
See No Evil: Evasions in
Honeymonkey Systems

Brendan Dolan-Gavitt & Yacin Nadji

May 7, 2010

Abstract

Client-side attacks have emerged in recent years
to become the most popular means of propagat-
ing malware. In order to keep up with this new
wave of web-based malware, companies such as
Google routinely crawl the web, feeding suspi-
cious pages into virtual machines that emulate
client systems (known as honeymonkeys or hon-
eyclients). In this paper, we will demonstrate
that although this approach has been successful
to date, it is vulnerable to evasion by attackers:
by guarding exploit code with client-side checks
to determine whether a visitor is a human or
an automated system, attackers can ensure that
only human users are exploited, causing the page
to look benign when viewed by a honeyclient.
Our 13 evasions, which include both observa-
tional and interactive proofs of humanity, are
able to easily distinguish between honeyclients
and human victims. We evaluate the strengths
and weaknesses of these evasions, and speculate
on even more powerful attacks and defenses.

1 Introduction

Attacks against end users have undergone a dra-
matic shift in the past several years, moving from
attacks against listening network services to at-
tacks on client software such as browsers and
document viewers. These changes have created
a need for new defensive tactics. Many new at-

tacks can no longer be found by using honeypots
that host vulnerable network services and moni-
tor for signs of compromise. Instead, researchers
have proposed using honeyclients, which actively
seek out malicious content on the web, to find
previously unknown client-side attacks.

We note in passing that, like detection of mali-
cious software, detection of malicious web pages
is theoretically undecidable. We provide a proof
of this fact, in the spirit of Fred Cohen [1], in
Appendix A. However, such theoretical impos-
sibility need not deter us; just as a large indus-
try has grown up around virus detection, hon-
eyclients are in widespread use today, and it is
both useful and necessary to consider practical
evasions against them.

Just as honeypots can be classified as high- or
low- interaction, so too can honeyclients be cat-
egorized based on the extent to which they em-
ulate a full end user system. HoneyMonkey [14]
and the MITRE Honeyclient [8], which are both
high-interaction honeyclients, use a full virtual
machine with a web browser to visit potentially
malicious sites; if the visit results in a persis-
tent change to the state of the VM outside the
browser, one can conclude that a successful at-
tack has occurred. By contrast, low-interaction
honeyclients such as honeyc [13] merely emulate
a full browser, and use heuristics to detect at-
tacks rather than monitoring for changes in the
state of the OS.

Honeyclients have recently gained wide use in

1



the Google Safe Browsing API [3]. As Google
crawls the web, it uses heuristics to detect poten-
tially malicious web sites. These sites are then
fed to a custom honeyclient to verify that they
are, in fact, malicious [11]. If a web page is found
to host attack code, users who attempt to visit
the page from Google’s search results are pre-
sented with the warning shown in Figure 1. The
user must ignore this warning to view the poten-
tially malicious page.

Due to the prevalence of client-side attacks
and the increasing use of honeyclients to de-
tect them, a likely next step for attackers is
to consider honeyclient evasions — techniques
that cause a web page to exhibit benign behavior
when visited by a honeyclient while still exploit-
ing real users. In this project, we will present a
number of such evasions, assess their utility to
attackers, and consider possible defenses honey-
clients can use to counter our attacks.

2 Related Work

Honeypots have long been used to detect and
analyze novel attacks. Efforts such as the Hon-
eynet Project [12] and numerous academic pa-
pers [10, 6] have described the use of both real
and virtual machines to pick up on network-
based attacks on vulnerable services. As the
use of honeypots became more common, evasion
techniques were developed [5, 7] that used tech-
niques such as virtual machine detection to pre-
vent executing in a honeypot environment. As
attacks shifted to the client side, honeyclients
were proposed as a means of detecting attacks.
Systems such as Strider HoneyMonkey [14] use
virtual machines running a vulnerable version In-
ternet Explorer to detect malicious sites.

