCSE's Nifty Assignment session)

The PPM (or Portable Pix Map) image format is encoded
in human-readable ASCII text. For those of you who wish
to have the experience of reading real documentation, the
formal image specification can be found here.

Sample ppm file:

P3
4 4
255
0 0 0 100 0 0 0 0 0 255 0
255
0 0 0 0 255 175 0 0 0 0 0
 0
0 0 0 0 0 0 0 15 175 0 0
 0
255 0 255 0 0 0 0 0 0 255
 255 255

Image Header

You can think of the image as having two parts,

http://netpbm.sourceforge.net/doc/ppm.html

a header and a body. The header consists of four entries:

P3
4 4
255

P3 is a "magic number". It indicates what type of PPM (full
color, ASCII encoding) image this is. For this assignment it
will always be P3.

Next comes the number of columns and the number of
rows in the image (4 x 4).

Finally, we have the maximum color value 255. This can
be any value, but a common value is 255.

The way you see the header presented is how it should be
spaced out.

Image Body

The image body contains the actual picture information.
Each pixel of the image is a tiny, colored square. The color
is determined by how much red, green, and blue are
present. So, 0 0 0 is the first color of the image, which is
black, and the last pixel in the image is 255 255 255,
which is white. By varying the levels of the RGB values
you can come up with any color in between.

Note that color values must be separated by a space, but
after than additional whitespace is ignored by the image
viewer. In the sample ppm above we used additional
whitespace to format the image so that it is easy for a
human to understand, but the computer doesn't care if
everything is on one line, if there is one line per line of the

image, or some mix.

Putting it all together

The example image above would look something like this:

Keep in mind, each square is one pixel, so the real thing is
much smaller (the rendered image was blown up by
5000%).

How to view PPM files

While PPM files are easy to view as text (you can use
Notepad, for instance), and easy to work with in code, they
are highly inefficient. Most modern image formats use
some kind of compression to make their size reasonable
while preserving the image appearance. This is not to say
that PPMs don't still have some life in them--one modern
use for PPM is an intermediate format when converting

images from one type to another.

You may need to install a program to view these images
on a your machine. Irfanview or Gimp for Windows are
both suitable for Windows machines. If you have a Mac
you probably already have Gimp installed or you can
download it from here. These will also allow you to
convert your own images to PPM so you can practice with
pictures you took in the past (keep in mind that you may
need to make them very small or the resulting PPM will
be quite large!).

Your Assignment

In this assignment you will write an application in Python
that takes as input a series of three similar images and
outputs a new image with unwanted objects from the
original series removed. The images will be provided as
ppm files so all your program needs to do is edit them as
text files to accomplish your goal. I have provided three
images attached to this assignment:

1. tetons1.ppm

2. tetons2.ppm

3. tetons3.ppm

See if you can guess which objects should be removed
from these images.

How do you remove the unwanted objects?

Notice that the unwanted objects appear in different parts
of each image. This allows you to simply write a new ppm

http://www.irfanview.com/
http://gimp-win.sourceforge.net/
http://www.gimp.org/downloads/

file where each RGB value will be whatever the majority of
the three images above suggests. So in this case at least
2 of the files will always have the right pixel values.

More details please....

Write a module called effects. In it go ahead and write a
function called object_filter that takes as input
(parameters) the file objects to filter and the name of the
new file to create. The function should then create a new
ppm file using the majority rules approach described
above for each pixel's RGB value.

but wait, there's more....

In addition to the object_filter function above write a
function called shades_of_gray that converts a color
image to a black and white image. One way to convert a
color image to black and white is to replace each pixel's
individual RGB values with the average of the three
values. So for example if a particular pixel had RGB
values 100 200 300 you could change them to 200 200
200 for the black and white version.

did I mention....

Add another function called negate_red that will change
just the RED color numbers into their "negative". That is, if
the red number is low, it should become high and vice
versa. The maximum color depth number is useful here.
For files with maximum color depth of 255 (all of the files I
have provided), if the red were 0, it would become 255; if it
were 255 it would become 0. If the red were 100, it would
become 155. Write negate_green and negate_blue

functions also. Your functions should work with any
maximum color depth number provided it's a positive
integer (so not just 255!).

Are you kidding me?

Write another function called mirror which will flip the
picture horizontally. That is, the pixel that is on the far right
end of the row ends up on the far left of the row and vice
versa (remember to preserve RGB order!).
So what do you turn in?

Along with your read_me turn in two files. The first must
be called effects_tester.py. In it write a main
function to test your effects module. The other file is called
effects.py which is the module containing the effects
functions described above. Use the attached template for
the effects.py module. It's important that you use this
exact format as this is how we will test your code. Have
the main function ask the user which effects they wish to
try, then prompt the user for the correct number of input
file names and then for the output file name. The
appropriate output file should then be created.

Example session with a user:

Portable Pixmap (PPM) Image Editor!

Choose the effect you would like to try:

1) object_filter

2) shades_of_gray

3) negate_red

4) negate_green

5) negate_blue

6) mirror

Enter a number: 2

Enter an input file name: test.ppm

Enter name of output file: out.ppm

out.ppm created.

And the output file created would be called out.ppm and
would have the desired effect. Your program is NOT
responsible for displaying the image in the file, just for
manipulating the pixels and creating an output file in the
proper ppm format.

Test this with small files and large files. You can check to
see if works by viewing the images and by viewing the text
files with a text editor.

The following example ppm files are attached to this
assignment on coursework's. You can also make your own
using Gimp. Remember your code should work on any
ppm file as long as it's not too big (like really big).

• pic1.ppm - A picture of a slice of pie
• tetons1.ppm - An image to use for testing object_filter
• tetons2.ppm - An image to use for testing object_filter
• tetons3.ppm - An image to use for testing object_filter
• tinypix.ppm - The example image from above

NOTE: None of your manipulations may cause a color
number to be less than 0 nor larger than the maximum
color depth specified in the file.

Submission:

• Put all of your files into a single folder called hw4.
• Compress your hw4 folder into a zip file

named UNI_hw4.zip (eg. ac1076_hw4.zip).
• Submit that zip file via courseworks.
• Remember to include your read_me file.
• Remember that your homework is not submitted

unless you receive a confirmation email!

Grading

Your grade will be based on three components using the
following wights:

Runs properly: 60% (Does your program run and do what
it's supposed to?)

Style: 20% (Are you following PEP-8 guidelines?)

Design: 20% (Are you making use of functions? Is your
code efficient? Easy to modify? Easy to debug?)

