
The RAD: Making Racing Games Equivalently Accessible
to People Who Are Blind

Brian A. Smith Shree K. Nayar
Columbia University
New York, NY, USA

{brian, nayar}@cs.columbia.edu

ABSTRACT
We introduce the racing auditory display (RAD), an audio-
based user interface that allows players who are blind to play
the same types of racing games that sighted players can play
with an efficiency and sense of control that are similar to what
sighted players have. The RAD works with a standard pair of
headphones and comprises two novel sonification techniques:
the sound slider for understanding a car’s speed and trajectory
on a racetrack and the turn indicator system for alerting players
of the direction, sharpness, length, and timing of upcoming
turns. In a user study with 15 participants (3 blind; the rest
blindfolded and analyzed separately), we found that players
preferred the RAD’s interface over that of Mach 1, a popular
blind-accessible racing game. We also found that the RAD
allows an avid gamer who is blind to race as well on a complex
racetrack as casual sighted players can, without a significant
difference between lap times or driving paths.

ACM Classification Keywords
H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

Author Keywords
Accessibility; accessible games; audio games; sonification.

INTRODUCTION
Accessibility alone is not enough to make the world a fair place
for people with disabilities. Even with assistive technologies,
if people with disabilities cannot experience the world in the
same manner as anyone else [32, 41], or even as productively
as anyone else [16], the world will not yet be fair — or as we
will say, equivalently accessible.

Imagine a wheelchair ramp leading to an entrance of a public
library. Technically, the ramp would make the library acces-
sible to people using wheelchairs. But if that ramp makes
such a circuitous route on its way up that only people who
need it would ever want to use it, the ramp would not make
accessing the library efficient or fair [41]. Worse, suppose that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CHI 2018, April 21–26, 2018, Montréal, QC, Canada

© 2018 ACM. ISBN 978-1-4503-5620-6/18/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3173574.3174090

Figure 1. Study participant P8 — who is congenitally blind — playing
our racing game prototype using the racing auditory display (RAD). The
RAD outputs spatialized sound and works with a standard pair of head-
phones. Using the RAD, players who are blind can play the same types of
racing games that sighted players can play with an efficiency and sense
of control that are similar to what sighted players have. Our supplemen-
tal video shows P8 using the RAD with the RAD’s audio included.

the ramp leads to a separate, less handsome entrance to the
library or, even worse, to a different building altogether: a
smaller, adjacent library that only has the digest versions of
books from the main library. These facilities would clearly not
be fair for people using wheelchairs.

This situation, however, is similar to what video games are
like for people who are blind. Most blind-accessible games
today are either loaded with competing sources of information
that players must sift through [4, 15, 29, 42], slowing down
the efficiency of play, or are very simplified versions of games
that sighted players would play [2, 6, 19, 20, 21, 27, 44], to
the extent that the player may be doing nothing more than
following orders from the game [2, 19, 20, 27, 44]. These
games are technically accessible to players who are blind, but
they are far from the same game that sighted players would
play, and so are not equivalently accessible.

The reason is that when making an existing type of game blind-
accessible, there is a fundamental conflict between preserving
the game’s complexity and the game’s pace. Preserving the
former allows players to have the same sense of control that
sighted players have when playing existing games, while pre-
serving the latter keeps the action continuous and in real-time.

Figure 2 illustrates this tradeoff, with the sense of control
that the game affords to the player on the vertical axis and

1

http://dx.doi.org/10.1145/3173574.3174090

Efficiency of Play

In
te

nt
io

n
/ S

en
se

 o
f C

on
tro

l
Fe

el
s C

on
tri

ve
d

Fe
el

s A
ut

he
nt

ic

Tedious Efficient

Intention-
Preserving

Games

Our Goal:
Equivalently

Accessible
Games

Efficiency-
Preserving

Games

Figure 2. The intention–efficiency tradeoff. When designing blind-
accessible games, game designers must choose between sacrificing each
game’s complexity — and by extension the player’s intention or sense
of control within the game — and the game’s efficiency of play. More-
over, sophisticated actions such as cutting corners in racing games are
difficult to incorporate even in intention-preserving games, so many do
not feel fully authentic to play compared to what sighted players would
play. Our goal is to overcome this tradeoff to help racing games become
equivalently accessible to people who are blind.

the game’s efficiency (pace) on the horizontal axis. For a
game to be equivalently accessible to people who are blind, it
should offer both, as the green dot at the top-right of the figure
indicates. In practice, however, designers must sacrifice one
of the two, causing existing blind-accessible games to fall into
two distinct groups: what we call efficiency-preserving games
and intention-preserving games.

Efficiency-preserving games, indicated by the blue dashed cir-
cle in Figure 2, are ones that sacrifice the sense of control that
they afford players to keep their gameplay moving at a contin-
uous pace. These include games such as Blind Hero [44], Rock
Vibe [2], and Blindfold Racer [27]. They are often simplified
versions of games that sighted players would play and often
boil down the gameplay to a simple test of reaction speed. In
Blind Hero and Rock Vibe, for example, players do not get to
prepare for upcoming beats like sighted players would when
playing Guitar Hero or Rock Band, which these games were
based on. Rather, players are tasked with pressing buttons as
soon as they feel corresponding vibration cues.

Intention-preserving games, indicated by the red dashed circle
in Figure 2, are ones that sacrifice their efficiency of play to
maintain more of their complexity and, by extension, give play-
ers a greater sense of control. These include Terraformers [42]
and Blindfold Color Crush [29]. They are often cumbersome
to play because they force players to navigate menus and
process many audio cues just to understand what the current
situation in the game is at any given time. Moreover, although
they preserve much of their complexity and sense of control,
they cannot preserve it all: complex actions such as cutting
corners and performing head shots remain out of reach.

In this paper, we present the racing auditory display (RAD),
an audio-based user interface with the goal of overcoming this
tradeoff to help racing games become equivalently accessible
to people who are blind. The RAD comprises two novel

sonification techniques: the sound slider for understanding a
car’s speed and trajectory on a racetrack and the turn indicator
system for alerting players of the direction, sharpness, length,
and timing of upcoming turns. Figure 1 shows a participant
who is congenitally blind playing a racing game with the RAD.

We conducted two user studies to investigate whether the RAD
allows players who are blind to play racing games at the same
pace and with the same level of control as sighted players can.
In the first study, we found that players preferred to play a
racing game using the RAD over that of Mach 1 [6], a popular
blind-accessible racing game. In the second study, we found
that the RAD makes it possible for a gamer who is blind to
race as well on a complex racetrack as casual sighted players
do. When that gamer raced using the RAD, there was no
significant difference between his lap times or driving paths
compared to those of casual players racing with sight.

INTENTION AND ITS ROLE IN RACING GAMES
Here, we introduce the concept of intention to describe what
we mean by sense of control more precisely, and will illustrate
how this concept applies to racing games. This concept can be
used to examine whether a game gives players a high sense of
control and, if not, how it can be changed to do so.

Intention is the process of “allowing and encouraging players
to do things [within games] intentionally” [7, 8, 9]. More
specifically, it is the process of “making an implementable
plan of one’s own creation in response to the current situation
in the game world and one’s understanding of the game play
options” [7, 8, 9]. By breaking this definition down into parts,
we can see that for a game to support intention, it must help
the player perform the following three activities:

1. Understand the current situation in the game.
2. Understand what game play options are currently available.
3. Make an implementable plan of their own creation.

These activities are analogous to the three components of
Yuan et al.’s game interaction model [45]. When we say that
a game affords players a high sense of control, we mean that
the game supports intention, which more precisely means that
the game supports the player in performing each of the three
activities listed above. For a blind-accessible video game to
be equivalently accessible to people who are blind, it must
support these three elements of intention without sacrificing
the game’s pace — overcoming the tradeoff in Figure 2 — and
without simplifying the gameplay.

To support the first activity, racing games must help players
understand all aspects of their current situation that are rele-
vant to racing: their vehicle’s position and orientation on the
racetrack, a general sense of its current speed, the nature of
any upcoming turns, etc. The game does not need to help
players understand aspects of the current situation that are not
relevant to racing, such as their vehicle’s paint color or even
its precise speed in mph/kph. (In fact, many games such as
the Grand Theft Auto series and most of the Mario Kart series
do not show players their vehicle’s speed.) To support the
third activity, racing games should make it possible for play-
ers to form strategies such as cutting corners or positioning
themselves to better handle an upcoming turn.

2

RELATED WORK
Our work builds on two areas of research: work on develop-
ing audio navigation systems and work on developing blind-
accessible racing games and driver assistance systems.

Audio Navigation Systems
Audio navigation systems help people who are blind navigate
on foot from one place to another in the real world. They
consist of a GPS tracker, a computing device, and a pair
of headphones. Perhaps the most archetypal examples are
audioGPS [17] and SWAN [43] (short for System for Wear-
able Audio Navigation), which both guide users from their
current location to their destination via a sequence of way-
points that they must reach along the way. The user must
follow a sound known as an acoustic beacon to travel from
waypoint to waypoint until they reach their destination.

Most research in this area has focused on how to perfect these
types of systems, such as discovering which type of sounds are
easier to localize and follow [35] or how large each waypoint’s
“capture radius” should be [39, 40]. These systems, however,
are unsuitable for racing games for two reasons. First, they as-
sume that the user is walking and has the flexibility to stop and
rotate to center the acoustic beacon in front of them. Second,
using these systems amounts to simply following orders, while
video games should afford players a high sense of control over
what they are doing.

Blind-Accessible Racing Games
A number of driving systems and racing games currently em-
ploy mechanisms to assist drivers and players who are blind.
Here, we will survey three blind-accessible video games and
a blind driver assistance system, each employing a different
user interface for driving a car on a virtual track.