Despite the widespread use of honeyclients,
honeyclient evasion has received little attention
in academic literature. Although Wang et al.
discusses evasions, the attacks they consider are
either easy to counter, impose a significant cost

on the attacker, or run the risk of alerting the
user. By contrast, many of the evasions we de-
scribe are transparent to the user and do not
harm the attacker’s chances of success.

3 Methodology

Honeyclients and honeypots are two similar so-
lutions to fundamentally different problems. A
honeypot attempts to capture push-based infec-
tion, malware that is forced onto unsuspecting
servers. Once a server becomes infected, it fur-
thers the campaign by pushing its infection on to
other hosts. A honeyclient, however, attempts to
capture pull-based infection, which requires some
human involvement.

By detecting whether a client is a human or
a honeyclient we can mount attacks on humans
only, nullifying honeyclients as a tool for analy-
sis. To demonstrate these attacks, we have de-
signed and implemented a reverse Turing test
that looks for a variety of features that would
most likely be present in a true human client. In
the interest of a conservative analysis, we have
limited ourselves to ourselves to legal constructs
in common languages seen on the web, such as
HTML, JavaScript, Flash and Java. Our ap-
proach precludes, for example, the use of a secu-
rity flaw in Flash to implement our reverse Tur-
ing test. This conservative approach also means
that our evasions cannot be countered by patch-
ing known client-side flaws. If our features deter-
mine a client is a human, the exploit is launched.
Otherwise, the site executes only benign code.

We have ranked our features by considering
the following categories:

1. How difficult is the feature to counter?

2. How noticeable is the feature to a human
client?

3. How costly is the feature’s implementation
for an attacker?

2



Figure 1: Google Malicious Site Warning

– Does the attack incur false positives by
rejecting real humans?

– Does it increase the time required to
execute the attack?

This ranking can be used by an attacker to de-
termine the features to be used, and the order
in which they should be executed to detect hon-
eyclients. A subset of the features can be used
depending on the attacker’s needs. For example,
if it is more important to prevent missed attacks
on humans than defeating honeyclient analysis, a
feature that introduces some false positives may
be left out.

For each feature, we have created pages that
demonstrate the evasion. When loaded by a hu-
man, client-side code on the page tests for some
feature that indicates the presence of a human,
and then performs an XMLHttpRequest back to
the server with the test result. In a real attack,
the server could then examine the result and, if
the test indicates that the client is human, send
the exploit code to the client. Thus, an attacker
can avoid leaking valuable exploit code to a hon-
eyclient, while remaining effective against human
users.

We can evaluate our approach by comparing
page execution behavior between the MITRE
Honeyclient and a human client.

4 Attacks

Our attacks fall into two different categories:
state-based and behavior-based. State-based at-
tacks query the client’s state to infer information
about the user. For example, if the browser has
recently visited sites like Facebook and Twitter,
it makes it more likely that the client is an actual
human, rather than a browser instance spawned
from a VM snapshot. Behavior-based attacks
interact with the user directly. CAPTCHA is
a well known technique for differentiating hu-
mans and computers. Here, we use it in a similar
fashion; if the CAPTCHA is properly solved, we
know a human is in control of the browser and
we can deliver our exploit safely. These two at-
tack categories are shown in Figure 2. Both at-
tacks occasionally rely on a predefined timeout
or threshold that must be crossed to determine if
an exploit should be launched or not. This values
are in no way static, and will change as further
testing is done to determine the “best” possible
values. An overview of our attacks is presented
in Table 1, with explanations of the intuition be-
hind them presented in the subsequent sections.

It is important to note that all the attacks are
written entirely in Javascript or Flash. All major
browsers support Javascript and 99% of Internet-

3



Data collection

Decide: 
user is 

human?

Launch Attack

Do Nothing

Yes

No

Stimulus User Interaction
Behavior-based

State-based

History
example.com

cnn.com
twitter.com

facebook.com
goatse.cx

...

Figure 2: The two categories of evasions we describe. Behavior-based evasions use user interaction
to distinguish between humans and honeyclients, while state-based evasions use only data gathered
from the browser and operating system.

enabled computers have Flash installed1, making
these suitable languages to perform honeyclient
evasion.

