
Virtuoso: Narrowing the
Semantic Gap in Virtual
Machine Introspection

Brendan Dolan-Gavitt*, Tim Leek†, Michael Zhivich†, Jonathon
Giffin*, and Wenke Lee*

* Georgia Institute of Technology
† MIT Lincoln Laboratory

{brendan,giffin,wenke}@cc.gatech.edu
{tleek,mzhivich}@ll.mit.edu

This	 work	 was	 sponsored	 by	 IARPA	 under	 Air	 Force	 Contract	 FA8721-‐05-‐C-‐0002.	
Opinions,	 interpretaDon,	 conclusions	 and	 recommendaDons	 are	 those	 of	 the	
authors	 and	 are	 not	 necessarily	 endorsed	 by	 the	 United	 States	 Government.

VirtuosoOakland ’11 5/24/2011

Security VM

Virtual Machine Introspection

Guest VM
(insecure)

Hypervisor

 Security
 Apps

Introspection

2
Standard virtualization security layout: insecure guests, isolated security apps in their own
VM.

VirtuosoOakland ’11 5/24/2011

Open Problem: The Semantic Gap

• Isolation can provide security

• Isolation makes it hard to see what’s going
on

• View exposed by VMM is low-level (physical
memory, CPU state)

• Need to reconstruct high-level view using
introspection routines

3

Isolation is not a panacea; it makes it hard to see what’s going on. The view the VMM gives is
not what we want.

VirtuosoOakland ’11 5/24/2011

What You Want...

4

Drivers

Files

Processes

Networking

These are the objects relevant to security monitoring.

VirtuosoOakland ’11 5/24/2011

What You Get

5

This is the view exposed by the VMM -- physical memory. This is from a memory dump of a
Windows 2003 system.

VirtuosoOakland ’11 5/24/2011

Introspection Challenges

• Introspection routines are currently built
manually

• Building routines requires detailed
knowledge of OS internals

• Often requires reverse engineering

• OS updates and patches break existing
introspection utilities

6

Note story about sec. vendor that had to spend 60 hours reverse engineering Vista’s new
TCP/IP stack. Virtuoso can reduce this to a few minutes by a non-expert.

VirtuosoOakland ’11 5/24/2011

Contributions

• We generate introspection routines
automatically

• No knowledge of OS internals or reverse
engineering required

• Routines can be regenerated easily for new
OS versions / patches

7

Only programmer’s knowledge of public system APIs needed.

VirtuosoOakland ’11 5/24/2011

Idea: Code Extraction

8

Security VM Guest VM

Hypervisor

Basic idea: guest VM already has code that does the introspection. So we extract it out to
another VM, transform it to introspect on another VM. Now even if original is compromised
we have a known-good copy.

VirtuosoOakland ’11 5/24/2011

Idea: Code Extraction

8

Security VM Guest VM

Hypervisor

Basic idea: guest VM already has code that does the introspection. So we extract it out to
another VM, transform it to introspect on another VM. Now even if original is compromised
we have a known-good copy.

VirtuosoOakland ’11 5/24/2011

Idea: Code Extraction

8

Security VM Guest VM

Hypervisor

Basic idea: guest VM already has code that does the introspection. So we extract it out to
another VM, transform it to introspect on another VM. Now even if original is compromised
we have a known-good copy.

VirtuosoOakland ’11 5/24/2011

Idea: Code Extraction

8

Security VM Guest VM

Hypervisor

Introspection

Basic idea: guest VM already has code that does the introspection. So we extract it out to
another VM, transform it to introspect on another VM. Now even if original is compromised
we have a known-good copy.

VirtuosoOakland ’11 5/24/2011

Idea: Code Extraction

8

Security VM Guest VM

Hypervisor

Introspection

Basic idea: guest VM already has code that does the introspection. So we extract it out to
another VM, transform it to introspect on another VM. Now even if original is compromised
we have a known-good copy.

VirtuosoOakland ’11 5/24/2011

Idea: Code Extraction

8

Security VM Guest VM

Hypervisor

Introspection

✔

Basic idea: guest VM already has code that does the introspection. So we extract it out to
another VM, transform it to introspect on another VM. Now even if original is compromised
we have a known-good copy.

VirtuosoOakland ’11 5/24/2011

Goals

• Generality: generate useful introspection
programs on multiple operating systems

• Reliability: generate working programs using
dynamic analysis

• Security: ensure that programs are
unaffected by guest compromise

9

These goals mirror the results we present later on.

