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Standard virtualization security layout: insecure guests, isolated security apps in their own 
VM.
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Open Problem: The Semantic Gap

• Isolation can provide security

• Isolation makes it hard to see what’s going 
on

• View exposed by VMM is low-level (physical 
memory, CPU state)

• Need to reconstruct high-level view using 
introspection routines

3

Isolation is not a panacea; it makes it hard to see what’s going on. The view the VMM gives is 
not what we want.
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What You Want...
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Drivers

Files

Processes

Networking

These are the objects relevant to security monitoring.
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What You Get
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This is the view exposed by the VMM -- physical memory. This is from a memory dump of a 
Windows 2003 system.
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Introspection Challenges

• Introspection routines are currently built 
manually

• Building routines requires detailed 
knowledge of OS internals

• Often requires reverse engineering

• OS updates and patches break existing 
introspection utilities

6

Note story about sec. vendor that had to spend 60 hours reverse engineering Vista’s new 
TCP/IP stack. Virtuoso can reduce this to a few minutes by a non-expert.
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Contributions

• We generate introspection routines 
automatically

• No knowledge of OS internals or reverse 
engineering required

• Routines can be regenerated easily for new 
OS versions / patches

7

Only programmer’s knowledge of public system APIs needed.
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Idea: Code Extraction
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Security VM Guest VM

Hypervisor

Basic idea: guest VM already has code that does the introspection. So we extract it out to 
another VM, transform it to introspect on another VM. Now even if original is compromised 
we have a known-good copy.
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Idea: Code Extraction
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Security VM Guest VM
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✔

Basic idea: guest VM already has code that does the introspection. So we extract it out to 
another VM, transform it to introspect on another VM. Now even if original is compromised 
we have a known-good copy.
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Goals

• Generality: generate useful introspection 
programs on multiple operating systems

• Reliability: generate working programs using 
dynamic analysis

• Security: ensure that programs are 
unaffected by guest compromise
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These goals mirror the results we present later on.
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Challenges

• Assume no prior knowledge of OS 
internals

• Code extraction must be whole-system

• Much of the code we want is in the kernel

• Existing work (BCR, Inspector Gadget) only 
extracts small pieces of userland code
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We don’t quite get to no a priori knowledge, but close (mallocs).
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Overview
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Training Environment

Trace Logger

Training Phase

Instruction 
Traces

Instruction 
TracesInstruction 

Traces

Make clear here that we write a small in-guest program that gets the data we 
want!
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Overview
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Preprocessing

Dynamic Slicing

Merging

Translation

Introspection 
Program

Analysis Phase

Instruction 
Traces

Instruction 
TracesInstruction 

Traces

Once we have the traces, we process them and translate them into an out-of-guest 
introspection program.
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Overview
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Runtime
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Runtime Phase

The introspection program can then be deployed to a Security VM to monitor our untrusted 
VM and applications.
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Training
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#define __WIN32_LEAN_AND_MEAN__
#include <windows.h>
#include <psapi.h>
#pragma comment(lib, "psapi.lib")
#include <stdio.h>
#include "vmnotify.h"

int main(int argc, char **argv) {
  );
  
  
  
  EnumProcesses(pids, 256, &outcb);
  
  return 0;
}

• Write in-guest training program 
using system APIs

Writing the in-guest program to list processes is easy: just call 
EnumProcesses.
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Training
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#define __WIN32_LEAN_AND_MEAN__
#include <windows.h>
#include <psapi.h>
#pragma comment(lib, "psapi.lib")
#include <stdio.h>
#include "vmnotify.h"

int main(int argc, char **argv) {
  DWORD *pids = (DWORD *) malloc(256);
  DWORD outcb;
  
  
  EnumProcesses(pids, 256, &outcb);
  
  return 0;
}

• Write in-guest training program 
using system APIs

Of course, you need a little bit of 
boilerplate.
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Training
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#define __WIN32_LEAN_AND_MEAN__
#include <windows.h>
#include <psapi.h>
#pragma comment(lib, "psapi.lib")
#include <stdio.h>
#include "vmnotify.h"

int main(int argc, char **argv) {
  DWORD *pids = (DWORD *) malloc(256);
  DWORD outcb;
  
  vm_mark_buf_in(&pids, 4);
  EnumProcesses(pids, 256, &outcb);
  vm_mark_buf_out(pids, 256);
  return 0;
}

• Annotate program with start/end 
markers

Next, inform Virtuoso of where logging should begin and end, and where the buffer containing the output of the introspection 
is.
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Training