Blindfold Racer (iOS, 2014)
Blindfold Racer [27] is an audio racing game developed on
iOS by Marty Schultz as part of his series of blind-accessible
smartphone games. In Blindfold Racer, players steer by rotat-
ing their mobile device left and right as they would a steering
wheel. The goal is to drive to the end of a track without hitting
fences on the track’s sides. The player can also adjust their
speed to three fixed values by swiping up or down on their
device’s touchscreen. The game outputs sound in stereo and
pans a music track between the left and right channels as a
means of displaying the car’s lateral position on the track. It
will play exclusively in the left channel if the player’s car is
adjacent to the left side of the track and vice-versa.

Treasure and animals are indicated using repeating audio sam-
ples that grow louder as the player approaches them. The
player should try to center the sounds of treasure between the
left and right channels to collect the treasure, and they should
keep the sounds of animals panned to the left or right to avoid
hitting the animals.

With respect to Figure 2, we would classify Blindfold Racer as
an efficiency-preserving game. While Blindfold Racer moves
at a pace that is just as fast as racing games with graphics, the
three elements of player intention as described in the previous

section are limited in Blindfold Racer compared to racing
games that sighted players would play.

In Blindfold Racer, it is not possible for the player to anticipate
upcoming turns, accelerate and decelerate in an analog manner,
or perform higher level strategies such as cutting corners. In
fact, the developer explains that there is no concept of vehicle
physics, that tracks are modeled using a simplified geometry
that requires straightaways to be in the same direction and all
turns to be less than 90° [26], and that car steering is simplified
so that the car will move in that straightaway direction when
the mobile device is tilted to the center position [28].

Mach 1 (PC, 2003)
Mach 1 [6] is an audio-based racing game published on PC by
Jim Kitchen eleven years before Blindfold Racer was released.
The player’s goal is similar that from Blindfold Racer, but in
Mach 1 there are no obstacles present on the track. Players
accelerate, decelerate, and steer using a USB steering wheel or
controller joystick, and they can press a button to have a voice
speak their current lateral position on the track: a number
from 1 to 100 where 1 represents the track’s left edge, 100 the
right edge, and 50 the center. The player should tap the button
repeatedly to monitor their lateral position continuously.

As the player approaches an upcoming turn, the game will
loop a predetermined sound effect in the left or right stereo
audio channel depending on the direction of the turn. The
sound effect starts playing quietly but grows louder as the
player approaches the beginning of the turn. The game will
play a thumping sound as the player reaches the turn, and the
process will repeat to signify the end of the turn: a random
looping sound effect growing louder followed by a thump.

Unlike Blindfold Racer, Mach 1 allows players to anticipate
upcoming turns and accelerate and decelerate in an analog
manner. Still, players do not have full freedom to “read the
road” since it is difficult to determine from the increasing
volume effect exactly when a turn will begin and the game
only alerts players of a single upcoming turn or straightaway at
a time. As with Blindfold Racer, there is no concept of vehicle
physics, tracks are modeled using a simplified geometry (so
there is no concept of cutting corners), and car steering is
simplified so that the car will move in a straightaway direction
whenever the player lets go of the steering.

Top Speed Series (PC, 2004)
The Top Speed [11] series is a series of racing games released
on PC by a team of four developers. The goal for players is
the same as in Blindfold Racer and Mach 1: to reach the end
of the track as quickly as possible without hitting the sides.
Top Speed 2 and 3 support multiplayer races, though the cars
cannot collide with each other or interact with each other in
any way. Players steer with a joystick controller as in Mach 1.

Like Blindfold Racer, a sound is panned between the left and
right channels as a means of displaying the player’s lateral
position on the track. In the Top Speed series, however, that
sound is the sound of the player’s car’s engine. A speech clip
saying a phrase such as “easy left” or “hard right” will play
when the player enters a turn. These phrases describe the
direction and sharpness of the turn, and the player must react

3

quickly by steering the appropriate amount. As with Blindfold
Racer and Mach 1, there is no concept of vehicle physics,
tracks are modeled using a simplified geometry, and car steer-
ing is simplified so that the car will move in a straightaway
direction when the player lets go of the steering.

Sucu and Folmer’s Haptic Steering Interface
Sucu and Folmer’s haptic steering interface [34] is a driver
assistance system published as a response to the National
Federation of the Blind’s Blind Driver Challenge [22], an
initiative to make it possible for people who are blind to drive a
car by themselves. The driver steers with a steering wheel and
has rumble motors (in this case, PlayStation Move controllers)
attached to the back of their hands.

At each time step, the system computes the location of what
Sucu and Folmer call a target point, which is the point on
the median of the track a fixed distance ahead of the driver’s
current position. If the car’s current heading points too far
away from the target point’s direction, the system will vibrate
the left or right rumble motors. The analogy is that of a rumble
strip on the side of a highway: if the vibration is felt on the
right the player should steer to the left and vice-versa.

Although the authors state that making a racing game with
this system is promising future work, we feel that its current
goal as a driver assistance system runs contrary to supporting
intention. When drivers use this system, they must follow its
orders as soon as those orders are felt and nothing more. Our
interface, by contrast, is designed to support intention.

THE RACING AUDITORY DISPLAY (RAD)
In this section we introduce the racing auditory display (RAD),
a user interface whose goal is to help racing games become
equivalently accessible to people who are blind. The RAD was
designed with the principle that it should not just tell players
what to do but rather give them enough relevant information
to form a plan of action themselves.

The RAD comprises two novel sonification techniques: the
sound slider and the turn indicator system. The sound slider
helps the player understand their car’s speed and trajectory on
a racetrack while the turn indicator system alerts players of
the direction, sharpness, length, and timing of upcoming turns
well in advance of the actual turns. Together, the techniques
allow players to understand aspects about the race and perform
a wide variety of actions that are not possible to understand
and perform in current blind-accessible racing games.

The RAD’s Sound Slider
The RAD’s sound slider is a novel mechanism for displaying
a value within a range using spatialized (3D) sound. It is anal-
ogous to a traditional user interface slider, where the slider’s
track is a line segment in the 3D soundscape and the slider’s
handle is replaced with a virtual speaker (sound emitter). The
position of the speaker on the virtual track represents the
slider’s displayed value, where one end of the track represents
the slider’s minimum value, the other its maximum value, and
positions in between intermediate values. The slider’s value is
for display only: the speaker cannot be manually manipulated
by the user like a traditional user interface slider’s handle can.

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

(a) (b)

w

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

d

L

C

R

Figure 2. RAD’s sound slider. (a) Sample car pose with the car’s trajecto-
ries if the player was to steer fully left or right drawn. (b) Overhead view
of corresponding rendered spatialized (3D) soundscape. RAD’s sound
slider is a speaker emitting the car’s engine noise whose lateral position
in the soundscape tracks the ratio of the trajectories’ lengths. In this
case, the player will hear the car’s engine right in front of their face
but slightly to the left. The ratio represents the player’s relative risk of
hitting either edge of the track.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how RAD computes the sound slider value
to display to the player. Given the car’s current position,
orientation, and speed on the race track, RAD computes the
trajectories that the car would follow if the player was to steer
fully to the left or fully to the right. It models these trajectories
as circular arcs which we denote as

>
CL and

>
CR, respectively.

The radii of the arcs are modeled as being directly proportional
to the car’s current speed, where the constant of proportionality
represents how sharply the car turns. Through manual tuning,
we found the value of the constant in our prototype racing
game to be very close to 1.6.

Next, RAD finds the points at which the trajectories intersect
the track’s edges, then it computes the respective arc lengths
l
>
CL and l

>
CR from the car’s position to these points. l

>
CL

and l
>
CR represent the distances the car would travel before

hitting an edge were the player to steer fully to the left or right,
respectively. Finally, RAD sets the sound slider value to the
following quantity, which we call the time-to-impact ratio:

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

. (1)

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

w (2)

The sound slider’s leftmost and rightmost positions are repre-
sented by zero and one respectively. There are a few special
cases, however, in which the system sets the slider value to
something different. If both trajectories hit the track’s left

(a) (b) (c) (d)
Figure 3. Four car poses and their corresponding sound slider values.
Though the car’s lateral position is the same between (a) and (b) and
between (c) and (d), the corresponding sound slider values are very dif-
ferent. This is because the left and right trajectories’ lengths — and
therefore the relative risks of hitting the left and right sides of the track
— are very different in each pair of cases.

edge (which means that the player is driving toward the left
edge), or if the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Lateral Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right sides if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games.

Figure 3 illustrates the benefit of updating the auditory display
using our trajectory-based approach over the car’s lateral po-
sition alone. The car’s lateral position is the same between
Figures 3(a) and (b) and between Figures 3(c) and (d), but
the player’s relative risks of hitting the track’s left and right
sides is very different between each pair. In Figure 3(b), for
example, the player is much more at risk of hitting the track’s
right side than they are in Figure 3(a) due to the sharp left turn
in Figure 3(b), and the player should be aware of this.

As another example, the car’s heading in Figure 3(c) puts the
car more at risk of hitting the track’s left edge than its right
edge, while its heading in Figure 3(d) does the opposite. The
player should be aware of this as well. The sound slider’s
trajectory-based approach communicates these risks.

Overcoming the Intention–Efficiency Tradeoff
We argue that the sound slider’s trajectory-based approach
to computing its displayed value allows RAD to overcome
the intention–efficiency tradeoff that plagues other blind-
accessible racing game interfaces (Figure 1). The reason is
that this approach distills many pieces of information — the
car’s lateral position on the track, its heading with respect to
the track’s, its speed, the track’s width, whether the track is
about to immediately turn, and more — into a single measure
that is no less relevant to the process of racing than all of that
information put together.