VirtuosoOakland ’11 5/24/2011

Challenges

• Assume no prior knowledge of OS
internals

• Code extraction must be whole-system

• Much of the code we want is in the kernel

• Existing work (BCR, Inspector Gadget) only
extracts small pieces of userland code

10

We don’t quite get to no a priori knowledge, but close (mallocs).

VirtuosoOakland ’11 5/24/2011

Overview

11

Training Environment

Trace Logger

Training Phase

Instruction
Traces

Instruction
TracesInstruction

Traces

Make clear here that we write a small in-guest program that gets the data we
want!

VirtuosoOakland ’11 5/24/2011

Overview

12

Preprocessing

Dynamic Slicing

Merging

Translation

Introspection
Program

Analysis Phase

Instruction
Traces

Instruction
TracesInstruction

Traces

Once we have the traces, we process them and translate them into an out-of-guest
introspection program.

VirtuosoOakland ’11 5/24/2011

Overview

13

Runtime

Introspection
Program

C
O
P
Y

O
N

W
R
I
T
E

Security VM Untrusted VM

User

Kernel

Runtime Phase

The introspection program can then be deployed to a Security VM to monitor our untrusted
VM and applications.

VirtuosoOakland ’11 5/24/2011

Training

14

#define __WIN32_LEAN_AND_MEAN__
#include <windows.h>
#include <psapi.h>
#pragma comment(lib, "psapi.lib")
#include <stdio.h>
#include "vmnotify.h"

int main(int argc, char **argv) {
);

 EnumProcesses(pids, 256, &outcb);

 return 0;
}

• Write in-guest training program
using system APIs

Writing the in-guest program to list processes is easy: just call
EnumProcesses.

VirtuosoOakland ’11 5/24/2011

Training

15

#define __WIN32_LEAN_AND_MEAN__
#include <windows.h>
#include <psapi.h>
#pragma comment(lib, "psapi.lib")
#include <stdio.h>
#include "vmnotify.h"

int main(int argc, char **argv) {
 DWORD *pids = (DWORD *) malloc(256);
 DWORD outcb;

 EnumProcesses(pids, 256, &outcb);

 return 0;
}

• Write in-guest training program
using system APIs

Of course, you need a little bit of
boilerplate.

VirtuosoOakland ’11 5/24/2011

Training

16

#define __WIN32_LEAN_AND_MEAN__
#include <windows.h>
#include <psapi.h>
#pragma comment(lib, "psapi.lib")
#include <stdio.h>
#include "vmnotify.h"

int main(int argc, char **argv) {
 DWORD *pids = (DWORD *) malloc(256);
 DWORD outcb;

 vm_mark_buf_in(&pids, 4);
 EnumProcesses(pids, 256, &outcb);
 vm_mark_buf_out(pids, 256);
 return 0;
}

• Annotate program with start/end
markers

Next, inform Virtuoso of where logging should begin and end, and where the buffer containing the output of the introspection
is.

VirtuosoOakland ’11 5/24/2011

Training

• Run program in QEMU to generate
instruction trace

• Traces are in QEMU µOp format

17

INTERRUPT(0xfb,0x200a94,0x0)
TB_HEAD_EIP(0x80108028)
MOVL_T0_IM(0x0)
OPREG_TEMPL_MOVL_A0_R(0x4)
SUBL_A0_4()
OPS_MEM_STL_T0_A0(0x1,0xf186fe8,0x8103cfe8,
 0xffffffff,0x215d810,0x920f0,0x0)
OPREG_TEMPL_MOVL_R_A0(0x4)
MOVL_T0_IM(0xfb)
OPREG_TEMPL_MOVL_A0_R(0x4)
SUBL_A0_4()
OPS_MEM_STL_T0_A0(0x1,0xf186fe4,0x8103cfe4,
 0xffffffff,0x215d810,0x920f0,0xfb)

This produces instruction traces. They’re not x86, but QEMU.

VirtuosoOakland ’11 5/24/2011

Whole-System Traces

• Includes all instructions between start and
end markers

• Includes software and hardware interrupts
and exceptions

• Includes concrete addresses of memory
reads/writes

18

Memory reads/writes are necessary so that we can do data flow analysis later.

VirtuosoOakland ’11 5/24/2011

Trace Analysis

• What subset of this trace is relevant?