4.1 State-based Attacks

State-based attacks infer if a client is a honey-
client based on information harvested from the
browser and operating system state.

Camera Intuitively, large-scale honeyclient
web crawling will use virtualization for scala-
bility and to make rollback after infection triv-
ial. Customized honeyclient VMs can quickly be
started from a snapshot, visit a malicious site,
determine the guest OS’s state was altered, and
revert back to the original snapshot to scan the
next potentially malicious site. These machines
are unlikely to have a connected camera, a com-
mon feature on home and work computers.

Flash has built-in APIs to use an attached we-
bcam. To use the webcam, Flash must first ask
for the user’s permission. However, Flash can
determine if a webcam exists without requiring

1“in mature markets”—see http://www.adobe.com/

products/player_census/flashplayer/

user intervention. If a camera is connected, we
launch the exploit.

Connection Speed Large companies who
would benefit from honeyclient testing e.g.,
google.com generally have high throughput In-
ternet connections to deliver fast and reliable ser-
vices. As such, their honeyclient operations are
likely to access the web with a very fast down-
load rate. We determine the connection speed
of the client by disabling the browser’s cache,
downloading a one megabyte file, and recording
the time it takes to complete the operation. If
the connection rate is below 1 MB/sec, we launch
the exploit.

Browser History Honeyclients process po-
tentially malicious URLs in a sequence in dis-
tinct sessions. If two potentially malicious web-
sites were viewed in a row and the machine was
compromised, it is unclear which site was respon-
sible for subverting the machine. Thus, most
honeyclients process malicious URLs in isolation
from standard browser usage. Due to this behav-
ior, it is unlikely honeyclients will have extensive
browser history.

4



Attack State-based Behavior-based Description

Alert X An alert pop-up is displayed when the page renders. The

exploit is delivered only if the alert box is closed.

Camera X We query the flash plugin to check for the presence of a web

camera. If one exists, we deliver the exploit.

CAPTCHA X We deliver the exploit after successful completion of a

CAPTCHA.

Connection Speed X We determine the connection speed of the connected client

and deliver the exploit if its below a predefined threshold.

Browser History X We view the number of sites the client has visited from a set

of popular websites. If the number of visited sites is above a

certain threshold, we deliver the exploit.

Date X We compare the day of the week of the client to the current

day of the week in the United States (EST). If the days of the

week match, we deliver the exploit

Immediate History X We check the back button history for previous sites. If above

a certain threshold exist, we deliver the exploit. This differs

from the previous history attack in that it looks at an indi-

vidual page or tab history, not the browser’s history in its

entirety.

Message Box X We ask the client a randomly generated question with two

possible answers using a dialog box. Based on the question, if

the “correct” answer is chosen, we deliver the exploit.

Microphone X Same as Camera, but checks for the presence of a microphone

instead.

onMouseMove X If the mouse is moved within the browser before a preset time-

out, we deliver the exploit.

onBeforeUnload X An offensive image is displayed. If the window is closed within

a preset timeout, we deliver the exploit.

Plugins X We query the browser for the existence of common browser

plugins. If the number of usable plugins is above a predefined

threshold, we deliver the exploit.

Referrer X If the current client has a non-empty referrer string, we deliver

the exploit.

Table 1: Attack Overview

Using a well-known method of accessing the
browser’s history[4], we check the client’s his-
tory against a list of commonly visited URLs.
If over 10% of the websites have been visited by
the client, we launch the exploit.

Date Honeyclients that use virtualization will
likely spawn fresh VM instances for each po-
tentially malicious site view. If the VM is al-
ways spawned from the same snapshot, its cur-
rent date will be when the snapshot was created
and will not accurately reflect the true current
date. We compare the current date (current year
and day of the year) of the client with the cur-
rent date in the eastern timezone of the United
States. If the client is within 3 days of the actual
EST US date, we launch the exploit. We obtain

the correct date by querying a remote time server
from Javascript.