• Run program in QEMU to generate 
instruction trace

• Traces are in QEMU µOp format

17

INTERRUPT(0xfb,0x200a94,0x0)
TB_HEAD_EIP(0x80108028)
MOVL_T0_IM(0x0)
OPREG_TEMPL_MOVL_A0_R(0x4)
SUBL_A0_4()
OPS_MEM_STL_T0_A0(0x1,0xf186fe8,0x8103cfe8,
                  0xffffffff,0x215d810,0x920f0,0x0)
OPREG_TEMPL_MOVL_R_A0(0x4)
MOVL_T0_IM(0xfb)
OPREG_TEMPL_MOVL_A0_R(0x4)
SUBL_A0_4()
OPS_MEM_STL_T0_A0(0x1,0xf186fe4,0x8103cfe4,
                  0xffffffff,0x215d810,0x920f0,0xfb)

This produces instruction traces. They’re not x86, but QEMU.
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Whole-System Traces

• Includes all instructions between start and 
end markers

• Includes software and hardware interrupts 
and exceptions

• Includes concrete addresses of memory 
reads/writes

18

Memory reads/writes are necessary so that we can do data flow analysis later.
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Trace Analysis

• What subset of this trace is relevant?

• Initial preprocessing:

• Remove hardware interrupts

• Replace malloc/realloc/calloc with 
summary functions

• Next, executable dynamic slicing (Korel and 
Laski, 1988) is done to identify relevant 
instructions

19

System is doing a lot of other stuff that may not be relevant to the introspection at hand. HW 
interrupts: clearly not relevant. Malloc & friends: implementation artifact.
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Executable Dynamic Slicing

1. Follow data def/use chain backward, 
starting with output buffer

2. Examine CFG and add necessary control 
flow statements to slice (and their 
dependencies)

3. Perform slice closure:

• If any instance of an instruction is 
included in the slice, all instances of that 
instruction must be marked

20

Data def/use chains give us our initial set of relevant instructions without control flow. Next 
step operates on dynamic CFG. Slice closure is what makes it executable.
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Trace Merging

• Since analysis is dynamic, we only see one 
path through program

• So: run program multiple times and then 
merge results

21

Note why we didn’t go with static analysis here: too much domain knowledge.
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Program Translation

• Goal: convert in-guest ➔ out-of-guest

• Generates Python code that runs inside 
Volatility memory analysis framework

• Changes:

• Memory reads come from guest VM

• Memory writes are copy-on-write

• CPU registers become local vars

22

Why Python? Volatility written in Python. Any code generation would do though. Copy-on-
write is necessary so as not perturb the guest.
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Translation Example
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Original x86 QEMU µOps

Example: a test and a conditional jump. Asterisks mean “included in slice”.
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Translation Example
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QEMU µOps Python

Translation to Python: conditional jump is now Python if statement.
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Results: Generality

• Generated 6 useful introspection programs 
on each of 3 operating systems
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Windows: everyone uses it. Linux: we use it. Haiku: we don’t know its internals, no 
temptation to cheat.
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Introspection Programs

26

getpid Gets the PID of the currently running 
process.

pslist Gets a list of PIDs of all running processes.

getpsfile Gets the name of an executable from its 
PID.

lsmod Gets the base addresses of all kernel 
modules.

getdrvfile Gets the name of a kernel module from its 
base address.

gettime Gets the current system time.

Describe these by group and why relevant to security: examine features of processes and 
drivers.
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Results: Reliability

• Analysis is dynamic, so programs may be 
incomplete

• How many traces are needed to produce 
reliable programs?

• Complicating factors: caching, difficulty of 
deciding ground truth for coverage

27

Caching: early runs may execute much more code. Difficulty of ground truth: hard to say 
what the complete set of code is, or how many paths (program testing has this problem too).
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Windows pslist Reliability
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This is cross-evaluation: take 24 traces, and then take differently sized random subsets to 
create final program. Describe axes, then walk through one program => not reliable, 12 
programs => pretty reliable. Mention caching effect again as explanation for why this graph 
is pessimistic.
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Results: Security

• Verified that introspection programs are not 
affected by in-guest code manipulation

• Training program (pslist) generated on clean 
system

• Resulting introspection program still detects 
processes hidden by Hacker Defender 

• Note: DKOM attacks can still be effective 
against Virtuoso

29

DKOM is something we’ll look at in future work.
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Limitations

• Multiple processes/IPC

• Multithreaded code (synchronization)

• Code/data relocation (ASLR)

• Self-modifying code

30

Multiple processes: key problem is that we don’t know where data for a specific process 
might be at runtime. Multithreaded code: VM is paused, so waiting on a lock is bad. 
Relocation: where’s our data? Self-modifying code: code is only translated once (kernel’s 
don’t usually self-modify, but this is relevant if we want to analyze malware).
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Conclusions

• Programs generated by Virtuoso can be 
useful, reliable, and secure

• Uses novel whole-system executable 
dynamic slicing and merging

• Virtuoso can greatly reduce time and effort 
needed to create introspection programs

- Weeks of reverse engineering vs. minutes 
of computation
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Stop here for questions, etc.