5

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

(a) (b)

w

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

d

L

C

R

Figure 2. RAD’s sound slider. (a) Sample car pose with the car’s trajecto-
ries if the player was to steer fully left or right drawn. (b) Overhead view
of corresponding rendered spatialized (3D) soundscape. RAD’s sound
slider is a speaker emitting the car’s engine noise whose lateral position
in the soundscape tracks the ratio of the trajectories’ lengths. In this
case, the player will hear the car’s engine right in front of their face
but slightly to the left. The ratio represents the player’s relative risk of
hitting either edge of the track.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how RAD computes the sound slider value
to display to the player. Given the car’s current position,
orientation, and speed on the race track, RAD computes the
trajectories that the car would follow if the player was to steer
fully to the left or fully to the right. It models these trajectories
as circular arcs which we denote as

>
CL and

>
CR, respectively.

The radii of the arcs are modeled as being directly proportional
to the car’s current speed, where the constant of proportionality
represents how sharply the car turns. Through manual tuning,
we found the value of the constant in our prototype racing
game to be very close to 1.6.

Next, RAD finds the points at which the trajectories intersect
the track’s edges, then it computes the respective arc lengths
l
>
CL and l

>
CR from the car’s position to these points. l

>
CL

and l
>
CR represent the distances the car would travel before

hitting an edge were the player to steer fully to the left or right,
respectively. Finally, RAD sets the sound slider value to the
following quantity, which we call the time-to-impact ratio:

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

. (1)

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

w (2)

The sound slider’s leftmost and rightmost positions are repre-
sented by zero and one respectively. There are a few special
cases, however, in which the system sets the slider value to
something different. If both trajectories hit the track’s left

(a) (b) (c) (d)
Figure 3. Four car poses and their corresponding sound slider values.
Though the car’s lateral position is the same between (a) and (b) and
between (c) and (d), the corresponding sound slider values are very dif-
ferent. This is because the left and right trajectories’ lengths — and
therefore the relative risks of hitting the left and right sides of the track
— are very different in each pair of cases.

edge (which means that the player is driving toward the left
edge), or if the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Lateral Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right sides if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games.

Figure 3 illustrates the benefit of updating the auditory display
using our trajectory-based approach over the car’s lateral po-
sition alone. The car’s lateral position is the same between
Figures 3(a) and (b) and between Figures 3(c) and (d), but
the player’s relative risks of hitting the track’s left and right
sides is very different between each pair. In Figure 3(b), for
example, the player is much more at risk of hitting the track’s
right side than they are in Figure 3(a) due to the sharp left turn
in Figure 3(b), and the player should be aware of this.

As another example, the car’s heading in Figure 3(c) puts the
car more at risk of hitting the track’s left edge than its right
edge, while its heading in Figure 3(d) does the opposite. The
player should be aware of this as well. The sound slider’s
trajectory-based approach communicates these risks.

Overcoming the Intention–Efficiency Tradeoff
We argue that the sound slider’s trajectory-based approach
to computing its displayed value allows RAD to overcome
the intention–efficiency tradeoff that plagues other blind-
accessible racing game interfaces (Figure 1). The reason is
that this approach distills many pieces of information — the
car’s lateral position on the track, its heading with respect to
the track’s, its speed, the track’s width, whether the track is
about to immediately turn, and more — into a single measure
that is no less relevant to the process of racing than all of that
information put together.

5

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

(a) (b)

w

d

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

L

C

R

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

(a) (b)

w

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

Figure 2. Overview of sound slider.

the sound of the car’s engine right in front of their face. The
car’s sound will move toward the left or the right as the car
becomes more at risk of hitting the track’s left or right edges,
respectively. When they steer, they control the car’s sound
directly, so if they hear the car’s sound move far toward the left,
they will want to steer right to bring the sound back toward
the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how our sound slider system computes the
slider value to display to the player. Given the car’s current
position, orientation, and speed on the race track, it computes
the trajectories that the car would follow if the player was
to steer fully to the left or fully to the right. It models these
trajectories as circular arcs. We will denote them as

>
CL and

>
CR, respectively. The radii of the arcs are modeled as being
directly proportional to the car’s current speed, where the
constant of proportionality represents how sharply the car
turns. Through manual tuning, we found the value of the
constant in our prototype racing game to be very close to 1.6.
It is very important to set this value to be as accurately as
possible.

Next, the system computes the respective points at which
the trajectories intersect the track’s edges, then computes the
respective arc lengths l

>
CL and l

>
CR from the car’s position

to these points of intersection. l
>
CL and l

>
CR represent the

distances the car would travel before hitting an edge were the
player to steer fully to the left or right, respectively.

Finally, the system sets the slider value to the following quan-
tity, which we call the time-to-impact ratio:

Figure 3. Four driving scenarios.

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

, (1)

where zero represents the leftmost position on the slider and
one represents the rightmost position on the slider. There are a
few special cases, however, in which the system sets the slider
value to something different. If both trajectories hit the track’s
left edge (which means that the player is driving toward the
left edge) or the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Raw Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right edges if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games. Recall that the other games used very simplified
models for vehicle handling and track designs.

Figure 3 illustrates the benefit of using our approach over the
car’s lateral position on the track. The car’s lateral position
is the same in Figures 3(a) and (b), but due to the nature
of the tracks in these figures the player has an equal risk of
hitting the track’s left and right edges in Figure 3(a) but not
in Figure 3(b): in that figure the player should steer to the left
and would otherwise soon hit the track’s right edge. Likewise,
the car’s lateral position is the same in Figures 3(c) and (d),
but due to the difference in the cars’ headings with respect to
the tracks’, the player is more at risk of hitting the left edge

d

L

C

R

Figure 2. RAD’s sound slider. (a) Sample car pose with the car’s trajecto-
ries if the player was to steer fully left or right drawn. (b) Overhead view
of corresponding rendered spatialized (3D) soundscape. RAD’s sound
slider is a speaker emitting the car’s engine noise whose lateral position
in the soundscape tracks the ratio of the trajectories’ lengths. In this
case, the player will hear the car’s engine right in front of their face
but slightly to the left. The ratio represents the player’s relative risk of
hitting either edge of the track.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [4]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 2 illustrates how RAD computes the sound slider value
to display to the player. Given the car’s current position,
orientation, and speed on the race track, RAD computes the
trajectories that the car would follow if the player was to steer
fully to the left or fully to the right. It models these trajectories
as circular arcs which we denote as

>
CL and

>
CR, respectively.

The radii of the arcs are modeled as being directly proportional
to the car’s current speed, where the constant of proportionality
represents how sharply the car turns. Through manual tuning,
we found the value of the constant in our prototype racing
game to be very close to 1.6.

Next, RAD finds the points at which the trajectories intersect
the track’s edges, then it computes the respective arc lengths
l
>
CL and l

>
CR from the car’s position to these points. l

>
CL

and l
>
CR represent the distances the car would travel before

hitting an edge were the player to steer fully to the left or right,
respectively. Finally, RAD sets the sound slider value to the
following quantity, which we call the time-to-impact ratio:

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

. (1)

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

w (2)

The sound slider’s leftmost and rightmost positions are repre-
sented by zero and one respectively. There are a few special
cases, however, in which the system sets the slider value to
something different. If both trajectories hit the track’s left

(a) (b) (c) (d)
Figure 3. Four car poses and their corresponding sound slider values.
Though the car’s lateral position is the same between (a) and (b) and
between (c) and (d), the corresponding sound slider values are very dif-
ferent. This is because the left and right trajectories’ lengths — and
therefore the relative risks of hitting the left and right sides of the track
— are very different in each pair of cases.

edge (which means that the player is driving toward the left
edge), or if the player’s car is currently off the track on the
left side, system will set the slider value to zero. Likewise, in
the case of the track’s right edge, the system will set the slider
value to one.

From Lateral Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right sides if the player wanted to. This
distinction is what makes the sound slider intuitive for players
to understand even with the complex vehicle physics, steering
behaviors, and track geometries that are present in modern
racing games.

Figure 3 illustrates the benefit of updating the auditory display
using our trajectory-based approach over the car’s lateral po-
sition alone. The car’s lateral position is the same between
Figures 3(a) and (b) and between Figures 3(c) and (d), but
the player’s relative risks of hitting the track’s left and right
sides is very different between each pair. In Figure 3(b), for
example, the player is much more at risk of hitting the track’s
right side than they are in Figure 3(a) due to the sharp left turn
in Figure 3(b), and the player should be aware of this.

As another example, the car’s heading in Figure 3(c) puts the
car more at risk of hitting the track’s left edge than its right
edge, while its heading in Figure 3(d) does the opposite. The
player should be aware of this as well. The sound slider’s
trajectory-based approach communicates these risks.

Overcoming the Intention–Efficiency Tradeoff
We argue that the sound slider’s trajectory-based approach
to computing its displayed value allows RAD to overcome
the intention–efficiency tradeoff that plagues other blind-
accessible racing game interfaces (Figure 1). The reason is
that this approach distills many pieces of information — the
car’s lateral position on the track, its heading with respect to
the track’s, its speed, the track’s width, whether the track is
about to immediately turn, and more — into a single measure
that is no less relevant to the process of racing than all of that
information put together.

5

Figure 3. The RAD’s sound slider. (a) Sample car pose showing what
the car’s trajectories would be if the player were to steer fully left or
fully right. (b) Overhead view of corresponding rendered spatialized
(3D) soundscape. The RAD’s sound slider is a speaker emitting the car’s
engine noise whose lateral position in the soundscape tracks the ratio of
the trajectories’ lengths. The ratio represents the player’s relative risk
of hitting either edge of the track. In this case, the player will hear the
car’s engine right in front of their face but slightly to the left.