Immediate History A human user is likely to
stumble upon links to drive-by downloads by way
of other websites. A honeyclient, however, gen-
erally has a list of URLs of potentially malicious
websites that it visits directly. In the human
case, we will see a clear series of visited websites,
while in the honeyclient no such series will exist.
This differs from Browser History as Immediate
History only looks the back button history of
the browser, while Browser History considers all
stored history information.

In the event the client has three or more web-
sites in its back button history, that is the client
viewed the attack page through a path of direct

5



hyperlinks containing three or more websites, we
launch the exploit.

Microphone This attack is identical to Cam-
era, except we query for the presence of a micro-
phone. If one is found, we launch the exploit.

Plugins Browsers often extend functionality
by way of plugins, like Flash. Plugins are com-
monly used for user digestible material, such as
movies and online games. A honeyclient is un-
likely to have multiple plugins installed. We
check for the existence of the following plugins:

• RealNetworks RealPlayer

• Adobe Director

• Apple QuickTime

• Windows Media

• Adobe Flash

If the client has made querying specific plugins
impossible, we consider the client to be a honey-
client and do not launch the exploit. If the client
has at least three of the five plugins installed, we
launch the exploit.

Referrer As discussed in Immediate History,
a human user is more likely to visit a mali-
cious page through direct hyperlinks rather than
through a compiled list of URLs. We check for
the existence of a referring website. If one exists,
we launch the exploit.

4.2 Behavior-based Attacks

Alert A Javascript alert() window is shown
to the user. A completely passive honeyclient
will not interact with the loaded page, never
launching the exploit. A curious user, however,
will close the alert, triggering the exploit.

CAPTCHA As we discussed earlier,
CAPTCHAs are commonly used on the In-
ternet today as a way of differentiating a human
from an automated bot. We assume the honey-
client lacks the capability to solve a complicated
CAPTCHA and only launch the exploit in the
event the CAPTCHA is correctly solved. It
is interesting to note that at the time of the
HoneyMonkey paper’s writing[14], CAPTCHAs
were uncommon on non-malicious sites and
would likely raise suspicion in human users.
The web today, however, makes liberal use of
CAPTCHAs, nullifying the earlier assumption.

onMouseMove The Javascript event
onMouseMove is bound to the page’s docu-
ment prototype in the DOM. This will capture
any mouse movement that occurs within the
context of the browser’s window that displays
the current page. If any mouse movement is
detected, we flag the client as a human and
launch the exploit. More sophisticated mouse
movement tracking could be implemented to
differentiate between smooth, human-assisted
mouse paths and discrete, computer-assisted
mouse paths. We discuss future enhancements
in Section 7.

onBeforeUnload The Javascript event han-
dler onBeforeUnload fires immediately before a
browser window is closed. This attack has two
key components:

• A negative stimulus to the client browser.
In the current implementation, this is an of-
fensive image.

• A function bound to the onBeforeUnload

event handler to deliver the exploit.

The intuition behind this attack is a human user,
when presented with an offensive image, will
quickly close the window in a short period of
time. A honeyclient, however, will not process

6



and understand the offensive nature of the im-
age, and will simply wait. We bind the event
handler to a function responsible for loading at-
tack code and present the user with the pere-
nially popular Goatse image2. If the window is
closed within 15 seconds, the exploit is launched.
Otherwise, the event handler is unloaded to pre-
vent accidentally exploiting a honeyclient.

Message Box A Javascript confirm() mes-
sage box is presented to the client with a ran-
domly generated question and two possible an-
swers. One button launches the attack, while
the other executes only benign code. To a hu-
man, the answer is readily apparent based on the
random question. For example, the question “Do
you want to do this awesome thing?” is answered
“correctly” with the user responding “Yes”. This
reduces the likelihood of infecting a honeyclient
to a coinflip but, in general, guarantees human
infection.

5 Evaluation

Our evaluation is divided into two parts: attack
obtrusiveness, and evasion effectiveness. In at-
tack obtrusiveness, we discuss individual attacks
that introduces a deviation from expected user
experience. For example, an attack that uses a
CAPTCHA is more likely to raise suspicion with
the user than an attack which executes its test
invisibly. In evasion effectiveness, we discuss how
well our attack discerns a honeyclient from a de-
sired human user. We address some limitations
in our evaluation and ways to improve the anal-
ysis of our approach.