• Initial preprocessing:

• Remove hardware interrupts

• Replace malloc/realloc/calloc with
summary functions

• Next, executable dynamic slicing (Korel and
Laski, 1988) is done to identify relevant
instructions

19

System is doing a lot of other stuff that may not be relevant to the introspection at hand. HW
interrupts: clearly not relevant. Malloc & friends: implementation artifact.

VirtuosoOakland ’11 5/24/2011

Executable Dynamic Slicing

1. Follow data def/use chain backward,
starting with output buffer

2. Examine CFG and add necessary control
flow statements to slice (and their
dependencies)

3. Perform slice closure:

• If any instance of an instruction is
included in the slice, all instances of that
instruction must be marked

20

Data def/use chains give us our initial set of relevant instructions without control flow. Next
step operates on dynamic CFG. Slice closure is what makes it executable.

VirtuosoOakland ’11 5/24/2011

Trace Merging

• Since analysis is dynamic, we only see one
path through program

• So: run program multiple times and then
merge results

21

Note why we didn’t go with static analysis here: too much domain knowledge.

VirtuosoOakland ’11 5/24/2011

Trace Merging

• Since analysis is dynamic, we only see one
path through program

• So: run program multiple times and then
merge results

21

Note why we didn’t go with static analysis here: too much domain knowledge.

VirtuosoOakland ’11 5/24/2011

Program Translation

• Goal: convert in-guest ➔ out-of-guest

• Generates Python code that runs inside
Volatility memory analysis framework

• Changes:

• Memory reads come from guest VM

• Memory writes are copy-on-write

• CPU registers become local vars

22

Why Python? Volatility written in Python. Any code generation would do though. Copy-on-
write is necessary so as not perturb the guest.

VirtuosoOakland ’11 5/24/2011

Translation Example

23

Original x86 QEMU µOps

Example: a test and a conditional jump. Asterisks mean “included in slice”.

VirtuosoOakland ’11 5/24/2011

Translation Example

24

QEMU µOps Python

Translation to Python: conditional jump is now Python if statement.

VirtuosoOakland ’11 5/24/2011

Results: Generality

• Generated 6 useful introspection programs
on each of 3 operating systems

25

Windows: everyone uses it. Linux: we use it. Haiku: we don’t know its internals, no
temptation to cheat.

VirtuosoOakland ’11 5/24/2011

Introspection Programs

26

getpid Gets the PID of the currently running
process.

pslist Gets a list of PIDs of all running processes.

getpsfile Gets the name of an executable from its
PID.

lsmod Gets the base addresses of all kernel
modules.

getdrvfile Gets the name of a kernel module from its
base address.

gettime Gets the current system time.

Describe these by group and why relevant to security: examine features of processes and
drivers.

VirtuosoOakland ’11 5/24/2011

Results: Reliability

• Analysis is dynamic, so programs may be
incomplete

• How many traces are needed to produce
reliable programs?

• Complicating factors: caching, difficulty of
deciding ground truth for coverage

27

Caching: early runs may execute much more code. Difficulty of ground truth: hard to say
what the complete set of code is, or how many paths (program testing has this problem too).

VirtuosoOakland ’11 5/24/2011

Windows pslist Reliability

28

This is cross-evaluation: take 24 traces, and then take differently sized random subsets to
create final program. Describe axes, then walk through one program => not reliable, 12
programs => pretty reliable. Mention caching effect again as explanation for why this graph
is pessimistic.

VirtuosoOakland ’11 5/24/2011

Results: Security

• Verified that introspection programs are not
affected by in-guest code manipulation

• Training program (pslist) generated on clean
system

• Resulting introspection program still detects
processes hidden by Hacker Defender

• Note: DKOM attacks can still be effective
against Virtuoso

29

DKOM is something we’ll look at in future work.

VirtuosoOakland ’11 5/24/2011

Limitations

• Multiple processes/IPC

• Multithreaded code (synchronization)

• Code/data relocation (ASLR)

• Self-modifying code

30

Multiple processes: key problem is that we don’t know where data for a specific process
might be at runtime. Multithreaded code: VM is paused, so waiting on a lock is bad.
Relocation: where’s our data? Self-modifying code: code is only translated once (kernel’s
don’t usually self-modify, but this is relevant if we want to analyze malware).

VirtuosoOakland ’11 5/24/2011

Conclusions

• Programs generated by Virtuoso can be
useful, reliable, and secure

• Uses novel whole-system executable
dynamic slicing and merging

• Virtuoso can greatly reduce time and effort
needed to create introspection programs

- Weeks of reverse engineering vs. minutes
of computation

31

Stop here for questions, etc.