Figure 3 shows the specific sound slider configuration that we
propose for blind-accessible racing games. The slider’s track
is a virtual horizontal bar of width w placed a distance d in
front of the player’s face in the soundscape. In our prototype
racing game, w is 65 m and d is 12 m. The speaker emits
the sound of the player’s car’s engine and slides left and right
along the bar as the sound slider updates its value.

We explained the concept of the sound slider to our studies’
participants as follows. We asked them to imagine being
behind the car that they were controlling, so they could hear
the sound of the car’s engine right in front of their face. The
car’s sound will move left or right as the car becomes more
at risk of hitting the track’s left or right edges, respectively.
When they steer, they control the car’s sound directly, so if
they hear the car’s sound move far toward the left, they will
want to steer right to bring the sound back toward the center.

If the player is in a turn and not turning nearly as sharply
as they need to, perhaps because they are going too fast, the
sound slider will emit a tire screeching sound adapted from [5]
from the same position as the car’s engine sound. This acts to
warn the player that they must slow down by hitting the brake
or letting go of the accelerator to properly complete the turn.

Computing the Slider Value
Figure 3 illustrates how the RAD computes the sound slider
value to display to the player. Given the car’s current position,
orientation, and speed on the race track, the RAD computes
the trajectories that the car would follow if the player was to
steer fully to the left or right. It models these trajectories as
circular arcs which we denote as

>
CL and

>
CR, respectively. The

radii of the arcs are modeled as being directly proportional to
the car’s current speed, where the constant of proportionality
represents how sharply the car turns. Through manual tuning,
we found its value in our prototype game to be roughly 1.6.

Next, the RAD finds the points at which the trajectories in-
tersect the track’s edges, then it computes the respective arc
lengths l

>
CL and l

>
CR from the car’s position to these points.

4

(a) (b) (c) (d)
Figure 4. Four car poses and their corresponding sound slider values.
Though the car’s lateral position is the same between (a) and (b) and
between (c) and (d), the corresponding sound slider values are very dif-
ferent. This is because the left and right trajectories’ lengths — and
therefore the relative risks of hitting the left and right sides of the track
— are very different in each pair of cases.

l
>
CL and l

>
CR represent the distances the car would travel before

hitting an edge were the player to steer fully to the left or right,
respectively. Finally, the RAD sets the sound slider value to
the following quantity, which we call the time-to-impact ratio:

Slider Display Value =
l
>
CL

l
>
CL+ l

>
CR

. (1)

The sound slider’s leftmost and rightmost positions are rep-
resented by zero and one respectively. The system will set
the slider value to something different than the time-to-impact
ratio in two cases. The first case is when both trajectories hit
the track’s left edge — which means that the player is driving
toward the left edge — or when the player’s car is currently
off the track on the left side. The second is the analogous case
for the track’s right edge. In these cases, the system will set
the slider value to zero and one, respectively.

From Lateral Position to Relative Risk
The algorithm described above represents a new approach for
letting players know where they are situated on a racetrack.
Unlike the stereo pan values in Blindfold Racer, Mach 1, and
the Top Speed series, the sound slider’s display value is not
a direct reflection of the car’s lateral position on the track.
Rather, it is a function of the car’s relative risk of hitting
the track’s left or right sides if the player wanted to. This
distinction is what makes the sound slider intuitive even with
the complex vehicle physics, steering behaviors, and track
geometries that are present in modern racing games.

Figure 4 illustrates the benefit of updating the auditory display
using our trajectory-based approach over the car’s lateral po-
sition alone. The car’s lateral position is the same between
Figures 4(a) and (b) and between Figures 4(c) and (d), but
the player’s relative risks of hitting the track’s left and right
sides is very different between each pair. In Figure 4(b), for
example, the player is much more at risk of hitting the track’s
right side than they are in Figure 4(a) due to the sharp left turn
in Figure 4(b), and the player should be aware of this.

As another example, the car’s heading in Figure 4(c) puts the
car more at risk of hitting the track’s left edge than its right
edge, while its heading in Figure 4(d) does the opposite. The
player should be aware of this as well. The sound slider’s
trajectory-based approach communicates these risks.

Overcoming the Intention–Efficiency Tradeoff
We argue that the RAD’s trajectory-based approach to com-
puting its sound slider’s displayed value allows it to over-
come the intention–efficiency tradeoff that plagues other blind-
accessible racing game interfaces (Figure 2).

The reason is that this approach distills many pieces of infor-
mation — the car’s lateral position on the track, its heading
with respect to the track’s, its speed, the track’s width, whether
the track is about to immediately turn, and more — into a
single measure that we hope is as relevant to the process of
racing as all of that information put together. Moreover, it does
so in a way that gives players the freedom to decide how risky
they would like to race: whether they should cut corners by
being close to hitting the track’s inside edge or stay closer to
the track’s center. Sucu and Folmer’s haptic driving interface,
by comparison, eliminates intention by simply telling players
which way they should steer at any given time.

We liken this process of distilling the many pieces of informa-
tion to that of dimensionality reduction in machine learning
and statistics. Dimensionality reduction is important in these
fields because it boosts classification speed and removes re-
dundancies in the representations of features. In the RAD’s
sound slider’s case, the process reduces the amount of infor-
mation that must be conveyed to the player while preserving
its meaning and relevancy.

The RAD’s Turn Indicator System
The RAD’s turn indicator system uses spatialized (3D) sound
cues to alert players of the direction, sharpness, and timing of
upcoming turns and the length of in-progress turns. It works
by playing a series of four beeps that trigger when the player’s
car crosses four corresponding and equally spaced distance
markers placed ahead of the turn. The last beep is a continuous
sound that begins playing just as the turn begins and continues
sounding until the player completes the turn. Left and right
turns are indicated by beeps emitted from the left and right
ends of the sound slider’s track, respectively. Overlapping
turns are indicated by overlapping sets of beeps.

By using four beeps to indicate turns, the player is given
enough time to recognize the beeps’ rhythm and anticipate the
timing of the last beep, which marks the beginning of the turn.
The player can then time their steering accordingly, cutting
the corner if they wish by starting to steer a little before the
last beep begins sounding. The distance markers triggering
the four beeps are spaced 20 m apart, giving the player 1.7 s
of advance notice of the turn when they are driving at the
maximum speed of 35 m/s (approximately 75 mph).

The beep sounds themselves are modified recordings of a
distant engine hum, adapted from [10]. Low pitched beeps
indicate soft turns, moderately pitched beeps indicate moderate
turns, and high-pitched beeps indicate sharp turns. We defined
soft turns as those which turn less than 0.3° per meter of track
and sharp turns as those which turn more than 1° per meter of
track. When a turn changes sharpness partway through, as in
Turns 7a and 7b in Figure 6, the system treats each part as a
separate turn and alerts the player accordingly.

5

Figure 5. Racing game prototype implemented in Unity.

In addition to playing the beeps, the system announces each
upcoming turn’s number, where Turn 1 is the track’s first turn,
Turn 2 the second, and so on. The number is announced at
the same time as the first beep, and the goal is to help players
learn the track over time as sighted players do.

Supported Actions
The RAD’s sound slider and turn indicator system work to-
gether to support the following actions:

Understand the car’s current speed: The sound slider’s car
engine sound will increase in pitch as the engine revs up,
giving the player a general sense of the car’s current speed.

Align the car with the track’s heading: If the player’s car
is not aligned with the track’s heading, the car engine sound
will begin moving left or right on the sound slider. The
player can align their car with the track’s heading by steer-
ing until the engine sound stops moving.

Learn the track’s layout: The turn indicator’s turn number
announcements help the player remember specific turns and
sequences of turns.

Profile upcoming turns: The direction, sharpness, timing,
and length of upcoming turns are indicated by the turn
indicator beeps’ left vs. right location in the soundscape,
the beeps’ pitch, the beeps’ rhythm, and the fourth beep’s
duration, respectively.

Cut corners: By steering into a turn just before the turn indi-
cator’s fourth beep, the player can cut corners. The player
can maintain an inside position during the turn by steering
such that the engine sound moves toward the inside of the
turn on the sound slider (and away from the slider’s center).

Choose an early or late apex: By steering into a turn just be-
fore or after the turn indicator’s fourth beep, the player can
choose between taking an earlier apex or a later apex [25].

Position the car for an optimal turning path: By steering
the car in a way that moves the engine sound to a desired
position on the sound slider ahead of a turn, the player can
position the car for a more optimal driving path.

Know when braking is needed to complete a turn: The
sound slider emits a tire screeching sound when the player
is going too fast in a turn to turn sharply enough.

RACING GAME PROTOTYPE
As a proof of concept, we developed a racing game using
the Unity game engine (version 5.4.2) [37] and implemented

2

3

4

5a
5b

6

7a

7b

8

9

10

11

12

13

14

15

16

17

18

20
19

1

Figure 6. Circuit diagram for the racetrack used in user studies. This
track is difficult and much more complex than ones in previous blind-
accessible games, featuring a wide variety of turns.

the RAD in that racing game. Our prototype, shown in Fig-
ure 5, is an extension of TurnTheGameOn’s Racing Game
Template [23]. It features full 3D graphics and uses realistic
vehicle physics from the Edy’s Vehicle Physics package [13].