5.1 Attack Obtrusiveness

Understanding how obtrusive our attacks will be
on a human client’s browsing experience is an im-
portant metric to consider when choosing which

2http://en.wikipedia.org/wiki/Goatse.cx

Attack HIP Suspicious
Alert X X
Camera
CAPTCHA X
Connection Speed X
Browser History
Date
Immediate History
Message Box X
Microphone
onMouseMove X
onBeforeUnload X X
Plugins
Referrer

Table 2: Summary of Obtrusiveness Evaluation

attacks to use. We rate each attack based on
two factors: does the attack require human in-
teraction, as in a human interactive proof (HIP),
and does the attack have potential to rouse sus-
picion. We present a summary of our evaluation
in Table 5.1.

Transparent Attacks Some of our attacks
operate transparently to the user, using only
state information that can be gathered from
client-side languages. These attacks include:
camera, browser history, date, immediate his-
tory, microphone, plugins, and referrer. Cam-
era and microphone both use an information leak
that allows a malicious Flash executable to query
the presence of devices without explicit user per-
mission. Browser history uses an information
leak in the bridge between Javascript and CSS
that allows browser history to be inferred. Some
attacks, like immediate history, plugins, date,
and referrer use only standard DOM object ac-
cesses that are seen in many common web appli-
cations to mount successful honeyclient detec-
tion. The remaining attacks all introduce some
kind of HIP or may make human viewers suspi-
cious of the webpage’s trustworthiness.

7



Connection Speed The connection speed at-
tack requires no HIP, but does introduce some
overhead to download an additional large image.
This overhead may be substantial on very low
bandwidth systems, making the attack notice-
able in low throughput situations.

The following attacks all use some kind of hu-
man interaction, whether direct or indirect, to
determine the type of client.

Alert The alert attack requires direct user
intervention to close a popup alert window.
Javascript popups are considered irritating, but
the propensity of humans to simply close the
popup window will likely overcome any user sus-
picion.

CAPTCHA The CAPTCHA requires direct
user intervention to interpret an image as text
and submit a correct solution. CAPTCHAs have
become very common on the web, and most users
would not think twice before submitting the an-
swer to a CAPTCHA to access web content.

onMouseMove onMouseMove requires indi-
rect user intervention to determine if the attack
should be deployed or not. We observe the stan-
dard user behavior of mouse movement to iden-
tify a client as human. The current honeyclient
implementations do not simulate user input of
any kind.

onBeforeUnload onBeforeUnload requires
direct user interaction of closing the browser
window to launch the attack. The user is shown
an offensive image hoping she will quickly close
the browser window in disgust. Since current
(and future) honeyclients are unlikely to include
complex image processing to determine the
perceived offensiveness of an image, we use this
to differentiate them from humans.

Message Box The message box attack re-
quires direct user intervention to answer a ques-
tion correctly to launch the exploit. As described
before, the question will be simple enough for a
human to solve, but difficult for a computer to
without sufficient language processing capabili-
ties. If the honeyclient resorts to chance, we still
increase evasion to 50% from 0%.

5.2 Evasion Effectiveness

To test our attacks, we set up the Honeynet
Project’s honeyclient, HoneyC [13]. HoneyC
consists of a number of Ruby scripts that ac-
cess web pages and use predefined signatures to
indicate successful attacks. Thus, it is a low-
interaction honeyclient, as it does not attempt
to simulate a full OS.

We ran HoneyC in the default configuration,
using the ListQueuer module to visit our test
pages. We then used the default Visitor mod-
ule to visit each page, and passed the results to
a Snort-based analysis module. To determine
if the attack had been successfully launched,
we configured the AJAX server to reply with a
unique phrase (“wibble”) when the attack code
had been sent. In order to use HoneyC to detect
successful attacks, then, we simply set up a Snort
rule that searched for “wibble” in the incoming
traffic.