Our game is played with a Sony DUALSHOCK 4 (PlayStation
4 controller) [31] and a standard pair of headphones. The
controls are mapped similarly to other PlayStation 4 racing
games: the left analog stick controls steering, R2 (the right
analog trigger) is gas/acceleration, L2 (the left analog trigger)
is brake and reverse, and R1 (the right shoulder button) is the
handbrake. In case of a crash, participants could press the
Triangle button to reset their car to the center of the track.

To generate spatialized (3D) sound, we enabled the sim-
ple demo spatializer provided by Unity’s Audio Spatializer
SDK [38]. The spatializer applies a direct head-related transfer
function (HRTF) that is based on a data set generated from a
KEMAR dummy-head [14].

The Racetrack
Figure 6 shows the track that we used for our user studies.
The track was developed internally at Unity [36] and is much
more complex than ones in previous blind-accessible games.
It features a wide variety of turns: soft, moderate, and sharp
turns; a long straightaway; a series of hairpin turns (Turns
9–11) that require players to slow down; a 270° turn (Turn
16); several short kinks in the track (Turns 8, 13, 14, & 17);
several series of esses (Turns 1–5 & 19–20); long and gradual
turns (Turns 5b & 7a); and turns that vary in sharpness as they
progress (Turns 5, 7 & 17). The track is 3,641 m long, 19 m
wide, and has 20 turns in total.

STUDY 1: THE RAD VS. OTHER INTERFACES
We performed a study with both blind users and sighted users
wearing blindfolds to compare the RAD with Mach 1’s inter-
face [6] and Sucu and Folmer’s haptic steering interface [34].
These interfaces represent a broad range of design alternatives.

Our study had three goals. First, we wanted to determine how
well the average person would perform with each of these
user interfaces with a short amount of training. Second, we
wanted to see how users would rank the three interfaces by
order of preference. Third, we wanted to observe how well
each interface helped players anticipate upcoming turns.

6

Study 1 Participants
Our study included fifteen participants. Three of them — P4,
P8, and P11 — were blind their entire lives and the rest were
sighted but blindfolded. Seven were age 16–25 and the rest
were age 26–35; four were female and the rest were male. Our
study was approved by our institution’s Institutional Review
Board, and parents were present with minors.

We recruited P4, P8, and P11 through Helen Keller Services
for the Blind. P4 had no prior experience with racing games,
while P8 and P11 had played just one audio racing game each
years prior: Top Speed and Blindfold Racer, respectively. P8,
however, described himself as a gamer and had played other
types of audio games before, namely an RPG [12] and a first-
person shooter [18]. Six of the twelve sighted participants had
at least a moderate amount of experience playing video games,
and the rest had very little experience. Of those with moderate
experience, three would describe themselves as gamers.

We should note that participants who are sighted but blind-
folded are generally not suitable proxies for participants who
are blind. Silverman et al. [30] found, for example, that sighted
but blindfolded participants can be biased by the initial chal-
lenge of becoming blind, therefore judging the capability of
people who are blind as much less than it actually is. As a
result, and as is good practice [24], we will present the results
from these two groups of participants separately.

Study 1 Procedure
In the study, participants raced using each of the three user
interfaces in a counterbalanced order while we observed them.
Participants controlled their car using a Sony DUALSHOCK
4 (PlayStation 4 controller) [31] and wore a pair of Amazon-
Basics on-ear headphones [3]. All sighted participants wore
blindfolds and could not see us loading the track, nor could
they see what they were doing in the games. We told the partic-
ipants that our team developed all three of the user interfaces.
Each session lasted approximately two hours.

For both the haptic steering interface and the RAD, we had
participants play our prototype racing game in which we im-
plemented both. For Mach 1’s interface, however, we had
participants play Mach 1 itself. We did this because Mach 1
uses simplified models rather than realistic designs for its
tracks and steering system, and its user interface was designed
with the simplified models in mind. Since we loaded Mach 1
into a level before the study began, the participants were not
aware that they were playing a previously published game.

Like other modern game controllers, the DUALSHOCK 4’s
rumble motors are different in size, with the left motor being
significantly larger than the right motor. Since the haptic steer-
ing interface requires identical rumble motors for the user’s left
and right hands, however, we replaced our DUALSHOCK 4’s
left motor with one identical to the right motor. We clamped
the motors’ vibration intensity to 50% of its normal maximum
to make it easier for players to distinguish between the motors.

We began each user interface trial by training each participant
with hands-on instruction for 15–20 minutes on how to use
the interface. We created two training tracks in our prototype
— a square track with rounded corners and a figure eight track

— to help the participants relate the interfaces’ feedback with
easily understandable shapes. We told participants to play
with each interface until they understood how they worked.

We followed the three trials with a survey asking participants
to rank the three interfaces from their most to least favorite,
rate how well each interface helped them anticipate upcoming
turns on a 20-point Likert scale in which higher values were
better, and offer feedback justifying their ratings. Participants’
feedback was extensive. To analyze it, we first transcribed it
in full, then — via a series of repeated readings — wrote topic
labels for each piece describing what it was talking about. We
then tallied positive and negative opinions for each identified
topic. We report these numbers along with the quotes that
were most descriptive and representative of overall opinions.

Study 1 Results: Participants Who Are Blind
User Interface Ranking
P4 ranked the user interfaces from best to worst as Mach 1’s
interface, the RAD, and Sucu and Folmer’s interface, in that
order. Both P8 and P11 ranked them as the RAD, Sucu and
Folmer’s interface, and Mach 1’s interface, in that order.

Awareness of Upcoming Turns
On a 20-point Likert scale in which higher values are better,
P4 rated their ability to anticipate upcoming turns using the
RAD, Sucu and Folmer’s interface, and Mach 1’s interface
as 8, 11, and 15, respectively. P8’s ratings were 18, 11, and
7, respectively, while P11’s were 5, 10, and 12, respectively.
The difference is sharp between P8 and the others. Both P4
and P11 had very little experience playing video games while
P8 considers himself a gamer. Although P11 rated the RAD
lowest and Mach 1’s interface highest on this scale, she ranked
the RAD as the best of the three interfaces overall and Mach
1’s interface the worst of the three.

Driving Performance in Our Prototype Game
Of the participants who are blind, only P8 was able to complete
a full lap, and he did so with each of the three user interfaces.
P8, the only self-described gamer among the three, completed
our track (Figure 6) with zero major collisions on his first try
with both Sucu and Folmer’s interface and the RAD.

Neither P4 nor P11 could complete a full lap using any of the
user interfaces, though all three participants completed our
square and figure eight training tracks using both the RAD and
Sucu and Folmer’s interface. Recall that there were no training
tracks for Mach 1. We should note that our track (Figure 6)
resembles what one would find in a real video game and is
very challenging compared to ones in existing blind-accessible
racing games. Sucu and Folmer, for example, tested a basic
oval and still found many crashes [33, 34].

Qualitative Feedback: Mach 1’s Interface
P4 rated Mach 1’s user interface as his favorite because it was
the only one to explicitly read out the car’s lateral position and
because he felt that he “had [more] time to think and react”
to its cues compared to the other interfaces. This is likely
because Mach 1 does not provide continuous feedback about
the car’s positioning as the other interfaces do; rather, it reads
the information whenever a particular button is pressed.

7

Both P8 and P11 found Mach 1’s interface to be the worst of
the three, with P11 saying that it was “the hardest” and “hard
to use properly.” P8 said that while “it had pretty much [all
of the game elements that] [he] would expect from a racing
game,” it was “very difficult [to use because] there are so many
things going on” at the same time, including many “sounds
that are not relevant.” He also said that it “was difficult [. . .]
knowing when you are in the turn and when you are out of the
turn” because the steadily increasing sound effect volume that
it employs to indicate the beginnings of turns was not precise.

Qualitative Feedback: Haptic Steering Interface
P4 considered Sucu and Folmer’s haptic steering interface to
be the worst of the three “mainly due to not being able to
see upcoming turns.” P8 and P11 ranked the haptic steering
interface in between their most and least favorite, with P11
saying that she “did not get to think about how to attack the
turn[s]” and that “[using] it would have been easier if there was
a warning in advance, when you should start turning.” Still,
P11 felt that while the lateral positioning feedback “wasn’t
exact[ly precise], it was to the point that I [...] could kind of
tell if the car wasn’t in the center.”

P8 said that the vibrations “didn’t give much [of an] indication
of how sharp [each] turn was,” preventing him from making
strategies such as, “I shouldn’t turn too much here to avoid
colliding with the [inside] wall.” He felt that “the experience
would be better, perhaps, by “mak[ing] the game controller
vibrate more or less” in intensity depending on the sharpness of
the turn. Sucu and Folmer, however, found users’ performance
with continuous vibration feedback to be worse than with
binary (on/off) feedback [33, 34].

Qualitative Feedback: Racing Auditory Display (RAD)
P4 ranked the RAD in between his most and least favorite,
saying “it is definitely better than the vibration method” (Sucu
and Folmer’s interface) but that he “still had a hard time”
because it was “confusing to parse between the two types of
sounds” (the sound slider and the turn indicator system). Both
P8 and P11 considered the RAD to be their favorite interface,
with P8 saying that it was “very, very logically built up [. . .]
because it gave [him] an indication of how sharp the turns
were [and] for how long [he was] in [each] turn.”

P8 felt that distinguishing between soft, moderate, and sharp
turns “worked very well with the tonality of the sound.” P11,
on the other hand, said that while she “got the concept, it
was [. . .] harder to put the concept into use,” finding the
RAD “difficult to [learn] but very entertaining” to play with.
She remarked that with the RAD “the feeling of the game is
fast-paced,” adding, “Yes, you have the time [to plan], but
sometimes you might not be able to [pull it off].” P8 said that
he liked how the RAD did not “constantly sa[y] ‘Do this, do
that,”’ and followed up by saying, “After the training was done,
I had the possibility of doing whatever I wanted to.” These
last two comments suggest that the RAD supports intention.