As we expected, HoneyC was unable to detect
any of our test pages as malicious. This is likely
because of its poor support for JavaScript – as
HoneyC was unable to execute any scripts on the
page, it was unable to download the attack code
(which was delivered via AJAX).

We ran the attacks on our personal machines
to determine reasonable initial threshold values
and to confirm our assumptions implicit in each
attack. All the attacks successfully ran on our
machines.

8



6 Defenses

Many of the evasions proposed in this paper can
be countered by more careful emulation of a hu-
man attacker on the client side. Many of the
state-based evasions we describe can be coun-
tered by taking care to prepare the honeyclient
virtual machine in a way that mimics a real
user’s system. We describe mitigations that can
be used to counter many of the attacks we have
presented below.

Camera/Microphone
Modify the virtual machine to report that a
camera and microphone are attached.

Referrer Check
Either spoof a legitimate referrer, or simply
have the honeyclient navigate to the attack
page from another site.

History
Visit other pages before going to the attack
site.

Plugins
Install a number of commonly used plugins
in the honeyclient.

Date/Time
Before visiting the attack site, synchronize
the date and time with a centralized time
server.

Mouse Movement
Instrument the VM to move the mouse over
the attack page.

Connection Speed
Throttle bandwidth to the honeyclient VM,
or simply run the honeyclient from a slower
connection.

Although the defenses to these attacks are
relatively easy to implement, they may ad-
versely affect the scalability and performance of
a honeyclient system. For example, performing

time syncrhonization, moving the mouse, visit-
ing other pages, and using a low-bandwidth con-
nection will increase the amount of time required
to test each page, and installing additional plug-
ins in the virtual machine increases the amount
of space required.

The behavior-based attacks are more difficult
to counter. In particular, the interactive attacks
(i.e., requiring that the user confirm a message
box or solve a CAPTCHA) are likely to be im-
possible to detect automatically, as they require
a human to read and understand the message
presented. On the other hand, these attacks are
extremely obtrusive, and run the risk of alerting
users that something amiss. Likewise, attacks
that involve unpleasant stimuli will easily evade
honeyclients, but will quickly be detected if they
are used on a high-profile web site.

7 Discussion and Future Work

There are a number of attacks we considered
that did not turn out to reliably distinguish be-
tween humans and malware, or that were simply
technically infeasible to test for. For example,
we considered using Flash Local Shared Objects
(better known as Flash cookies), which provide
similar functionality to that of HTTP cookies,
but can be accessed across domains. By check-
ing for the presence of Flash cookies from pop-
ular web sites, we might be able to detect hon-
eyclients by their lack of cookies. However, we
discovered that while Flash does permit cross-
domain cookie access, permission to access the
cookie must be granted explicitly by the site that
set the cookie, making enumeration of stored
Flash cookies impossible.

Similarly, we had hoped that by loading pop-
ular sites that require authentication (such as
Gmail) inside an iframe, we could determine
whether a user was already logged into one of
these sites. Because persistent login sessions are
common among human users and unlikely to be

9



found in honeyclients, this would have provided
a simple test to distinguish the two. Unfortu-
nately, it appears that many sites, and Gmail
in particular, can detect when they have been
loaded in an iframe and instead redirect the
browser to the full site (with no iframe), which
causes the browser to navigate away from the at-
tack page. Worse, it appears that Javascript is
forbidden from accessing the contents of iframes
in other domains, so any determinations must be
made on the basis of side channel features such
as timing. Although we hope to explore this at-
tack vector in future work, we were unable to
find a way to use this in our current effort.

Looking forward, we can envision other types
of attacks that may be both unobtrusive and ex-
tremely difficult to counter. Rather than simply
checking for mouse movement, client-side code
could track and analyze the path of the user’s
mouse cursor on the page to determine whether
the movement corresponds to a human. This
approach, which is known as a Human Observa-
tional Proof, has been proposed to detect bots in
online games [2], and it may serve equally well to
detect honeyclients. We hope to explore this at-
tack, as well as possible defenses, in future work.

Finally, in addition to specific defenses, it
is worth considering whether there are general
techniques that could be used to expose the ma-
licious functionality of web pages. With tradi-
tional malware analysis, a similar problem ap-
pears: given a malware sample, how can an au-
tomated system ensure that it has exercised all
of the malicious functionality present in the exe-
cutable? By applying techniques such as multi-
path exploration [9], it may be possible to ex-
plore code paths within web page content, allow-
ing an automated system to trigger the malicious
payload. However, the highly dynamic nature of
common web languages such as Javascript and
Flash may make the number of paths to be ex-
plored too high to be feasible.

8 Conclusion

We have presented a new attack that aids in
evading honeyclient/HoneyMonkey detection of
web pages with malicious downloadable content.
This will serve two purposes, to delay both
drive-by download website takedowns and ma-
licious binary analysis. By determining whether
a client is human or not, we can selectively tar-
get only humans to prevent early detection and
prevention of compromising websites. We de-
scribed and implemented 13 different attacks to
detect a honeyclient and show they launch at-
tacks against human users. We will supplement
additional experimental information in the near
future.

A Undecidability of Malicious

Web Page Detection

Proof. Suppose that detection of malicious web
pages is possible. Then there exists a detector H

that can distinguish between malicious and non-
malicious pages (for some non-trivial definition
of “malicious”). Now, we can design a new page
P that does the following:

1. Simulate running H on P . This can be done
using Javascript, as Javascript is Turing-
complete, and so it can be used to emulate
H. For example, supposing H is a VM-
based Windows system, one could imple-
ment a Javascript-based x86 emulator

2. If H decides that P is malicious, do nothing.

3. If H decides that P is benign, launch the
attack.

By construction, P is malicious if and only
if H says it is not malicious. This contradicts
the assumption that H can distinguish between
malicious and non-malicious pages, and hence H

cannot exist.

10



References

[1] F. Cohen. Computer viruses: theory and ex-
periments. Computer Security, 6(1), 1987.

[2] S. Gianvecchio, Z. Wu, M. Xie, and
H. Wang. Battle of botcraft: fighting bots
in online games with human observational
proofs. Jan 2009.

[3] Google, Inc. Google safe browsing
API. http://code.google.com/apis/

safebrowsing/.

[4] J. Grossman. CSS history hack.
http://ha.ckers.org/weird/

CSS-history-hack.html.

[5] T. Holz and F. Raynal. Detecting honey-
pots and other suspicious environments. In
Proceedings of the IEEE Workshop on In-
formation Assurance and Security, 2005.

[6] X. Jiang and D. Xu. Collapsar: a VM-
based architecture for network attack deten-
tion center. In Proceedings of the USENIX
Security Symposium, 2004.

[7] N. Krawetz. Anti-honeypot technology.
IEEE Security and Privacy, 2(1):76–79,
2004.

[8] MITRE Corp. Honeyclient project. http:

//www.honeyclient.org/trac.

[9] A. Moser, C. Kruegel, and E. Kirda. Ex-
ploring multiple execution paths for mal-
ware analysis. In Proceedings of the IEEE
Symposium on Security and Privacy (Oak-
land), 2007.

[10] N. Provos. A virtual honeypot frame-
work. In Proceedings of the USENIX Se-
curity Symposium, 2004.

[11] N. Provos, D. McNamee, P. Mavrommatis,
K. Wang, and N. Modadugu. The ghost

in the browser: Analysis of web-based mal-
ware. In Proceedings of the Workshop on
Hot Topics in Understanding Botnets (Hot-
Bots), 2007.

[12] The Honeynet Project. http://www.

honeynet.org/.

[13] The Honeynet Project. Honeyc. https://

projects.honeynet.org/honeyc/.

[14] Y.-M. Wang, D. Beck, X. Jiang, and
R. Roussev. Automated web patrol with
Strider HoneyMonkeys: Finding web sites
that exploit browser vulnerabilities. In Pro-
ceedings of the Network and Distributed Sys-
tem Security Symposium (NDSS), 2006.

11