Study 1 Results: Sighted but Blindfolded Participants
User Interface Ranking
Figure 7 shows how participants ranked each interface from
most to least favorite. Sighted participants’ rankings are those

0 2 4 6 8 10 12 14

The RAD

Sucu and Folmer

Mach 1

Count

Most Favorite In Between Least Favorite

Figure 7. Participants’ user interface rankings. The dot patterns indi-
cate rankings from participants who are blind. Most disliked Mach 1’s
interface, and eight of fifteen preferred the RAD’s the most.

without the dot patterns. Six sighted participants chose the
RAD as their preferred interface, five chose the haptic steering
interface, and one chose Mach 1’s interface. Ten out of twelve
sighted participants liked Mach 1’s interface the least.

Awareness of Upcoming Turns
An ANOVA showed that the user interface has a significant
main effect on the sighted participants’ awareness of upcom-
ing turns (F2,22 = 4.83, p = 0.02). Pairwise mean comparison
showed that the only significant difference was between the
RAD and Mach 1’s interface (p < 0.05). The mean (std. dev)
ratings for this metric for the RAD, the haptic steering inter-
face, and Mach 1’s interface are 13.0 (4.9), 8.8 (6.5), and 6.8
(5.5), respectively. This suggests that the RAD does a better
job communicating the nature of upcoming turns for sighted
players than Mach 1’s sound effects of increasing volume.

Driving Performance in Our Prototype Game
Ten out of twelve sighted participants were able to complete
the track in Figure 6, five of which after crashing and resetting
themselves many times. Their performance seemed to de-
pend on their prior experience with video games: participants
tended to perform well with both interfaces or poorly with
both interfaces. All seven sighted participants with at least
moderate video game experience completed the track, two
of whom after crashing many times. By contrast, only three
of the five participants with limited video game experience
completed the track, all of whom after crashing many times.

These results suggest that both the RAD and the haptic steering
interface make it possible for gamers to play racing games
without sight, but neither can make a non-gamer proficient at
playing racing games.

Qualitative Feedback: Mach 1’s Interface
Of the three interfaces, sighted participants liked Mach 1’s
the least in general. Though many mentioned that “it was
relatively easier to understand [their] horizontal location with
[this interface’s spoken] numeric value[s]” (P2) than with
the other interfaces’ feedback, four lamented that “having
numbers read to [them] took extra brain power [to process,
making] it much more difficult for [them] to move forward
quickly” (P5). All said that it “took [them] a while to sort out
all the sounds that were going on” (P15) and that there was
“too much auditory information for too long a period” (P9).

8

Ten felt that determining the position and length of turns was
“very difficult” (P2) and that they could not determine the
turns’ sharpness at all because “the sound leading up to the
thump which indicates [when] turn[s begin and end were]
more confusing and disorienting than anything” (P13). A
different set of ten felt that a “[big] difficulty was to determine
the difference between the probe number [(lateral position)]
and the speed of the vehicle” (P10).

Qualitative Feedback: Haptic Steering Interface
Ten sighted participants felt that this interface’s vibrations
were “easier to [learn and] focus on [compared to] the [other
interfaces’] multiple sounds” (P10), but five felt that “turning
and preparing for turns was completely out of [their] control”
(P5) because “the only interaction [they] had was immediately
responding to the vibrations” (P5), “conforming to the rumble
indicators” (P14), or as P13 put it, “just [. . .] bouncing around
from wall to wall trying to stay in the center.” P5 added that
she “had no idea when a turn was coming up, how sharp or
long it would be, [or] whether or not it was actually a turn
[she] was dealing with or simply trying to straighten [her]self
out on a straightaway after a turn.”

Some liked how “the rumble [being] binary [made it] really
clear [to know] when you are ‘good’ or ‘bad”’ (P13) but six
bemoaned the resulting lack of intention (though not using
that word). Three mentioned that they would prefer having
differing levels of vibration so they could tell “exactly how
far [. . .] from the middle of the road” (P6) they are or “how
sharp the turn was” (P1, P3). As mentioned earlier, however,
Sucu and Folmer found that users crashed much more with
such a system than with binary vibration feedback [33, 34].

Qualitative Feedback: Racing Auditory Display (RAD)
Eight sighted participants felt that the RAD’s turn indicator
system made them “well aware of the upcoming turns with
their position and sharpness” (P3). Two of them, however,
mentioned that the system was “sometimes confusing when
[turns were] very short. . . ” — in which case the fourth turn
indicator beep would be very short — “. . . and/or followed
immediately by another turn” (P1) — in which case the RAD
would output multiple overlapping sets of beeps.

Four participants found the RAD difficult to use while two
found it very natural. In particular, eight participants found it
difficult to distinguish between the sound slider’s engine sound
and the turn indicators, with P5 mentioning that “as a full-
sighted person [she is] not used to using every single sound
as an informational cue and usually do[es]n’t pay attention to
such noises as engine volume.” P2 and P5 sometimes found the
RAD’s sound slider “difficult to understand” (P2, P5) because
“the location of the engine sound (left vs. right vs. middle)
[can] change incredibly fast” as they enter sharp turns.

Seven participants mentioned that they were “almost always
aware of which side of the track [they are] on” (P3) when
using the RAD, with P3 adding, “[. . .] compared to both
[of] the other methods where I was quite clueless.” Seven
participants felt that the RAD made them “fe[el] the most like
[they were] racing” (P13) compared to the other interfaces. P9
found the RAD “fun and definitely the most immersive” of

90 100 110 120 130 140

Sighted

The RAD

Sucu and Folmer

Mean Lap Time (s)
Figure 8. Mean lap times of P8 — a gamer who is blind — using
Sucu and Folmer’s haptic steering interface [34], P8 using the RAD, and
sighted players using vision. The error bars indicate standard deviations.
With the RAD, P8 races significantly better than he does using the haptic
steering interface and comparably to casual players racing with sight.

the three interfaces, and that with the RAD he “could actually
visualize the car and its location.”

STUDY 2: FIELD TEST WITH GAMER WHO IS BLIND
Our second study tests whether the RAD makes it possible for
a player who is blind to race better than Sucu and Folmer’s
haptic steering interface does, and whether their racing perfor-
mance can match that of a sighted player’s.

Study 2 Procedure
In this study, we had participant P8 from our first study —
our only participant that is both blind and considers himself a
gamer — drive thirteen laps around the racetrack in Figure 6
using Sucu and Folmer’s haptic steering interface and fourteen
laps using the RAD. We recorded his lap times, full driving
paths, and gameplay video of him racing as he played. The
car starts at the beginning of the long straightaway in Figure 6
so that it can reach full speed by the start of the first lap. Our
supplemental video shows P8’s third lap ever on this track.

We then had eight sighted players (three female, five male)
drive one to three laps around the track using sight as we
recorded their lap times and driving paths. We used just one to
three laps here because we found in a pilot study that sighted
players’ lap times did not improve over the course of driving
14 laps. The same was true for P8: his average lap time for his
first three laps was 0.3 s faster than for his last three.

Study 2 Results
Figure 8 compares lap times for the three conditions: P8
using the haptic steering interface, P8 using the RAD, and
sighted players using vision. The mean (std. dev) lap times are
128.2 s (8.2 s), 117.0 s (3.7 s), and 111.7 s (3.5 s), respectively.
An ANOVA showed that the user interface has a significant
main effect on the mean lap times (F2,32 = 23.38, p < 0.0001).
Pairwise mean comparison showed that the differences were
significant between every pair of interfaces (p < 0.01) except
the RAD vs. sighted players using vision. This suggests that
the RAD allowed P8 to race significantly better than the haptic
steering interface did — saving an average of 11.2 s per lap —
and comparably to that of players using sight. Only one of the
sighted players, however, described themselves as a gamer.

Figure 9 compares typical driving paths from P8 using the
haptic steering interface and the RAD, respectively. The haptic
steering interface causes P8 to oscillate around the track’s

9

(c) (d)(b)

The RAD
Sucu and Folmer

(a)

Figure 9. Sample driving paths of P8 — a gamer who is blind — using
the RAD and using Sucu and Folmer’s haptic steering interface [34]. We
compare the paths for (a) the entire circuit, (b) an ess turn, (c) a near-
straight section, and (d) a hairpin turn. P8 oscillates constantly with the
haptic steering interface but drives more smoothly when using the RAD.
He is also able to cut the corners in (b) using the RAD. Our supplemental
video shows P8’s third lap with the RAD’s audio included.

center line for the entire lap, which is this interface’s usual
behavior since it works by vibrating the player’s controller
when their heading is too far away from that of a center target
point [34]. By contrast, P8 drives in a much smoother path
using the RAD. In Figure 9(b), for example, we see that P8
carves a nearly straight path through Turns 19 and 20 (which
form an ess turn sequence) when using the RAD but follows
the track’s center line when using the haptic steering interface.

The mean (std. dev) driving path lengths are 3,639 m (74 m),
3,557 m (40 m), and 3,469 m (71 m) for the three respective
conditions: P8 using the haptic steering interface, P8 using the
RAD, and sighted players using vision. An ANOVA showed
that the user interface has a significant main effect on the driv-
ing path length (F2,32 = 19.21, p < 0.0001). Pairwise mean
comparison showed that the differences were significant be-
tween every pair of interfaces (p < 0.05 for the haptic steering
interface vs. the RAD and p < 0.01 otherwise). This shows that
P8 can perform shorter laps with the RAD than with the haptic
steering interface (mainly by reducing oscillations), though
not quite as short as laps made by players driving with sight.

HUMAN–COMPUTER INTERACTION (HCI) IMPLICATIONS
Though games especially benefit from intention, our work
has broader implications within HCI. First, our definition of
a sound slider is generic: a virtual speaker that indicates a
value within a range by its position on a 3D line segment in
the soundscape. For blind users, sound sliders can substitute
for traditional UI sliders; brightness, temperature, or pressure
gauges; progress bars; and any other display that displays a
value within a range. They can also help users perform steering
tasks in the classical sense [1] by representing a tunnel’s width.

Furthermore, the RAD can be used in place of AudioGPS [17]
and SWAN [43] for pedestrian navigation tasks. AudioGPS
and SWAN tell users know which way to walk, but the RAD
can tell users how wide the path or bridge is, how much “wig-
gle room” they have, and whether they are in the middle or
toward one side, helping them avoid oncoming foot traffic.

CONCLUSION, LIMITATIONS, AND FUTURE WORK
This paper offers a vision of how video games can go beyond
just being blind-accessible to being equivalently accessible to
people who are blind, allowing them to play with a similar
sense of control (intention) and efficiency as sighted players
can. To this end, we introduce the racing auditory display
(RAD) to help racing games become equivalently accessible
to people who are blind. It comprises two novel sonification
techniques: the sound slider for understanding a car’s speed
and trajectory on a racetrack and the turn indicator system for
alerting players of the direction, sharpness, length, and timing
of upcoming turns.

Through a pair of empirical studies, we found that players
preferred the RAD’s interface over that of Mach 1, a popular
blind-accessible racing game, and at times “felt like [they] had
as much information as if [they] could see the track” (P1). We
demonstrated that the RAD makes it possible for a gamer who
is blind to race comparably to casual players using sight.

Still, there are several limitations to our studies and to the RAD.
First, our study included just four self-described gamers and
three people who are blind, so our results cannot be assumed to
apply to everyone from these groups. A more thorough follow-
up study targeting gamers who are blind would be needed for
this. Second, the RAD relies on 3D sound spatialization. Not
everyone can hear spatialized sounds correctly with off-the-
shelf head-related transfer functions (HRTFs). Future games
could allow players to load an HRTF from a profile so they
can hear spatialized sound clearly in many different games.

Last, the RAD is not as effective with non-gamers and does
not teach them “video game literacy” such as how video game
vehicle handling works, nor is it effective at helping players
recover from crashes or from driving off the track. A future
version of the RAD could include a Mach 1-style probing
feature for helping players learn the game mechanics and
recover from crashes. We also think it would be feasible to
extend the RAD to incorporate other racing game elements
such as opponent vehicles, boosts, item pickups, and shortcuts.

We hope that just as user interface toolkits provide tools such
as scrollbars, sliders, menus, and radio buttons that “just work”
when software is published, game engines will one day include
building blocks such as walls and track pieces that will “just
work” with user interfaces such as the RAD or AudioGPS [17]
when games are published to make all games blind-friendly.

ACKNOWLEDGMENTS
We would like to thank Russell Martello and Gus Chalkias at
Helen Keller Services for the Blind (HKSB) for help recruiting
participants, Daniel Sims for help conducting user studies and
preparing figures, Sean Pagaduan and Janet Kayfetz for help
writing, and the CHI reviewers for valuable suggestions.

10

REFERENCES
1. Johnny Accot and Shumin Zhai. 1997. Beyond Fitts’

Law: Models for Trajectory-based HCI Tasks. In Proc.
ACM SIGCHI Conf. Hum. Fact. in Comput. Sys. (CHI
1997). ACM Press, New York, NY, USA, 295–302. DOI:
http://dx.doi.org/10.1145/258549.258760

2. Troy Allman, Rupinder K. Dhillon, Molly A.E. Landau,
and Sri H. Kurniawan. 2009. Rock Vibe: Rock
Band® Computer Games for People with No or Limited
Vision. In Proceeding Elev. Int. ACM SIGACCESS Conf.
Comput. Access. (ASSETS 2009). ACM Press, New York,
New York, USA, 51–58. DOI:
http://dx.doi.org/10.1145/1639642.1639653

3. Amazon.com, Inc. 2014. AmazonBasics Lightweight
On-Ear Headphones. (25 November 2014). Retrieved
September 17, 2017 from http://a.co/9OFo5NC.

4. Matthew Tylee Atkinson and Sabahattin Gucukoglu.
2004. The AGRIP Project (AudioQuake). (2004).
Retrieved September 16, 2017 from http://agrip.org.uk.

5. audible-edge. 2009. Chrysler LHS tire squeal 04
(04-25-2009).wav. Audio file. (27 April 2009). Retrieved
September 14, 2017 from
https://freesound.org/s/71739/.

6. audiogames archive. 2015. Games by Jim Kitchen.
(2015). Retrieved September 16, 2017 from
http://www.agarchive.net/pages/devs/kitchensinc.html.

7. Doug Church. 1999a. Formal Abstract Design Tools.
Game Developer Magazine 6, 7 (August 1999), 28.

8. Doug Church. 1999b. Formal Abstract Design Tools.
Gamasutra. (16 July 1999). Retrieved August 25, 2017
from http://www.gamasutra.com/view/feature/131764/
formal_abstract_design_tools.php.

9. Doug Church. 2006. The Game Design Reader: A Rules
of Play Anthology. MIT Press, Cambridge, MA, USA,
Chapter Formal Abstract Design Tools, 366–381.

10. CosmicD. 2007. engine_hum_new.wav. Audio file. (10
April 2007). Retrieved September 14, 2017 from
https://freesound.org/s/33503/.

11. Leonard de Ruijter, Pieter de Ruijter, Bram Duvigneau,
and Davy Loots. 2004. Playing in the Dark: Top Speed.
(2004). Retrieved September 16, 2017 from
http://www.playinginthedark.net/topspeed_e.php.

12. Driftwood Audio Entertainment. 2010. Entombed - An
RPG Roguelike Game for the Blind and Visually
Impaired. (2010). Retrieved January 2, 2018 from
http://www.blind-games.com/entombed.aspx.

13. Angel "Edy" García. 2015. Edy’s Vehicle Physics. (2015).
Retrieved September 15, 2017 from
http://www.edy.es/dev/vehicle-physics/.

14. William G. Gardner and Keith D. Martin. 1995. HRTF
Measurements of a KEMAR. J. Acoust. Soc. Am. 97, 6
(June 1995), 3907–3908. DOI:
http://dx.doi.org/10.1121/1.412407

15. GMA Games. 2005. Shades of Doom Version 1.2. (2005).
Retrieved September 16, 2017 from
http://www.gmagames.com/sod.html.

16. Terri Hedgpeth, John A Black Jr., and Sethuraman
Panchanathan. 2006. A Demonstration of the iCARE
Portable Reader. In Proc. 8th Int. ACM SIGACCESS Conf.
Comput. Access. (ASSETS 2006). ACM Press, New York,
New York, USA, 279–280. DOI:
http://dx.doi.org/10.1145/1168987.1169054

17. Simon Holland, David R. Morse, and Henrik Gedenryd.
2002. AudioGPS: Spatial audio navigation with a
minimal attention interface. Pers. Ubiquitous Comput. 6,
4 (September 2002), 253–259. DOI:
http://dx.doi.org/10.1007/s007790200025

18. Jeremy "Aprone" Kaldobsky. 2011. Aprone’s Accessible
Software and Games. (2011). Retrieved January 2, 2018
from http://www.kaldobsky.com/audiogames/.

19. Joy Kim and Jonathan Ricaurte. 2011. TapBeats:
Accessible and Mobile Casual Gaming. In Proc. 13th Int.
ACM SIGACCESS Conf. Comput. Access. (ASSETS 2011).
ACM Press, New York, New York, USA, 285–286. DOI:
http://dx.doi.org/10.1145/2049536.2049609

20. Daniel Miller, Aaron Parecki, and Sarah A. Douglas.
2007. Finger Dance: A Sound Game for Blind People. In
Proc. 9th Int. ACM SIGACCESS Conf. Comput. Access.
(ASSETS 2007). ACM Press, New York, New York, USA,
253–254. DOI:
http://dx.doi.org/10.1145/1296843.1296898

21. Tony Morelli, John Foley, and Eelke Folmer. 2010.
VI-Bowling: A Tactile Spatial Exergame for Individuals
with Visual Impairments. In Proc. 12th Int. ACM
SIGACCESS Conf. Comput. Access. (ASSETS 2010).
ACM Press, New York, New York, USA, 179–186. DOI:
http://dx.doi.org/10.1145/1878803.1878836

22. National Federation of the Blind. 2013. Blind Driver
Challenge. (2013). Retrieved September 12, 2017 from
http://www.blinddriverchallenge.org.

23. Stephen "TurnTheGameOn" O’Donnell. 2015. Racing
Game Template. (2015). Retrieved January 3, 2018 from
https://www.turnthegameon.com/racing-game-template.

24. Andrew Sears and Vicki L. Hanson. 2012. Representing
users in accessibility research. ACM Trans. Access.
Comput. 4, 2 (2012), 1–6. DOI:
http://dx.doi.org/10.1145/2141943.2141945

25. Seas. 2012. Cornering Technique. (2012). Retrieved
September 14, 2017 from http:
//www.formula1-dictionary.net/cornering_tech.html.

26. Marty Shultz. 2013. Blindfold Racer: Creating the Track.
Blog post. (3 December 2013). Retrieved September 12,
2017 from https:
//blindfoldgames.org/2013/12/03/creating-the-track/.

27. Marty Shultz. 2014a. Blindfold Racer. (2014). Retrieved
September 16, 2017 from http://www.blindfoldracer.com.

11

http://dx.doi.org/10.1145/258549.258760
http://dx.doi.org/10.1145/1639642.1639653
http://a.co/9OFo5NC
http://agrip.org.uk
https://freesound.org/s/71739/
http://www.agarchive.net/pages/devs/kitchensinc.html
http://www.gamasutra.com/view/feature/131764/formal_abstract_design_tools.php
http://www.gamasutra.com/view/feature/131764/formal_abstract_design_tools.php
https://freesound.org/s/33503/
http://www.playinginthedark.net/topspeed_e.php
http://www.blind-games.com/entombed.aspx
http://www.edy.es/dev/vehicle-physics/
http://dx.doi.org/10.1121/1.412407
http://www.gmagames.com/sod.html
http://dx.doi.org/10.1145/1168987.1169054
http://dx.doi.org/10.1007/s007790200025
http://www.kaldobsky.com/audiogames/
http://dx.doi.org/10.1145/2049536.2049609
http://dx.doi.org/10.1145/1296843.1296898
http://dx.doi.org/10.1145/1878803.1878836
http://www.blinddriverchallenge.org
https://www.turnthegameon.com/racing-game-template
http://dx.doi.org/10.1145/2141943.2141945
http://www.formula1-dictionary.net/cornering_tech.html
http://www.formula1-dictionary.net/cornering_tech.html
https://blindfoldgames.org/2013/12/03/creating-the-track/
https://blindfoldgames.org/2013/12/03/creating-the-track/
http://www.blindfoldracer.com

28. Marty Shultz. 2014b. Blindfold Racer: It’s Too Hard to
Control. Blog post. (10 March 2014). Retrieved
September 12, 2017 from https://blindfoldgames.org/
2014/03/10/blindfold-racer-its-too-hard-to-control/.

29. Marty Shultz. 2015. Blindfold Color Crush. (2015).
Retrieved September 16, 2017 from
https://blindfoldgames.org/user-guides/

blindfold-color-crush-user-guide/.

30. Arielle M. Silverman, Jason D. Gwinn, and Leaf Van
Boven. 2015. Stumbling in Their Shoes: Disability
Simulations Reduce Judged Capabilities of Disabled
People. Soc. Psychol. Personal. Sci. 6, 4 (2015), 464–471.
DOI:http://dx.doi.org/10.1177/1948550614559650

31. Sony Interactive Entertainment. 2013. DUALSHOCK 4
Wireless Controller. (2013). Retrieved September 15,
2017 from https://www.playstation.com/en-in/explore/
accessories/dualshock-4-wireless-controller/.

32. Edward Steinfeld and Jordana Maisel. 2012. Universal
Design: Creating Inclusive Environments. Wiley,
Hoboken, NJ, USA.

33. Burkay Sucu and Eelke Folmer. 2013. Haptic Interface
for Non-Visual Steering. In Proc. 2013 Int. Conf. Intell.
User Interfaces (IUI 2013). ACM Press, New York, New
York, USA, 427–434. DOI:
http://dx.doi.org/10.1145/2449396.2449451

34. Burkay Sucu and Eelke Folmer. 2014. The Blind Driver
Challenge: Steering using Haptic Cues. In Proc. 16th Int.
ACM SIGACCESS Conf. Comput. Access. (ASSETS 2014).
ACM Press, New York, New York, USA, 3–10. DOI:
http://dx.doi.org/10.1145/2661334.2661357

35. T V Tran, T Letowski, and K S Abouchacra. 2000.
Evaluation of acoustic beacon characteristics for
navigation tasks. Ergonomics 43, 6 (2000), 807–827.
DOI:http://dx.doi.org/10.1080/001401300404760

36. Unity Technologies. 2015. Car Tutorial (Unity 3.x only).
(5 May 2015). Retrieved September 16, 2017 from
http://u3d.as/1qU.

37. Unity Technologies. 2016. Unity Download Archive.
(2016). Retrieved September 14, 2017 from
https://unity3d.com/get-unity/download/archive.

38. Unity Technologies. 2017. Audio Spatializer SDK.
(2017). Retrieved September 15, 2017 from
https://docs.unity3d.com/2017.2/Documentation/Manual/

AudioSpatializerSDK.html.

39. Bruce N. Walker and Jeff. Lindsay. 2004. Auditory
navigation performance is affected by waypoint capture
radius. In Proc. Int. Conf. Audit. Disp. (ICAD 2004).
Georgia Inst. Tech., Sydney, NSW, AU, 6–9.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.

1.97.9443

40. Bruce N. Walker and Jeffrey Lindsay. 2006. Navigation
Performance With a Virtual Auditory Display: Effects of
Beacon Sound, Capture Radius, and Practice. Hum.
Factors 48, 2 (June 2006), 265–278. DOI:
http://dx.doi.org/10.1518/001872006777724507

41. WBDG Accessible Committee, Jordana L. Maisel, and
Molly Ranahan. 2017. Beyond Accessibility to Universal
Design. (15 February 2017). Retrieved August 22, 2017
from https://www.wbdg.org/design-objectives/
accessible/beyond-accessibility-universal-design/.

42. T Westin. 2004. Game accessibility case study:
Terraformers - A real-time 3d graphic game.. In Proc.
Fifth Int. Conf. Disabil. Virtual Real. Assoc. Technol.
(ICDVRAT 2004). University of Reading, Reading, UK,
95–100. DOI:http://dx.doi.org/10.1.1.103.8041

43. Jeff Wilson, Bruce N. Walker, Jeffrey Lindsay, Craig
Cambias, and Frank Dellaert. 2007. SWAN: System for
wearable audio navigation. In Proc. IEEE Int. Symp.
Wearable Comput. (ISWC 2007). IEEE Press, Boston,
MA, USA, 91–98. DOI:
http://dx.doi.org/10.1109/ISWC.2007.4373786

44. Bei Yuan and Eelke Folmer. 2008. Blind Hero: Enabling
Guitar Hero for the Visually Impaired. In Proc. 10th Int.
ACM SIGACCESS Conf. Comput. Access. (ASSETS 2008).
ACM Press, New York, New York, USA, 169–176. DOI:
http://dx.doi.org/10.1145/1414471.1414503

45. Bei Yuan, Eelke Folmer, and Frederick C. Harris. 2011.
Game accessibility: A survey. Univers. Access Inf. Soc.
10, 1 (2011), 81–100. DOI:
http://dx.doi.org/10.1007/s10209-010-0189-5

12

https://blindfoldgames.org/2014/03/10/blindfold-racer-its-too-hard-to-control/
https://blindfoldgames.org/2014/03/10/blindfold-racer-its-too-hard-to-control/
https://blindfoldgames.org/user-guides/blindfold-color-crush-user-guide/
https://blindfoldgames.org/user-guides/blindfold-color-crush-user-guide/
http://dx.doi.org/10.1177/1948550614559650
https://www.playstation.com/en-in/explore/accessories/dualshock-4-wireless-controller/
https://www.playstation.com/en-in/explore/accessories/dualshock-4-wireless-controller/
http://dx.doi.org/10.1145/2449396.2449451
http://dx.doi.org/10.1145/2661334.2661357
http://dx.doi.org/10.1080/001401300404760
http://u3d.as/1qU
https://unity3d.com/get-unity/download/archive
https://docs.unity3d.com/2017.2/Documentation/Manual/AudioSpatializerSDK.html
https://docs.unity3d.com/2017.2/Documentation/Manual/AudioSpatializerSDK.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.9443
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.97.9443
http://dx.doi.org/10.1518/001872006777724507
https://www.wbdg.org/design-objectives/accessible/beyond-accessibility-universal-design/
https://www.wbdg.org/design-objectives/accessible/beyond-accessibility-universal-design/
http://dx.doi.org/10.1.1.103.8041
http://dx.doi.org/10.1109/ISWC.2007.4373786
http://dx.doi.org/10.1145/1414471.1414503
http://dx.doi.org/10.1007/s10209-010-0189-5

	Introduction
	Intention And Its Role in Racing Games
	Related Work
	Audio Navigation Systems
	Blind-Accessible Racing Games
	Blindfold Racer (iOS, 2014)
	Mach 1 (PC, 2003)
	Top Speed Series (PC, 2004)
	Sucu and Folmer's Haptic Steering Interface

	The Racing Auditory Display (RAD)
	The RAD's Sound Slider
	Computing the Slider Value
	From Lateral Position to Relative Risk
	Overcoming the Intention–Efficiency Tradeoff

	The RAD's Turn Indicator System
	Supported Actions

	Racing Game Prototype
	The Racetrack

	Study 1: The RAD vs. Other Interfaces
	Study 1 Participants
	Study 1 Procedure
	Study 1 Results: Participants Who Are Blind
	User Interface Ranking
	Awareness of Upcoming Turns
	Driving Performance in Our Prototype Game
	Qualitative Feedback: Mach 1's Interface
	Qualitative Feedback: Haptic Steering Interface
	Qualitative Feedback: Racing Auditory Display (RAD)

	Study 1 Results: Sighted but Blindfolded Participants
	User Interface Ranking
	Awareness of Upcoming Turns
	Driving Performance in Our Prototype Game
	Qualitative Feedback: Mach 1's Interface
	Qualitative Feedback: Haptic Steering Interface
	Qualitative Feedback: Racing Auditory Display (RAD)

	Study 2: Field Test With Gamer Who Is Blind
	Study 2 Procedure
	Study 2 Results

	Human–Computer Interaction (HCI) Implications
	Conclusion, Limitations, and Future Work
	Acknowledgments
	References

